
CS 598CSC: Combinatorial Optimization Lecture dates: 13, 15 April, 2010
Instructor: Chandra Chekuri Scribe: Chandra Chekuri

1 Submodular Functions and Convexity

Let f : 2S → R be a submodular set function. We discuss a connection between submodular
functions and convexity that was shown by Lovász [3].

Given an arbitrary (not necessarily submodular) set function f : 2S → R, we can view it
as assigning values to the integer vectors in the hypercube [0, 1]n where n = |S|. That is, for
each U ⊆ S, f(χ(U)) = f(U). We say that a function f̂ : [0, 1]n → R is an extension of f if
f̂(χ(U)) = f(U) for all U ⊆ S; that is f̂ assigns a value to each point in the hypercube and agrees
with f on the characterstic vectors of the subsets of S. There are several ways to define an extension
and we consider one such below.

Let S = {1, 2, . . . , n}. Consider a vector c = (c(1), . . . , c(n)) in [0, 1]n and let p1 > p2 > . . . > pk

be the distinct values in {c(1), c(2), . . . , c(n)}. Define qk = pk and qj = pj−pj+1 for j = 1, . . . , k−1.
For 1 ≤ j ≤ k, we let Uj = {i | c(i) ≥ pj}. Define f̂ as follows:

f̂(c) = (1− p1)f(∅) +
k∑

j=1

qjf(Uj)

As an example, if c = (0.75, 0.3, 0.2, 0.3, 0) then

f̂(c) = 0.25 · f(∅) + 0.45 · f({1}) + 0.1 · f({1, 2, 4}) + 0.2 · f({1, 2, 3, 4, 5})

In other words c is expressed as a convex combination χ(∅) +
∑k

j=1 qjχ(Uj) of vertices of the
hypercube, and f̂(c) is the natural interpolation. It is typically assumed that f(∅) = 0 (one can
always shift any function to achieve this) and in this case we can drop the term (1 − p1)f(∅);
however, it is useful to keep in mind the implicit convex decomposition.

Lemma 1 If f is submodular then f̂(c) = max{cx | x ∈ EPf}.

We leave the proof of the above as an exercise. It follows by considering the properties of the
Greedy algorithm for maximizing over polymatroids that was discussed in the previous lecture.

Theorem 2 (Lovász) A set function f : 2S → R with f(∅) = 0 is submodular iff f̂ is convex.

Proof: Suppose f is submodular. Let c1, c2 ∈ [0, 1]n and t ∈ [0, 1] and let c = tc1 + (1 − t)c2. To
show that f̂ is convex we need to show that f̂(c) ≤ f̂(tc1) + f̂((1− t)c2). This follows easily from
Lemma 1. Let x∗ ∈ EPf be such that f̂(c) = c · x∗ = tc1 · x∗ + (1− t)c2 · x∗. Then f̂(tc1) ≥ tc1 · x∗

and f̂((1− t)c2) ≥ (1− t)c2 · x∗ and we have the desired claim.
Now suppose f̂ is convex. Let A,B ⊆ S. From the definition of f̂ we note that f̂((χ(A) +

χ(B))/2) = f̂(χ(A ∪ B)/2) + f̂(χ(A ∩ B)/2) (the only reason to divide by 2 is to ensure that we
stay in [0, 1]n). On the other hand, by convexity of f̂ , f̂((χ(A)+χ(B))/2) ≤ f̂(χ(A)/2)+f̂(χ(B)/2).
Putting together these two facts, we have f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B), and hence f is
submodular. 2

Corollary 3 If f is submodular then minU⊆S f(S) = minc∈[0,1]n f̂(c).

Proof: Clearly minc∈[0,1]n f̂(c) ≤ minU⊆S f(S). To see the converse, let c∗ ∈ [0, 1]n achieve the
minimum of minc∈[0,1]n f̂(c). Then one of the sets in the convex combination of c∗ in the definition
of the extension achieves a value equal to f̂(c∗). 2

The above shows that submodular function minimization can be reduced to convex optimization
problem in a natural fashion. One advantage of an extension as above is that one can use it as
a relaxation in optimization problems involving submodular functions and additional constraints.
For example we may want to solve minU⊆S f(S) subject to U satisfying some additional constraints
that could perhaps be modeled as x(S) ∈ P for some convex set P . Then we could solve min{f̂(x) |
x ∈ P} as a relaxation and round the solution in some fashion. There are several examples of this
in the literature.

