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1 Polyhedra and Linear Programming

In this lecture, we will cover some basic material on the structure of polyhedra and linear programming.
There is too abundant material on this topic to be covered in a few classes, so pointers will be given for
further reading. For algorithmic and computational purposes one needs to work with rational polyhedra.
Many basic results, however, are valid for both real and rational polyhedra. Therefore, to expedite our
exploration, we will not make a distinction unless necessary.

1.1 Basics

Definition 1. Let x1, x2, ..., xm be points in Rn. Let x =
∑m

i=1 λixi, where each λi ∈ R, 1 ≤ i ≤ m is a
scalar. Then, x is said to be a(n)

1. Linear combination (of xi, 1 ≤ i ≤ m) for arbitrary scalars λi.

2. Affine combination if
∑

i λi = 1.

3. Conical combination if λi ≥ 0.

4. Convex combination if
∑
λi = 1 and λi ≥ 0 (affine and also canonical).

In the following definitions and propositions, unless otherwise stated, it will be assumed that x1, x2, ..., xm
are points in Rn and λ1, λ2, ..., λm are scalars in R.

Definition 2. x1, x2, ..., xm are said to be linearly independent if
∑m

i=1 λixi = 0⇒ ∀i ∈ [m] λi = 0.

Definition 3. x1, x2, ..., xm are said to be affinely independent if the vectors (xi − x1), i = 2, ...,m are
linearly independent, or equivalently if

∑m
i=1 λixi = 0 and

∑m
i=1 λi = 0⇒ ∀i ∈ [m] λi = 0.

The following proposition is easy to check and the proof is left as an exercise to the reader.

Proposition 4. x1, x2, ..., xm are affinely independent if and only if the vectors
(
xi
1

)
, i = 1, 2, ...,m, are

linearly independent in Rm+1.

A set X ⊆ Rn is said to be a(n) subspace [affine set, cone set, convex set] if it is closed under linear
[affine, conical, convex] combinations. Note that an affine set is a translation of a subspace. Given X ⊆
Rn, we let Span(X),Aff(X),Cone(X), and Convex(X) denote the closures of X under linear, affine,
conical, and convex combinations, respectively. To get an intuitive feel of the above definitions, see Figure 1.

Definition 5. Given a convex set X ⊆ Rn, the affine dimension of X is the maximum number of affinely
independent points in X .



Figure 1: The subspace, cone set, affine set, and convex set of x1, x2 (from left to right). Note that the
subspace is R2 and the cone set includes all points inside and on the two arrows.

1.2 Polyhedra, Polytopes, and Cones

Definition 6 (Hyperplane, Halfspace). A hyperplane in Rn is the set of all points x ∈ Rn that satisfy
a · x = b for some a ∈ Rn and b ∈ R. A halfspace is the set of all points x such that a · x ≤ b for some
a ∈ Rn and b ∈ R.

Definition 7 (Polyhedron). A Polyhedron in Rn is the intersection of finitely many halfspaces. It can be
equivalently defined to be the set {x | Ax ≤ b} for a matrix A ∈ Rm×n and a vector b ∈ Rm×1.

Definition 8 (Polyhedral cone). A polyhedral cone is Rn the intersection of finitely many halfspaces that
contain the origin, i.e. {x | Ax ≤ 0} for a matrix A ∈ Rm×n.

Definition 9 (Polyotpe). A polytope is a bounded polyhedron.

Note that a polyhedron is a convex and closed set. It would be illuminating to classify a polyhedron into
the following four categories depending on how it looks.

1. Empty set (when the system Ax ≤ b is infeasible.)

2. Polytope (when the polyhedron is bounded.)

3. Cone

4. (Combination of) Cone and Polytope

Figure 2: Examples of polyhedrons, left to right: Empty, Polytope, Cone, Combination of cone and polytope.

What “combination of cone and polytope” means will become clear soon in Theorem 12. For the
examples, the reader is referred to Figure 2. In 2-D, a cone can have only two “extreme rays,” while in 3-D
there is no bound on the number of extreme rays it can have.



For the most of part, we will be largely concerned with polytopes, but we need to have a better under-
standing of polyhedra first. Although it is geometrically “obvious” that a polytope is the convex hull of its
“vertices,” the proof is quite non-trivial. We will state the following three theorems without proof.

Theorem 10. A bounded polyhedron is the convex hull of a finite set of points.

Theorem 11. A polyhedral cone is generated by a finite set of vectors. That is, for any A ∈ Rm×n, there
exists a finite set X such that {x =

∑
i λixi | xi ∈ X,λi ≥ 0} = {x | Ax ≤ 0}.

