1 Introduction to Submodular Set Functions and Polymatroids

Submodularity plays an important role in combinatorial optimization. Given a finite ground set S, a set function $f: 2^{S} \rightarrow \mathbb{R}$ is submodular if

$$
f(A)+f(B) \geq f(A \cap B)+f(A \cup B) \quad \forall A, B \subseteq S
$$

or equivalently,

$$
f(A+e)-f(A) \geq f(B+e)-f(B) \quad \forall A \subseteq B \text { and } e \in S \backslash B
$$

Another equivalent definition is that

$$
f\left(A+e_{1}\right)+f\left(A+e_{2}\right) \geq f(A)+f\left(A+e_{1}+e_{2}\right) \quad \forall A \subseteq S \text { and distinct } e_{1}, e_{2} \in S \backslash A
$$

Exercise: Prove the equivalence of the above three definitions.
A set function $f: 2^{S} \rightarrow \mathbb{R}$ is non-negative if $f(A) \geq 0 \forall A \subseteq S . f$ is symmetric if $f(A)=$ $f(S \backslash A) \forall A \subseteq S . f$ is monotone (non-decreasing) if $f(A) \leq f(B) \forall A \subseteq B . f$ is integer-valued if $f(A) \in \mathbb{Z} \forall A \subseteq S$.

1.1 Examples of submodular functions

Cut functions. Given an undirected graph $G=(V, E)$ and a 'capacity' function $c: E \rightarrow \mathbb{R}_{+}$on edges, the cut function $f: 2^{V} \rightarrow \mathbb{R}_{+}$is defined as $f(U)=c(\delta(U))$, i.e., the sum of capacities of edges between U and $V \backslash U$. f is submodular (also non-negative and symmetric, but not monotone).

In an undirected hypergraph $G=(V, \mathcal{E})$ with capacity function $c: \mathcal{E} \rightarrow \mathbb{R}_{+}$, the cut function is defined as $f(U)=c\left(\delta_{\mathcal{E}}(U)\right)$, where $\delta_{\mathcal{E}}(U)=\{e \in \mathcal{E} \mid e \cap U \neq \emptyset$ and $e \cap(S \backslash U) \neq \emptyset\}$.

In a directed graph $D=(V, A)$ with capacity function $c: A \rightarrow \mathbb{R}_{+}$, the cut function is defined as $f(U)=c\left(\delta_{\text {out }}(U)\right)$, where $\delta_{\text {out }}(U)$ is the set of arcs leaving U.
Matroids. Let $M=(S, \mathcal{I})$ be a matroid. Then the rank function $r_{M}: 2^{S} \rightarrow \mathbb{R}_{+}$is submodular (also non-negative, integer-valued, and monotone).

Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be two matroids. Then the function f given by $f(U)=$ $r_{M_{1}}(U)+r_{M_{2}}(S \backslash U)$, for $U \subseteq S$, is submodular (also non-negative, and integer-valued). By the matroid intersection theorem, the minimum value of f is equal to the maximum cardinality of a common independent set in the two matroids.
Coverage in set system. Let $T_{1}, T_{2}, \ldots, T_{n}$ be subsets of a finite set T. Let $S=[n]=\{1,2, \ldots, n\}$ be the ground set. The coverage function $f: 2^{S} \rightarrow \mathbb{R}_{+}$is defined as $f(A)=\left|\cup_{i \in A} T_{i}\right|$.

A generalization is obtained by introducing the weights $w: T \rightarrow \mathbb{R}_{+}$of elements in T, and defining the weighted coverage $f(A)=w\left(\cup_{i \in A} T_{i}\right)$.

Another generalization is to introduce a submodular and monotone weight-function $g: 2^{T} \rightarrow \mathbb{R}_{+}$ of subsets of T. Then the function f is defined as $f(A)=g\left(\cup_{i \in A} T_{i}\right)$.