2 Combinatorial Algorithms for Submodular Function Minimiza-
tion

We saw in last lecture an algorithm for solving the submodular function minimization problem
(SFM): given f as a value oracle, find minU⊆S f(S). The algorithm was based on solving a linear
program via the ellipsoid method and has a strongly polynomial running time. A question of interest
is whether there is a polynomial time “combinatorial” algorithm for this problem. Although there
is no clear-cut and formal definition of a combinatorial algorithm, typically it is an algorithm
whose operations have some combinatorial meaning in the underlying structure of the problem.
Cunningham [?] gave a pseudo-polynomial time algorithm for this problem in 1985. It is only
in 2000 that Schrijver [?] and independently Iwata, Fleischer and Fujishige gave polynomial time
combinatorial algorithms for SFM. There have been several papers that followed these two; we
mention the algorithm(s) of Iwata and Orlin [2] that have perhaps the shortest proofs. All the
algorithms follow the basic outline of Cunningham’s approach which was orginally developed by
him for the special case of SFM that arises in the separation oracle for the matroid polytope.

Two excellent articles on this subject by Fleischer [1] and Toshev [5]. We set up the min-max
result on which the algorithms are based and reader should refer to [1, 5, 4, 2] for more details.

2.1 Base Polytope and Extreme Bases via Linear Orders

Recall that EPf = {x ∈ RS | x(U) ≤ f(U)∀U ⊆ S}. We obtain the base polytope by adding the
constraint x(S) = f(S) to EPf .

Bf = {x ∈ RS | x(U) ≤ f(U) ∀U ⊆ S, x(S) = f(S)}.

A vector x in Bf is called a base vector or simply a base of EPf (or of f). A base vector of f
is a base vector of EPf . Note that Bf is a face of EPf . Bf is a polytope, since f({s}) ≥ xs =
x(S)− x(S \ {s}) ≥ f(S)− f(S \ {s}) for each s ∈ S.

An extreme point of the base polytope is called an extreme base. What are the extreme bases?
We note that the greedy algorithm for max{wx | x ∈ EPf} generates a base whenever w ≥ 0 (if
w(v) < 0 for some v then the optimum value is unbounded). In fact the greedy algorithm uses w
only to sort the elements and then ignores the weights. Thus, any two weight vectors that result in

the same sorted order give rise to the same base. We set up notation for this. Let L = v1, v2, . . . , vn

be a total order on S, in other words a permutation of S. We say u ≺L v if u comes before v in L;
we use �L if u, v need not be distinct. Let L(v) denote {u ∈ S | u �L v}. Given a total order L
the greedy algorithm produces a base vector bL where for each v ∈ S,

bL(v) = f(L(v))− f(L(v) \ {v}).

Lemma 4 For each linear order L on S the vector bL is an extreme base. Moreover, each extreme
base x there is a linear order L (could be more than one) such that x = bL.

2.2 A Min-Max Theorem

Recall that the linear programming based algorithm for SFM was based on the following theorem
of Edmonds.

Theorem 5 For a submodular function f : 2S → R with f(∅) = 0,

min
U⊆S

f(U) = max{x(S) | x ∈ EPf , x ≤ 0}.

A related theorem that one can prove from the above is the following. For a vector z ∈ RS and
U ⊆ S we define z−(U) as

∑
v∈U :z(v)<0 z(v). Alternatively, z−(v) = min{0, z(v)}.

Theorem 6 For a submodular function f : 2S → R with f(∅) = 0,

min
U⊆S

f(U) = max{x−(S) | x ∈ Bf}.

We give direct proof of this which underlies the algorithmic aspects.
Proof: For any x ∈ RS and U ⊆ S we have x−(S) ≤ x(U). If in addition x ∈ Bf then x−(S) ≤
x(U) ≤ f(U). Since this holds for any U ⊆ S we have that minU⊆S f(U) ≥ max{x−(S) | x ∈ Bf}.

For the converse direction, let x be an optimum solution to max{x−(S) | x ∈ Bf}. Let
N = {u ∈ S | x(u) < 0} and P = {u ∈ S | x(u) > 0}. We observe that for any v ∈ S \ (N ∪ P),
x(v) = 0. We say that a set U is tight with respect to x if x(U) = f(U). Recall that tight sets
uncross, in other words the set of all tight sets are closed under intersection and union.

Claim 7 For any u ∈ N and v ∈ P , there exists a tight set Yuv where u ∈ Yuv and v 6∈ Yuv.

