
CS 598CSC: Combinatorial Optimization Lecture data: 4/8/2010
Instructor: Chandra Chekuri Scribe: Bolin Ding

1 Introduction to Submodular Set Functions and Polymatroids

Submodularity plays an important role in combinatorial optimization. Given a finite ground set S,
a set function f : 2S → R is submodular if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) ∀A,B ⊆ S;

or equivalently,

f(A+ e)− f(A) ≥ f(B + e)− f(B) ∀A ⊆ B and e ∈ S \B.

Another equivalent definition is that

f(A+ e1) + f(A+ e2) ≥ f(A) + f(A+ e1 + e2) ∀A ⊆ S and distinct e1, e2 ∈ S \A.

Exercise: Prove the equivalence of the above three definitions.

A set function f : 2S → R is non-negative if f(A) ≥ 0 ∀A ⊆ S. f is symmetric if f(A) =
f(S \ A) ∀A ⊆ S. f is monotone (non-decreasing) if f(A) ≤ f(B) ∀A ⊆ B. f is integer-valued if
f(A) ∈ Z ∀A ⊆ S.

1.1 Examples of submodular functions

Cut functions. Given an undirected graph G = (V,E) and a ‘capacity’ function c : E → R+ on
edges, the cut function f : 2V → R+ is defined as f(U) = c(δ(U)), i.e., the sum of capacities of
edges between U and V \U . f is submodular (also non-negative and symmetric, but not monotone).

In an undirected hypergraph G = (V, E) with capacity function c : E → R+, the cut function is
defined as f(U) = c(δE(U)), where δE(U) = {e ∈ E | e ∩ U 6= ∅ and e ∩ (S \ U) 6= ∅}.

In a directed graph D = (V,A) with capacity function c : A → R+, the cut function is defined
as f(U) = c(δout(U)), where δout(U) is the set of arcs leaving U .

Matroids. Let M = (S, I) be a matroid. Then the rank function rM : 2S → R+ is submodular
(also non-negative, integer-valued, and monotone).

Let M1 = (S, I1) and M2 = (S, I2) be two matroids. Then the function f given by f(U) =
rM1(U) + rM2(S \ U), for U ⊆ S, is submodular (also non-negative, and integer-valued). By the
matroid intersection theorem, the minimum value of f is equal to the maximum cardinality of a
common independent set in the two matroids.

Coverage in set system. Let T1, T2, . . . , Tn be subsets of a finite set T . Let S = [n] = {1, 2, . . . , n}
be the ground set. The coverage function f : 2S → R+ is defined as f(A) = |∪i∈ATi|.

A generalization is obtained by introducing the weights w : T → R+ of elements in T , and
defining the weighted coverage f(A) = w (∪i∈ATi).

Another generalization is to introduce a submodular and monotone weight-function g : 2T → R+

of subsets of T . Then the function f is defined as f(A) = g (∪i∈ATi).

All the three versions of f here are submodular (also non-negative, and monotone).

Flows to a sink. Let D = (V,A) be a directed graph with an arc-capacity function c : A → R+.
Let a vertex t ∈ V be the sink. Consider a subset S ⊆ V \ {t} of vertices. Define a function
f : 2S → R+ as f(U) = max flow from U to t in the directed graph D with edge capacities c, for a
set of ‘sources’ U . Then f is submodular (also non-negative and monotone).

Max element. Let S be a finite set and let w : S → R. Define a function f : 2S → R as
f(U) = max{w(u) | u ∈ U} for nonempty U ⊆ S, and f(∅) = min{w(u) | u ∈ S}. Then f is
submodular (also monotone).

Entropy and Mutual information. Let X1, X2, . . . , Xn be random variables over some under-
lying probability space, and S = {1, 2, . . . , n}. For A ⊆ S, define XA = {Xi | i ∈ A} to be the set
of random variables with indices in A. Then f(A) = H(XA), where H(·) is the entropy function,
is submodular (also non-negative and monotone). Also, f(A) = I(XA;XS\A), where I(·; ·) is the
mutual information of two random variables, is submodular.