All the three versions of f here are submodular (also non-negative, and monotone).
Flows to a sink. Let $D=(V, A)$ be a directed graph with an arc-capacity function $c: A \rightarrow \mathbb{R}_{+}$. Let a vertex $t \in V$ be the sink. Consider a subset $S \subseteq V \backslash\{t\}$ of vertices. Define a function $f: 2^{S} \rightarrow \mathbb{R}_{+}$as $f(U)=$ max flow from U to t in the directed graph D with edge capacities c, for a set of 'sources' U. Then f is submodular (also non-negative and monotone).
Max element. Let S be a finite set and let $w: S \rightarrow \mathbb{R}$. Define a function $f: 2^{S} \rightarrow \mathbb{R}$ as $f(U)=\max \{w(u) \mid u \in U\}$ for nonempty $U \subseteq S$, and $f(\emptyset)=\min \{w(u) \mid u \in S\}$. Then f is submodular (also monotone).
Entropy and Mutual information. Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables over some underlying probability space, and $S=\{1,2, \ldots, n\}$. For $A \subseteq S$, define $X_{A}=\left\{X_{i} \mid i \in A\right\}$ to be the set of random variables with indices in A. Then $f(A)=H\left(X_{A}\right)$, where $H(\cdot)$ is the entropy function, is submodular (also non-negative and monotone). Also, $f(A)=I\left(X_{A} ; X_{S \backslash A}\right)$, where $I(\cdot ; \cdot)$ is the mutual information of two random variables, is submodular.
Exercise: Prove the submodularity of the functions introduced in this subsection.

1.2 Polymatroids

Define two polyhedra associated with a set function f on S :

$$
P_{f}=\left\{x \in \mathbb{R}^{S} \mid x(U) \leq f(U) \forall U \subseteq S, x \geq \mathbf{0}\right\} \text { and } E P_{f}=\left\{x \in \mathbb{R}^{S} \mid x(U) \leq f(U) \forall U \subseteq S\right\} .
$$

If f is a submodular function, then P_{f} is called the polymatroid associated with f, and $E P_{f}$ the extended polymatroid associated with f. A polyhedron is called an (extended) polymatroid if it is the (extended) polymatroid associated with some submodular function. Since $0 \leq x_{s} \leq f(\{s\})$ for each $s \in S$, a polymatroid is bounded, and hence is a polytope.

An observation is that P_{f} is non-empty iff $f \geq \mathbf{0}$, and $E P_{f}$ is non-empty iff $f(\emptyset) \geq 0$.
If f is the rank function of a matroid M, then P_{f} is the independent set polytope of M.
A vector x in $E P_{f}$ (or in P_{f}) is called a base vector of $E P_{f}$ (or of P_{f}) if $x(S)=f(S)$. A base vector of f is a base vector of $E P_{f}$. The set of all base vectors of f is called the base polytope of $E P_{f}$ or of f. It is a face of $E P_{f}$ and denoted by B_{f} :

$$
B_{f}=\left\{x \in \mathbb{R}^{S} \mid x(U) \leq f(U) \forall U \subseteq S, x(S)=f(S)\right\}
$$

B_{f} is a polytope, since $f(\{s\}) \geq x_{s}=x(S)-x(S \backslash\{s\}) \geq f(S)-f(S \backslash\{s\})$ for each $s \in S$.
The following claim is about the set of tight constraints in the extended polymatroid associated with a submodular function f.

Claim 1 Let $f: 2^{S} \rightarrow \mathbb{R}$ be a submodular set function. For $x \in E P_{f}$, define $\mathcal{F}_{x}=\{U \subseteq S \mid x(U)=$ $f(U)\}$ (tight constraints). Then \mathcal{F}_{x} is closed under taking unions and intersections.
Proof: Consider any two sets $U, V \in \mathcal{F}_{x}$, we have

$$
f(U \cup V) \geq x(U \cup V)=x(U)+x(V)-x(U \cap V) \geq f(U)+f(V)-f(U \cap V) \geq f(U \cup V) .
$$