Assuming the claim above we finish the proof as follows. For u ∈ N , let Yu = ∩v∈PYuv. We note
that Yu is tight and Yu ∩ P = ∅. Let Z = ∪u∈NYu. The set Z is tight and N ⊆ Z and Z ∩ P = ∅.
Therefore, x−(S) = x(Z) = f(Z) and we are done.

Now we prove the claim by contradiction. Suppose it is not true. Then there is a u ∈ N and
v ∈ P such that for all A where u ∈ A and v 6∈ A we have x(A) < f(A). Let ε = min{f(A)−x(A) |
u ∈ A, v 6∈ A}; we have ε > 0. Let ε′ = min(ε, |x(u)|, |x(v)|). We obtain a new vector x′ ∈ Bf as
x′ = x + ε′(χ(u) − χ(v)), that is we add ε′ to x(u) and subtract ε′ from x(v). The new vector x′

contradicts the optimality of x since x′−(S) > x−(S). 2

The above proof suggests the following definition.

Definition 8 Given a vector x ∈ Bf and u, v ∈ S, the exchange capacity of u, v with respect to x,
denoted by α(x, v, u), is min{f(A)− x(A) | u ∈ A, v 6∈ A}.

A corollary that follows from the proof of Theorem 6.

Corollary 9 A vector x ∈ Bf is optimum for max{x−(S) | x ∈ Bf} iff α(x, v, u) = 0 for all u ∈ N
and v ∈ P where N = {u ∈ S | x(u) < 0} and P = {v ∈ S | x(v) > 0}.

We remark that max{x−(S) | x ∈ Bf} is not a linear optimization problem. The function
x−(S) is a concave function (why?) and in particular the optimum solution need not be a vertex
(in other words an extreme base) of Bf . See [1] for an illustrative example in two dimensions.

2.3 Towards an Algorithm

From Corollary 9 one imagines an algorithm that starts with arbitrary x ∈ Bf (we can pick some
arbitrary linear order L on S and set x = bL) and improve x−(S) by finding a pair u, v with
u ∈ N and v ∈ P with non-negative exchange capacity and improving as suggested in the proof
of Theorem 6. However, this depends on our ability to compute α(x, v, u) and one sees from the
definition that this is another submodular function minimization problem!

A second technical difficulty, as we mentioned earlier, is that the set of optimum solutions to
max{x−(S) | x ∈ Bf} may not contain an extreme base.

The general approach to overcoming these problems follows the work of Cunningham. Given
x ∈ Bf we express x as a convex combination of extreme bases (vertices of Bf); in fact, using
Lemma 4, it is convenient to use linear orders as the implicit representation for an extreme base.
Then we write x =

∑
L∈Λ λLbL where Λ is a collection of linear orders. By Caratheodary’s theorem,

Λ can be chosen such that |Λ| ≤ |S| since the dimension of Bf is |S| − 1. Although computing the
exchange capacities with respect to an arbitrary x ∈ Bf is difficult, if x is an extreme base bL for a
linear order L, then we see below that several natural exchanges can be efficiently computed. The
goal would then to obtain exchanges for x ∈ Bf by using exchanges for the linear orders in the
convex combination for x given by Λ. Different algorithms take different approaches for this. See
[1, 5], in particular [5] for detailed descriptions including intuition.

References

[1] L. Fleischer. Recent Progress in Submodular Function Minimization. OPTIMA: Mathematical
Programming Society Newsletter , September 2000, no.64, 1-11. Available online at http:
//www.mathprog.org/Optima-Issues/optima64.pdf.

[2] S. Iwata and J. Orlin. A Simple Combinatorial Algorithm for Submodular Function Minimiza-
tion. Proc. of ACM-SIAM SODA, 2009.

[3] L. Lovász. Submodular functions and convexity. Mathematical programming: the state of the
art, Bonn, 235–257, 1982.

[4] A. Schrijver. Combinatorial Optimization. Springer-Verlag Berlin Heidelberg, 2003.

[5] Alexander Toshev. Submodular Function Minimization. Manuscript, January 2010. http:
//www.seas.upenn.edu/~toshev/Site/About_Me_files/wpii-2.pdf.

http://www.mathprog.org/Optima-Issues/optima64.pdf
http://www.mathprog.org/Optima-Issues/optima64.pdf
http://www.seas.upenn.edu/~toshev/Site/About_Me_files/wpii-2.pdf
http://www.seas.upenn.edu/~toshev/Site/About_Me_files/wpii-2.pdf

	Submodular Functions and Convexity
	Combinatorial Algorithms for Submodular Function Minimization
	Base Polytope and Extreme Bases via Linear Orders
	A Min-Max Theorem
	Towards an Algorithm