Exercise: Prove the submodularity of the functions introduced in this subsection.

1.2 Polymatroids

Define two polyhedra associated with a set function f on S:

Pf = {x ∈ RS | x(U) ≤ f(U) ∀U ⊆ S, x ≥ 0} and EPf = {x ∈ RS | x(U) ≤ f(U) ∀U ⊆ S}.
If f is a submodular function, then Pf is called the polymatroid associated with f , and EPf the
extended polymatroid associated with f . A polyhedron is called an (extended) polymatroid if it is
the (extended) polymatroid associated with some submodular function. Since 0 ≤ xs ≤ f({s}) for
each s ∈ S, a polymatroid is bounded, and hence is a polytope.

An observation is that Pf is non-empty iff f ≥ 0, and EPf is non-empty iff f(∅) ≥ 0.
If f is the rank function of a matroid M , then Pf is the independent set polytope of M .
A vector x in EPf (or in Pf) is called a base vector of EPf (or of Pf) if x(S) = f(S). A base

vector of f is a base vector of EPf . The set of all base vectors of f is called the base polytope of
EPf or of f . It is a face of EPf and denoted by Bf :

Bf = {x ∈ RS | x(U) ≤ f(U) ∀U ⊆ S, x(S) = f(S)}.
Bf is a polytope, since f({s}) ≥ xs = x(S)− x(S \ {s}) ≥ f(S)− f(S \ {s}) for each s ∈ S.

The following claim is about the set of tight constraints in the extended polymatroid associated
with a submodular function f .

Claim 1 Let f : 2S → R be a submodular set function. For x ∈ EPf , define Fx = {U ⊆ S | x(U) =
f(U)} (tight constraints). Then Fx is closed under taking unions and intersections.

Proof: Consider any two sets U, V ∈ Fx, we have

f(U ∪ V) ≥ x(U ∪ V) = x(U) + x(V)− x(U ∩ V) ≥ f(U) + f(V)− f(U ∩ V) ≥ f(U ∪ V).

Therefore, x(U ∪ V) = f(U ∪ V) and x(U ∩ V) = f(U ∩ V). 2

Given a submodular set function f on S and a vector a ∈ RS , define the set function f |a as

(f |a)(U) = min
T⊆U

(f(T) + a(U \ T)).

Claim 2 If f is a submodular set function on S, f |a is also submodular.

Proof: Let g = f |a for the simplicity of notation. For any X,Y ⊆ S, let X ′ ⊆ X s.t. g(X) =
f(X ′) + a(X \X ′), and Y ′ ⊆ Y s.t. g(Y) = f(Y ′) + a(Y \ Y ′). Then, from the definition of g,

g(X∩Y)+g(X∪Y) ≤ (
f(X ′ ∩ Y ′) + a((X ∩ Y) \ (X ′ ∩ Y ′))

)
+
(
f(X ′ ∪ Y ′) + a((X ∪ Y) \ (X ′ ∪ Y ′))

)
.

From the submodularity of f ,

f(X ′ ∩ Y ′) + f(X ′ ∪ Y ′) ≤ f(X ′) + f(Y ′).

And from the modularity of a,

a((X ∩ Y) \ (X ′ ∩ Y ′)) + a((X ∪ Y) \ (X ′ ∪ Y ′)) = a(X ∩ Y) + a(X ∪ Y)− a(X ′ ∩ Y ′)− a(X ′ ∪ Y ′)
= a(X) + a(Y)− a(X ′)− a(Y ′).

Therefore, we have g(X ∩ Y) + g(X ∪ Y) ≤ f(X ′) + f(Y ′) + a(X \X ′) + a(Y \ Y ′). 2

What is EPf |a and Pf |a? We have the following claim.