Theorem 12. A polyhedron {x | Ax ≤ b} can be written as the Minkowski sum of a polytope Q and a cone
C, i.e. P = Q+ C = {x+ y | x ∈ Q, y ∈ C}.

One can (geometrically) obtain the Minkowski sum of a polytope Q and a cone C by sweeping the
origin of the cone C over the polytope Q. If the polyhedron P is pointed (has at least one “vertex”), the
decomposition is, in fact, modulo scaling factor unique. Further the cone C above is {x | Ax ≤ 0},
or equivalently the set of unbounded directions in P . The cone C is called the characteristic cone or the
recession cone of P .

Many facts about polyhedra and linear programming rely on (in addition to convexity) variants of Farkas’
lemma that characterizes when a system of linear inequalities do not have solution. The simplest proof for
one variant is via Fourier-Motzkin elimination that is independently interesting and related to the standard
Gauss-Jordan elimination for solving system of linear equations.

1.2.1 Fourier-Motzkin Elimination

Let P = {x|Ax ≤ b} ⊆ Rn be a polyhedron. For k in [n],
we let P k = {(x1, .., xk−1, xk+1, ..., xn) | (x1, x2, ..., xn) ∈ P} be the projection of P along the xk-axis.

Theorem 13. P k is a polyhedron.

Proof. We derive a set of inequalities that describe P k. We do this by considering the inequalities inAx ≤ b
and eliminating the variables xk as follows. Partition the inequalities in Ax ≤ b into three sets:

S+ = {i ∈ [m] | aik > 0}, S− = {i ∈ [m] | aik < 0}, and S0 = {i ∈ [m] | aik = 0}.

Define a new set of inequalities consisting of S0 and one new inequality for each pair (i, `) in S+ × S−:

aik(

n∑
j=1

a`jxj)− a`k(
n∑

j=1

aijxj) ≤ aikb` − a`kbi.

Note that the combined inequality does not have xk. We now have a total of |S0| + |S+||S−| new
inequalities. Let P ′ = {x′ ∈ Rn−1 | A′x′ ≤ b′} where A′x′ ≤ b′ is the new system of inequalities in
variables x1, x2, ..., xk−1, xk+1, ..., xn. We prove the theorem by showing that P k = P ′.



We first show the easier direction: P k ⊆ P ′. Consider any point z ∈ P k. By definition of P k, there
exists x ∈ P such that Ax ≤ b and x’s projection along xk-axis is z. It is easy to see that z satisfies the new
system since the new one was obtained in a way oblivious to xk, the real value of x’s kth coordinate.

We now show thatP ′ ⊆ P k. Without loss of generality, assume k = 1. Consider any x′ = (x2, x3, ..., xn) ∈
P ′. We want to show that there exists x1 ∈ R such that Ax ≤ b, where x = (x1, x2, ..., xn). For simple
notation, define Ci = bi −

∑n
j=2 aijxj for i ∈ [m]. Note that Ax ≤ b can be rewritten as

ai1x1 ≤ Ci, ∀i ∈ [m]. (1)

Observe that x satisfies all inequalities consisting of S0, since the new system as well includes those
constraints. Thus we can refine our goal to show

∃x1 s.t. ai1x1 ≤ Ci, ∀i ∈ S+ ∪ S−.
⇔ max`∈S−

C`
a`1
≤ x1 ≤ mini∈S+

Ci
ai1
.

It is easy to observe that this is equivalent to

C`
a`1

≤ Ci
ai1

,∀(i, `) ∈ S+ × S−
⇔ 0 ≤ ai1C` − a`1Ci ,∀(i, `) ∈ S+ × S−
⇔ A′x′ ≤ b′

And we know that A′x′ ≤ b′ since x′ ∈ P ′, completing the proof.

From Fourier-Motzkin elimination we get an easy proof of one variant of Farkas’ lemma.

Theorem 14 (Theorem of Alternatives). Let A ∈ Rm×n and b ∈ Rm. For the system Ax ≤ b, exactly one
of the following two alternatives hold:

• The system is feasible.

• There exists y ∈ Rm such that y ≥ 0, yA = 0 and yb < 0.

What the theorem says is that if the system of inequalities Ax ≤ b is infeasible then there is a proof
(certificate) of this which can be obtained by taking non-linear combination of the inequalities (given by
y ≥ 0) to derive a contradiction of the following form: 0 = yA ≤ yb < 0.

Proof of [Theorem 14] Suppose that there exists a vector y′ ≥ 0 s.t. y′A = 0 and y′ · b < 0 and a vector x′

such that Ax′ ≤ b. Then it easily follows that 0 ≤ y′Ax′ ≤ y′b, since y′ ≥ 0, which is a contradiction to the
fact that y′b < 0.

