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1 Spanning Trees

Let G = (V,E) be an undirected graph and let c : E → R be an edge-cost function. Efficient
polynomial time algorithms for computing a minimum cost spanning tree (MST) are standard.
Spanning trees in G are bases in the associated graphic matroid and Kruskal’s algorithm for MST
is the essentially the greedy algorithm for computing a minimum cost base in a matroid. From
polyhedral results on matroids we obtain corresponding results for spanning trees.

The spanning tree polytope of G = (V,E) is the polytope formed by the convex hull of the
characteristic vectors of spanning trees of G, and is determined by the following inequalities. We
have a variable x(e) for each e ∈ E and for a set U ⊆ V , E[U ] is the set of edges with both end
points in U .

x(E) = n − 1

x(E[U ]) ≤ |U | − 1 U ⊆ V

x ≥ 0

If we drop the constraint x(E) = n− 1, then we obtain the convex hull of the characterstic vectors
of forests in G, called the forest polytope of G; note that forests are the independent sets in the
graphic matroid of G.

A natural cut-based formulation for spanning trees is the following:

x(δ(U)) ≥ 1 ∀∅ ⊂ U ⊂ S

x ≥ 0

It is easy to check that every spanning tree satisfies the above constraints, but the following example
shows that the constraints do not determine the spanning tree polytope. Take G to the n-cycle
Cn and set x(e) = 1

2 on each edge; satisfies the cut-constraints but cannot be written as a convex
combination of spanning trees. In fact, it does not even satisfy the constraint that x(E) = n − 1.
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Exercise 1 Show that even if we add the constraint x(E) = n − 1 to the cut-constraints, it still
does not determine the spanning tree polytope.



We have seen Tutte-Nash-Williams Theorem on maximum number of edge-disjoint spanning
trees. Matroid union theorem gives polynomial-time algorithms to find a maximum number of edge-
disjoint spanning trees in a given graph. We have also seen Nash-Williams forest cover theorem and
again matroid union algorithm can be used to obtain the minimum number of forests that cover E.

2 Arborescences and Branchings

Let D = (V,A) be a directed graph. Recall that a branching is a set of edges A′ ⊆ A such that

1. δ−1
A′ (v) ≤ 1 ∀v ∈ V , i.e., at most one edge in A′ enters any node v;

2. A′ when viewed as undirected edges induces a forest on V .

An arborescence is a branching that has in-degree 1 for all nodes except one, called the root.
An arborescence has a directed path from the root to each node v ∈ V .

Proposition 2 Let D = (V,A) be a directed graph and let r ∈ V . If r can reach every node v ∈ V ,
then there is an arborescence in D rooted at r. If G is strongly connected, then for every v ∈ V ,
there is an arborescence rooted at v.

Branchings and Matroid Intersection: We saw earlier that branchings in a directed graph
D = (V,A) can be viewed as the common independent sets in the intersection of two matroids on
A. Let M1 = (A,I1) where I1 = {A′ ⊆ A | |A′ ∩ δ−1(v)| ≤ 1 ∀v ∈ V }. M1 is a partition matroid.
M2 = (A,I2) where I2 = {A′ ⊆ A | A′ when viewed as undirected edges induces a forest on V }.
M2 is a graphic matroid. Thus, one easily sees that I1 ∩ I2 is precisely the set of branchings.
Moreover, for a fixed r, if we modify M1 such that M1 = {A′ ⊆ A | |A′ ∩ δ−1(v)| ≤ 1 ∀v ∈ V \{r}
and |A′ ∩ δ−1(r)| = 0}, then the set of arborescences rooted at r are precisely the common bases of
I1 and I2.

Using matroid intersection results, one can solve the following problems in polynomial time:

• given D = (V,A) and w : A → R, find a maximum weight branching;

• given D and c : A → R, find a min-cost arborescence rooted at r;

• given D and c : A → R, find a max-cost arborescence rooted at r;

Polyhedral results also follow from matroid intersection. However, one can obtain direct and
simple algorithms, and also polyhedral results, for arborescences. We explain them below. We first
address algorithms for the optimization problems discussed above.



Combinatorial Algorithms: Let D = (V,A) and c : A → R+ be a non-negative cost function
on the the arcs. We wish to find a min-cost arborescence rooted at given node r ∈ V . We observe
that a greedy algorithm similar to Prim’s algorithm for computing an MST does not work.

4

1

3

r

v u

For the above example, greedy method will pick (r, v) and then has to pick (r, u) for total cost
of 7. However, optimal arborescence is {(r, u), (u, v)} of cost 5.

Algorithm for min-cost r-aroborescence:

1. Let A0 = {a ∈ A | c(a) = 0} be the set of zero-cost arcs. If there is an r-arborescence in A0

(of cost 0), output it as the min-cost arborescence.

2. Else, let S1, . . . , Sk be the vertex sets of the strong connected components of D[A0]. Let
αi = mina∈δ−1(Si) c(a), that is αi is the cost of the min-cost edge entering Si.

for i = 1 to k do

for each a ∈ δ−1(Si)

c′(a) = c(a) − αi

3. Recursively compute a min-cost arborescence in D = (V,A) with edge-cost function c′. Out-
put the solution of recursive call.