Claim 3 If f is a submodular set function on S and f(∅) = 0, EPf |a = {x ∈ EPf | x ≤ a} and
Pf |a = {x ∈ Pf | x ≤ a}.
Proof: For any x ∈ EPf |a and any U ⊆ S, we have that x(U) ≤ (f |a)(U) ≤ f(U)+a(U \U) = f(U)
implying x ∈ EPf , and that x(U) ≤ (f |a)(U) ≤ f(∅) + a(U \ ∅) = a(U), implying x ≤ a.

For any x ∈ EPf with x ≤ a and any U ⊆ S, suppose that (f |a)(U) = f(T) + a(U \ T). Then
we have, x(U) = x(T) + x(U \ T) ≤ f(T) + a(U \ T) = (f |a)(U), implying x ∈ EPf |a.

The proof of Pf |a = {x ∈ Pf | x ≤ a} is similar. 2

A special case of the above claim is that when a = 0, then (f |0)(U) = minT⊆U f(T) and
EPf |0 = {x ∈ EPf | x ≤ 0}.

2 Optimization over Polymatroids by the Greedy Algorithm

Let f : 2S → R be a submodular function and assume it is given as a value oracle. Also given a
weight vector w : S → R+, we consider the problem of maximizing w · x over EPf .

maxw · x (1)

x ∈ EPf .

Edmonds showed that the greedy algorithm for matroids can be generalized to this setting.
We assume (or require) that w ≥ 0, because otherwise, the maximum value is unbounded.

W.l.o.g., we can assume that f(∅) = 0: if f(∅) < 0, EPf = ∅; and if f(∅) > 0, setting f(∅) = 0
does not violate the submodularity.

Greedy algorithm and integrality. Consider the following greedy algorithm:

1. Order S = {s1, s2, . . . , sn} s.t. w(s1) ≥ . . . ≥ w(sn). Let Ai = {s1, . . . , si} for 1 ≤ i ≤ n.

2. Define A0 = ∅ and let x′(si) = f(Ai)− f(Ai−1), for 1 ≤ i ≤ n.

Note that the greedy algorithm is a strongly polynomial-time algorithm.
To show that the greedy algorithm above is correct, consider the dual of maximizing w · x:

min
∑

U⊆S

y(U)f(U) (2)

∑

U3si
y(U) = w(si)

y ≥ 0.

Define the dual solution: y′(An) = y′(S) = w(sn), y
′(Ai) = w(si) − w(si+1) for 1 ≤ i ≤ n − 1,

and y′(U) = 0 for all other U ⊆ S.

Exercise: Prove that x′ and y′ are feasible and y′ satisfies complementary slackness w.r.t. x′ in (1)
and (2). Then it follows that the system of inequalities {x ∈ RS | x(U) ≤ f(U), ∀U ⊆ S} is totally
dual integral (TDI), because the optimum of (2) is attained by the integral vector y′ constructed
above (if the optimum exists and is finite).

Theorem 4 If f : 2S → R is a submodular function with f(∅) = 0, the greedy algorithm (computing
x′) gives an optimum solution to (1). Moreover, the system of inequalities {x ∈ RS | x(U) ≤
f(U), ∀U ⊆ S} is totally dual integral (TDI).

Now consider the case of Pf . Note that Pf is non-empty iff f ≥ 0. We note that if f is monotone
and non-negative, then the solution x′ produced by the greedy algorithm satisfies x ≥ 0 and hence
if feasible for Pf . So we obtains:

Corollary 5 If f is a non-negative monotone submodular function on S with f(∅) = 0 and let
w : S → R+, then the greedy algorithm also gives an optimum solution x′ to max{w · x | x ∈ Pf}.
Moreover, the system of inequalities {x ∈ RS

+ | x(U) ≤ f(U), ∀U ⊆ S} is TDI.

Therefore, from Theorem 4 and Corollary 5, for any integer-valued submodular function f , EPf

is an integer polyhedron, and if in addition f is non-negative and monotone, Pf is also an integer
polyhedron.