Therefore, $x(U \cup V)=f(U \cup V)$ and $x(U \cap V)=f(U \cap V)$.
Given a submodular set function f on S and a vector $a \in \mathbb{R}^{S}$, define the set function $f \mid a$ as

$$
(f \mid a)(U)=\min _{T \subseteq U}(f(T)+a(U \backslash T)) .
$$

Claim 2 If f is a submodular set function on $S, f \mid a$ is also submodular.
Proof: Let $g=f \mid a$ for the simplicity of notation. For any $X, Y \subseteq S$, let $X^{\prime} \subseteq X$ s.t. $g(X)=$ $f\left(X^{\prime}\right)+a\left(X \backslash X^{\prime}\right)$, and $Y^{\prime} \subseteq Y$ s.t. $g(Y)=f\left(Y^{\prime}\right)+a\left(Y \backslash Y^{\prime}\right)$. Then, from the definition of g,

$$
g(X \cap Y)+g(X \cup Y) \leq\left(f\left(X^{\prime} \cap Y^{\prime}\right)+a\left((X \cap Y) \backslash\left(X^{\prime} \cap Y^{\prime}\right)\right)\right)+\left(f\left(X^{\prime} \cup Y^{\prime}\right)+a\left((X \cup Y) \backslash\left(X^{\prime} \cup Y^{\prime}\right)\right)\right)
$$

From the submodularity of f,

$$
f\left(X^{\prime} \cap Y^{\prime}\right)+f\left(X^{\prime} \cup Y^{\prime}\right) \leq f\left(X^{\prime}\right)+f\left(Y^{\prime}\right) .
$$

And from the modularity of a,

$$
\begin{aligned}
a\left((X \cap Y) \backslash\left(X^{\prime} \cap Y^{\prime}\right)\right)+a\left((X \cup Y) \backslash\left(X^{\prime} \cup Y^{\prime}\right)\right) & =a(X \cap Y)+a(X \cup Y)-a\left(X^{\prime} \cap Y^{\prime}\right)-a\left(X^{\prime} \cup Y^{\prime}\right) \\
& =a(X)+a(Y)-a\left(X^{\prime}\right)-a\left(Y^{\prime}\right) .
\end{aligned}
$$

Therefore, we have $g(X \cap Y)+g(X \cup Y) \leq f\left(X^{\prime}\right)+f\left(Y^{\prime}\right)+a\left(X \backslash X^{\prime}\right)+a\left(Y \backslash Y^{\prime}\right)$.
What is $E P_{f \mid a}$ and $P_{f \mid a}$? We have the following claim.
Claim 3 If f is a submodular set function on S and $f(\emptyset)=0, E P_{f \mid a}=\left\{x \in E P_{f} \mid x \leq a\right\}$ and $P_{f \mid a}=\left\{x \in P_{f} \mid x \leq a\right\}$.

Proof: For any $x \in E P_{f \mid a}$ and any $U \subseteq S$, we have that $x(U) \leq(f \mid a)(U) \leq f(U)+a(U \backslash U)=f(U)$ implying $x \in E P_{f}$, and that $x(U) \leq(f \mid a)(U) \leq f(\emptyset)+a(U \backslash \emptyset)=a(U)$, implying $x \leq a$.

For any $x \in E P_{f}$ with $x \leq a$ and any $U \subseteq S$, suppose that $(f \mid a)(U)=f(T)+a(U \backslash T)$. Then we have, $x(U)=x(T)+x(U \backslash T) \leq f(T)+a(U \backslash T)=(f \mid a)(U)$, implying $x \in E P_{f \mid a}$.

The proof of $P_{f \mid a}=\left\{x \in P_{f} \mid x \leq a\right\}$ is similar.
A special case of the above claim is that when $a=\mathbf{0}$, then $(f \mid \mathbf{0})(U)=\min _{T \subseteq U} f(T)$ and $E P_{f \mid \mathbf{0}}=\left\{x \in E P_{f} \mid x \leq \mathbf{0}\right\}$.

2 Optimization over Polymatroids by the Greedy Algorithm

Let $f: 2^{S} \rightarrow \mathbb{R}$ be a submodular function and assume it is given as a value oracle. Also given a weight vector $w: S \rightarrow \mathbb{R}_{+}$, we consider the problem of maximizing $w \cdot x$ over $E P_{f}$.

$$
\begin{gather*}
\max w \cdot x \tag{1}\\
x \in E P_{f} .
\end{gather*}
$$

Edmonds showed that the greedy algorithm for matroids can be generalized to this setting.
We assume (or require) that $w \geq \mathbf{0}$, because otherwise, the maximum value is unbounded. W.l.o.g., we can assume that $f(\emptyset)=0$: if $f(\emptyset)<0, E P_{f}=\emptyset$; and if $f(\emptyset)>0$, setting $f(\emptyset)=0$ does not violate the submodularity.
Greedy algorithm and integrality. Consider the following greedy algorithm:

1. Order $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ s.t. $w\left(s_{1}\right) \geq \ldots \geq w\left(s_{n}\right)$. Let $A_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ for $1 \leq i \leq n$.
2. Define $A_{0}=\emptyset$ and let $x^{\prime}\left(s_{i}\right)=f\left(A_{i}\right)-f\left(A_{i-1}\right)$, for $1 \leq i \leq n$.