First, we argue that the algorithm terminates in polynomial time. If A0 does not contain an
r-arborescence then at least one Si has all incoming edges of strictly positive cost (why?) and hence
in step 2, at least one additional arc has its cost reduced to zero; thus the size of A0 increases and
hence at most O(m) recursive calls suffice. In fact, if we shrink each Si to a single vertex, one can
show that the number of vertices reduces by at least one and hence O(n) recursive calls suffice.
Since strong connected components can be found in O(m) time, this leads to an O(mn) running
time.

Now we argue correctness. It is easy to see that step 1 is correct. To argue correctness of step
3, we have the following lemma.

Lemma 3 Let S1, . . . , Sk be vertex sets of the strong connected components of D[A0]. Then there
exists a min-cost arborescence A∗ in D s.t. |δ−1(Si) ∩ A∗| = 1.

Proof: Say A∗ is an optimal arborescence and |A∗∩δ−1(Si)| ≥ 2. Let a = arg mina′∈A∗∩δ−1(Si) c(a′)
be the least cost arc entering Si in A∗. Then let A′ = (A∗\δ−1(Si))∪{a}∪(A0∩A[Si]); A′ is the set
of arcs obtained by adding to A∗ all zero-cost arcs inside Si (A0∩A[Si]) and removing all arcs from
A∗ that enter Si other than the least cost arc a defined above. It is easy to check that A′ contains
an r-arborescence and moreover its cost is no more than that of A0. Further, |δ−1(Si) ∩ A′| = 1



and |δ−1(Sj)∩A′| = |δ−1(Sj)∩A∗| for all j 6= i. Repeating the above process for each Si gives the
desired claim. 2

This leads to the following theorem.

Theorem 4 There is an O(nm) time algorithm to compute a min-cost r-arborescence in a directed
graph with n nodes and m edges.

There is an O(m + n log n)-time algorithm to find a min-cost r-arboresence problem which is
comparable to the standard MST algorithms.

Max-weight arborescences and Branchings. Since any arborescence has exactly n− 1 edges,
one can solve the max-weight arborescence by negating weights, adding a large positive number to
make weights positive and then computing a min-weight arborescence.

One can use the max-weight arborescence algorithm to compute a max- weight branching. Note
that given w : A → R, we can assume w(a) ≥ 0 ∀a by removing all arcs with negative weights.
We note that a max-weight branching may not be maximal even when weights are positive; this
is unlike the case of matroids (in particular, a max-weight forest is a spanning tree if all weights
are non-negative and the input graph is connected). To solve the max weight branching problem,
we add a new vertex r and connect it to each v ∈ V with an arc (r, v) of weight 0. Now we find a
max-weight arborescence rooted at r. We leave the correctness of this algorithm as an easy exercise.

2.1 Polyhedral Aspects

One can obtain polyhedral descriptions for branchings and arborescences via matroid intersection.
However, some natural and direct descriptions exist.

Let Pr−arborescence(D) = convexhull{χ(B) | B is a r-arborescence in D}.

Theorem 5 Pr−arborescence(D) is determined by

x(a) ≥ 0 a ∈ A

x(δ−1(v)) = 1 v ∈ V \{r}

x(δ−1(U)) ≥ 1 U ⊆ V \{r}

Proof: We give an iterated rounding based proof to show that the following set of inequalities

0 ≤ x(a) ≤ 1 a ∈ A

x(δ−1(U)) ≥ 1 U ⊆ V \{r}

is the convex hull of the characteristic vectors of arc sets that contain an r-arborescence. One can
easily adapt the proof to show the theorem statement. Let x be any basic feasible solution to the
above system. We claim that ∃a ∈ A s.t. x(a) = 0 or x(a) = 1. In either case, we obtain the
desired proof by induction on |A|. If x(a) = 0 we consider D[A \ {a}], if x(a) = 1, we shrink the
end points of a into a single vertex and consider the resulting graph.

We now prove that ∃a ∈ A s.t. x(a) ∈ {0, 1}. Assume not, then x(a) ∈ (0, 1) ∀a ∈ A. Let
F = {U ∈ V \{r} | x(δ−1(U)) = 1} be the collection of tight sets.

Claim 6 F is closed under intersections and unions.



Claim 7 Let L be a maximal laminar family in F . Then span({X (U) | U ∈ L})=span({X (U) |
U ∈ F}).

The above claims are based on uncrossing arguments that we have seen in several contexts. We
leave the formal proofs as an exercise.

Since L is a laminar family on V \{r}, we have

|L| ≤ 2(|V | − 1) − 1 ≤ 2|V | − 3

Since x(δ−1(v)) ≥ 1 for each v ∈ V \ {r} and x(a) ∈ (0, 1) for all a ∈ A,

|δ−1(v) ∩ A| ≥ 2 ∀v ∈ V \ {r}

This implies that |A| ≥ 2|V | − 2. However, x is a basic feasible solution and L determines x, and
thus |L| = |A|, a contradiction. 2

In fact, one can show that the system of inequalities is TDI and this implies a min-max result
as well. See [1] for more details.