One-to-one correspondence between f and EPf . Theorem 4 also implies f can be recovered
from EPf . In other words, for any extended polymatroid P , there is a unique submodular function
f satisfying f(∅) = 0, with which P is associated with (i.e., EPf = P), since:

Claim 6 Let f be a submodular function on S with f(∅) = 0. Then f(U) = max{x(U) | x ∈ EPf}
for each U ⊆ S.

Proof: Let α = max{x(U) | x ∈ EPf}. α ≤ f(U), because x ∈ EPf . To prove α ≥ f(U), in (1),
define w(si) = 1 iff si ∈ U and w(si) = 0 otherwise, consider the greedy algorithm producing x′:

W.l.o.g., we can assume after Step 1 in the greedy algorithm, U = {s1, s2, . . . , sk}, and w(si) = 1
if 1 ≤ i ≤ k and w(si) = 0 otherwise. Define x′(si) = f(Ai)− f(Ai−1) where Ai = {s1, . . . , si}. As
x′ is feasible in (1) (exercise: x′ ∈ EPf), w · x′ ≤ max{w · x | x ∈ EPf}. From the definition of w,
w · x = x(U), and from the selection of x′, w · x′ = f(A1)− f(∅) + f(A2)− f(A1) + . . .+ f(Ak)−
f(Ak−1) = f(Ak)− f(∅) = f(U). Therefore, f(U) ≤ max{x(U) | x ∈ EPf} = α. 2

There is a similar one-to-one correspondence between non-empty polymatroids and non-negative
monotone submodular functions f with f(∅) = 0. We can also show that, for any such function f ,
f(U) = max{x(U) | x ∈ Pf} for each U ⊆ S.

3 Ellipsoid-based Submodular Function Minimization

Let f : 2S → R be a submodular function and assume it is given as a value oracle, i.e., when given
U ⊆ S, the oracle returns f(U). Our goal is to find minU⊆S f(U). Before discussing combinato-
rial algorithms for this problem, we will first describe an algorithm based on the equivalence of
optimization and separation (the ellipsoid-based method) in this section.

We can assume f(∅) = 0 (by resetting f(U) ← f(U) − f(∅) for all U ⊆ S). With the greedy
algorithm introduced in Section 2, we can optimize over EPf in polynomial time (Theorem 4). So
the separation problem for EPf is solvable in polynomial time, hence also the separation problem
for P = EPf ∩ {x | x ≤ 0}, and therefore also the optimization problem for P .

Fact 7 There is a polynomial-time algorithm to separate over P , and hence to optimize over P .

Claim 8 If f(∅) = 0, max{x(S) | x ∈ P} = minU⊆S f(U), where P = EPf ∩ {x | x ≤ 0}.
Proof: Define g = f |0, and then we have g(S) = minU⊆S f(U). Since g is submodular (from
Claim 2) and P = EPg (from Claim 3), thus from Claim 6, g(S) = max{x(S) | x ∈ P}. Therefore,
we have max{x(S) | x ∈ P} = minU⊆S f(U). 2

Fact 7 and Claim 8 imply that we can compute the value of minU⊆S f(U) in polynomial time.
We still need an algorithm to find U∗ ⊆ S s.t. f(U∗) = minU⊆S f(U).

Theorem 9 There is a polynomial-time algorithm to minimize a submodular function f given by
a value oracle.

Proof: To complete the proof, we present an algorithm to find U∗ ⊆ S s.t. f(U∗) = minU⊆S f(U).
Initially, let α = minU⊆S f(U). In each iteration:
1. We find an element s ∈ S s.t. the minimum value of f over all subsets of S \ {s} is equal to

α, which implies that there exists an U∗ ⊆ S with f(U∗) = α and s /∈ U∗.
2. So we then focus on S\{s} for finding the U∗; this algorithm proceeds with setting S ← S\{s}

and repeats Step 1 for finding another such s; if such an s cannot be found in some iteration, the
algorithm terminates and returns the current S as U∗. 2