Note that the greedy algorithm is a strongly polynomial-time algorithm.
To show that the greedy algorithm above is correct, consider the dual of maximizing $w \cdot x$:

$$
\begin{array}{r}
\min \sum_{U \subseteq S} y(U) f(U) \tag{2}\\
\sum_{U \ni s_{i}} y(U)=w\left(s_{i}\right) \\
y \geq \mathbf{0} .
\end{array}
$$

Define the dual solution: $y^{\prime}\left(A_{n}\right)=y^{\prime}(S)=w\left(s_{n}\right), y^{\prime}\left(A_{i}\right)=w\left(s_{i}\right)-w\left(s_{i+1}\right)$ for $1 \leq i \leq n-1$, and $y^{\prime}(U)=0$ for all other $U \subseteq S$.
Exercise: Prove that x^{\prime} and y^{\prime} are feasible and y^{\prime} satisfies complementary slackness w.r.t. x^{\prime} in (1) and (2). Then it follows that the system of inequalities $\left\{x \in \mathbb{R}^{S} \mid x(U) \leq f(U), \forall U \subseteq S\right\}$ is totally dual integral (TDI), because the optimum of (2) is attained by the integral vector y^{\prime} constructed above (if the optimum exists and is finite).

Theorem 4 If $f: 2^{S} \rightarrow \mathbb{R}$ is a submodular function with $f(\emptyset)=0$, the greedy algorithm (computing $\left.x^{\prime}\right)$ gives an optimum solution to (1). Moreover, the system of inequalities $\left\{x \in \mathbb{R}^{S} \mid x(U) \leq\right.$ $f(U), \forall U \subseteq S\}$ is totally dual integral (TDI).

Now consider the case of P_{f}. Note that P_{f} is non-empty iff $f \geq \mathbf{0}$. We note that if f is monotone and non-negative, then the solution x^{\prime} produced by the greedy algorithm satisfies $x \geq \mathbf{0}$ and hence if feasible for P_{f}. So we obtains:
Corollary 5 If f is a non-negative monotone submodular function on S with $f(\emptyset)=0$ and let $w: S \rightarrow \mathbb{R}_{+}$, then the greedy algorithm also gives an optimum solution x^{\prime} to $\max \left\{w \cdot x \mid x \in P_{f}\right\}$. Moreover, the system of inequalities $\left\{x \in \mathbb{R}_{+}^{S} \mid x(U) \leq f(U), \forall U \subseteq S\right\}$ is TDI.

Therefore, from Theorem 4 and Corollary 5, for any integer-valued submodular function $f, E P_{f}$ is an integer polyhedron, and if in addition f is non-negative and monotone, P_{f} is also an integer polyhedron.
One-to-one correspondence between f and $E P_{f}$. Theorem 4 also implies f can be recovered from $E P_{f}$. In other words, for any extended polymatroid P, there is a unique submodular function f satisfying $f(\emptyset)=0$, with which P is associated with (i.e., $E P_{f}=P$), since:

Claim 6 Let f be a submodular function on S with $f(\emptyset)=0$. Then $f(U)=\max \left\{x(U) \mid x \in E P_{f}\right\}$ for each $U \subseteq S$.
Proof: Let $\alpha=\max \left\{x(U) \mid x \in E P_{f}\right\} . \alpha \leq f(U)$, because $x \in E P_{f}$. To prove $\alpha \geq f(U)$, in (1), define $w\left(s_{i}\right)=1$ iff $s_{i} \in U$ and $w\left(s_{i}\right)=0$ otherwise, consider the greedy algorithm producing x^{\prime} :
W.l.o.g., we can assume after Step 1 in the greedy algorithm, $U=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, and $w\left(s_{i}\right)=1$ if $1 \leq i \leq k$ and $w\left(s_{i}\right)=0$ otherwise. Define $x^{\prime}\left(s_{i}\right)=f\left(A_{i}\right)-f\left(A_{i-1}\right)$ where $A_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$. As x^{\prime} is feasible in (1) (exercise: $x^{\prime} \in E P_{f}$), w $x^{\prime} \leq \max \left\{w \cdot x \mid x \in E P_{f}\right\}$. From the definition of w, $w \cdot x=x(U)$, and from the selection of $x^{\prime}, w \cdot x^{\prime}=f\left(A_{1}\right)-f(\emptyset)+f\left(A_{2}\right)-f\left(A_{1}\right)+\ldots+f\left(A_{k}\right)-$ $f\left(A_{k-1}\right)=f\left(A_{k}\right)-f(\emptyset)=f(U)$. Therefore, $f(U) \leq \max \left\{x(U) \mid x \in E P_{f}\right\}=\alpha$.

There is a similar one-to-one correspondence between non-empty polymatroids and non-negative monotone submodular functions f with $f(\emptyset)=0$. We can also show that, for any such function f, $f(U)=\max \left\{x(U) \mid x \in P_{f}\right\}$ for each $U \subseteq S$.

3 Ellipsoid-based Submodular Function Minimization

Let $f: 2^{S} \rightarrow \mathbb{R}$ be a submodular function and assume it is given as a value oracle, i.e., when given $U \subseteq S$, the oracle returns $f(U)$. Our goal is to find $\min _{U \subseteq S} f(U)$. Before discussing combinatorial algorithms for this problem, we will first describe an algorithm based on the equivalence of optimization and separation (the ellipsoid-based method) in this section.

We can assume $f(\emptyset)=0$ (by resetting $f(U) \leftarrow f(U)-f(\emptyset)$ for all $U \subseteq S$). With the greedy algorithm introduced in Section 2, we can optimize over $E P_{f}$ in polynomial time (Theorem 4). So the separation problem for $E P_{f}$ is solvable in polynomial time, hence also the separation problem for $P=E P_{f} \cap\{x \mid x \leq \mathbf{0}\}$, and therefore also the optimization problem for P.

Fact 7 There is a polynomial-time algorithm to separate over P, and hence to optimize over P.
Claim 8 If $f(\emptyset)=0, \max \{x(S) \mid x \in P\}=\min _{U \subseteq S} f(U)$, where $P=E P_{f} \cap\{x \mid x \leq \mathbf{0}\}$.
Proof: Define $g=f \mid \mathbf{0}$, and then we have $g(S)=\min _{U \subseteq S} f(U)$. Since g is submodular (from Claim 2) and $P=E P_{g}$ (from Claim 3), thus from Claim 6, $g(S)=\max \{x(S) \mid x \in P\}$. Therefore, we have $\max \{x(S) \mid x \in P\}=\min _{U \subseteq S} f(U)$.

Fact 7 and Claim 8 imply that we can compute the value of $\min _{U \subseteq S} f(U)$ in polynomial time. We still need an algorithm to find $U^{*} \subseteq S$ s.t. $f\left(U^{*}\right)=\min _{U \subseteq S} f(U)$.

Theorem 9 There is a polynomial-time algorithm to minimize a submodular function f given by a value oracle.

Proof: To complete the proof, we present an algorithm to find $U^{*} \subseteq S$ s.t. $f\left(U^{*}\right)=\min _{U \subseteq S} f(U)$. Initially, let $\alpha=\min _{U \subseteq S} f(U)$. In each iteration:

1. We find an element $s \in S$ s.t. the minimum value of f over all subsets of $S \backslash\{s\}$ is equal to α, which implies that there exists an $U^{*} \subseteq S$ with $f\left(U^{*}\right)=\alpha$ and $s \notin U^{*}$.
2. So we then focus on $S \backslash\{s\}$ for finding the U^{*}; this algorithm proceeds with setting $S \leftarrow S \backslash\{s\}$ and repeats Step 1 for finding another such s; if such an s cannot be found in some iteration, the algorithm terminates and returns the current S as U^{*}.