3 Arc-Disjoint Arborescences

A beautiful theorem of Edmonds is the following.

Theorem 8 Let D = (V,A) be a digraph and let r ∈ V . D has k arc-disjoint r-arborescences iff
for each v ∈ V \{r} there are k arc-disjoint paths from r to v.

Proof: If D has k arc-disjoint r-arborescences then clearly for each v ∈ V \{r}, there are k arc-
disjoint r → v paths in D, one in each of the arboresences.

We prove the converse via a proof given by Lovász using induction on k (proof adapted from
[2]). Let C = {U ⊂ V | r ∈ U} be the collection of all proper subsets of V that contain r. Note
that the condition that there are k-arc-disjoint paths from r to each v is equivalent to, by Menger’s
theorem,

|δ+(U)| ≥ k ∀U ∈ C.

The idea is to start with the above condition and find an r-arborescence A1 s.t.

|δ+(U)\A1| ≥ k − 1 ∀U ∈ C.

Then, by induction, we will be done. We obtain A1 by growing an r-arborescence from r as follows.
We start with A1 = ∅ and S = {r}; S is the set of vertices reachable from r via arcs in the current
set of arcs A1. We maintain the property that |δ+(U)\A1| ≥ k − 1 ∀U ⊂ S, r ∈ U . If we reach
S = V , we are done.

The goal is to find an arc in δ+(S) to add to A1 and grow S. Call a set X ⊂ V critical/dangerous
if

• X ∈ C and

• X ∪ S 6= V and

• |δ+(X) \ A1| = k − 1.
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Figure 1: S and δ+(S)

We observe that if there are no critical sets, any arc a ∈ δ+(S) can be used to augment A1. If
X is critical, then we cannot pick any unused arcs from δ+(X) to grow A1. The goal is to show
that there always exists an arc a ∈ δ+(S) such that a does not cross any critical set. We claim the
following uncrossing property for critical sets.

Claim 9 If X, Y are critical and X ∪ Y 6= V , then X ∩ Y and X ∪ Y are critical.

Proof: Let G′ = G[A\A1], then |δ+
G′(X)| = k−1 and |δG′(Y )| = k−1. We have, by submodularity

of the cut function |δ+
G()|,

|δG′(X)| + |δG′(Y )| ≥ |δG′(X ∪ Y )| + |δG′(X ∩ Y )|.

Since r ∈ X ∩ Y and r ∈ X ∪ Y and X ∪ Y 6= V , we have that |δG′(X ∩ Y )| ≥ k − 1 and
|δG′(X ∪ Y )| ≥ k − 1. Since X, Y are critical,

k − 1 + k − 1 ≥ |δG′(X ∩ Y )| + |δG′(X ∪ Y )| ⇒ δG′(X ∩ Y ) = δG′(X ∪ Y ) = k − 1.

2

Let X be a inclusion-wise maximal critical set.

Claim 10 There exists an arc (u, v) ∈ A s.t. u ∈ S \ X and v ∈ V \ (S ∪ X).

Proof: Note that A1 ∩ δ+(S) = ∅ since S, by defintion, is a set of reachable nodes in A1. Since
|δ+(S ∪ X)| ≥ k (by assumption) and |δ+

G−A1
(X)| = k − 1 (since X is critical), we have an arc as

desired. 2

Now let A′
1 = A1 + (u, v). The claim is that for all U ∈ C, |δ+(U) \ A′

1| ≥ k − 1. Suppose not.
Then let Y be such that |δ+(Y )\A′

1| < k − 1 but this implies that |δ+(Y )\A1| = k − 1, that is Y is

rS
X

Figure 2: All arcs from A1 ∩ δ+(S) go from X to S
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Figure 3: Claim 10

critical and (u, v) ∈ δ+(Y ). But consider Y , X both critical and Y ∪ X 6= V since v /∈ Y , v /∈ X.
Therefore X ∪ Y is critical, which contradicts maximality of X. 2

We note that the above theorem shows the integer decomposition property for the arboresence
polytope discussed earlier. The proof can be converted into a polynomial time algorithm to find
a maximum number of arc-disjoint r-arborescences in a given digraph. First we let k be the
minv∈V \{r} λD(r, v) where λD(r, v) is the arc-connectivity between r and v. The theorem guarantees
k r-aroboresences. In the above proof, the main issue is to find in each iteration an arc to augment
A1 with. We note that given an arc a, we can check if A1 + a satisfies the invariant by checking
the min-cut value from r to each node v, in the graph D′ = D[A \ (A1 + a)]. The proof guarantees
the existence of an arc a that can be used to augment A1 and hence one of the m arcs in D will
succeed. It is easy to see that this leads to a polynomial time algorithm. There is also a polynomial
time algorithm for the capacitated case. See [1] for details.

Edmonds derived the arc-disjoint r-arborescences theorem from a more general theorem on
disjoint branchings. We refer the reader to [1].
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