Conversely, suppose Ax ≤ b is infeasible. Let P = {x | Ax ≤ b}. We eliminate variables x1, x2, ..., xn
(we can choose any arbitrary order) to obtain polyhedra P = Q0, Q1, Q2, ..., Qn−1, Qn. Note that Qi+1 is
non-empty iff Qi is, and that Qn−1 has only one variable and Qn has none. Note by the Fourier-Motzkin
elimination procedure the inequalities describing Qi are non-negative combination of the inequalities of P ;
this can be formally shown via induction. Thus, Qn is empty iff we have derived an inequality of the form
0 ≤ C for some C < 0 at some point in the process. That inequality gives the desired y ≥ 0. 2

Two variant of Farkas’ lemma that are useful can be derived from the theorem of alternatives.

Theorem 15. Ax = b, x ≥ 0 has no solution iff ∃y ∈ Rm s.t. AT y ≥ 0 and bT y < 0.



The above theorem has a nice geometric interpretation. Let α1, α2, ..., αn be the columns ofA viewed as
vectors inRm. Then Ax = b, x ≥ 0 has a solution if and only if b is in the cone generated by α1, α2, ..., αn;
here the combination is given by x ≥ 0. So b is either in the Cone(α1, α2, ..., αn) or there is a hyperplane
separating b from α1, α2, ..., αn.

In fact the theorem can be strengthened to show that the hyperplane can be chosen to be one that spans
t− 1 linearly independent vectors in α1, α2, ..., αn, where t = rank(α1, α2, ..., αn, b).

Proof of [Theorem 15] We can rewrites Ax = b, x ≥ 0 as A
−A
−I

x ≤
 b
−b
0


Hence by the Theorem of Alternatives, Ax = b, x ≥ 0 is not feasible if and only if there exists a row vector
y′ =

[
u v w

]
, where u, v are row vectors in Rm and w is a row vector in Rn such that

u, v, w ≥ 0

uA− vA− w = 0

ub− vb < 0

Let y = u−v. Note that y ∈ Rm is now not necessarily positive. From the second and third inequalities,
we can easily obtain AT y ≥ 0 and bT y < 0. 2

Another variant of Farkas’ lemma is as follows and the proof is left as an exercise.

Theorem 16. Ax ≤ b, x ≥ 0 has a solution iff yb ≥ 0 for each row vector y ≥ 0 with yA ≥ 0.

Another interesting and useful theorem is Carathéodory’s Theorem

Theorem 17 (Carathéodory). Let x ∈ Convexhull(X) for a finite set X of points in Rn. Then x ∈
Convexhull(X ′) for some X ′ ⊆ X such that vectors in X ′ are affinely independent. In particular,
|X ′| ≤ n+ 1.

A conic variant of Carathéodory’s Theorem is as follows.

Theorem 18. Let x ∈ Cone(X) where X = {x1, x2, ..., xm}, xi ∈ Rn. Then x ∈ Cone(X ′) for some
X ′ ⊆ X where vectors in X ′ are linearly independent. In particular, |X ′| ≤ n.



Proof. Since x ∈ Cone(X), x =
∑

i λixi for some λi ≥ 0. Choose a combination with mininum support,
i.e. the smallest number of non-zero λi values. Let X ′ = {λixi | λi > 0} and I = {i | λi > 0}. If vectors
in X ′ are linearly independent, we are done. Otherwise, ∃αi, i ∈ I s.t.

∑
i∈I αiλixi = 0. By scaling we

can assume that ∀i ∈ I, αi ≤ 1, and ∃j ∈ I s.t. αj = 1. Then,

x =
∑
i∈I

λixi =
∑
i∈I

λixi −
∑
i∈I

αiλixi =
∑
i∈I

λi(1− αi)xi =
∑

i∈I\{j}

λ′ixi (λ′i ≥ 0).

This contradicts the fact that we chose the conical combination for x with the least support.

One can derive the affine version of Carathéodory’s Theorem from the conical version, and the proof is
left as an exercise.

1.3 Linear Programming

Linear programming is an optimization problem of the following form.

max c · x (Primal-LP)

Ax ≤ b

The above is one of the standard forms. In other words, we wish to maximize a linear objective function
over a polyhedron. Given an LP, there are three possibilities:

1. The polyhedron is infeasible.

2. The objective function can be made arbitrarily large in which case we can say it is unbounded.

3. There is a finite optimum value in which case we say it is bounded.

Each linear program has its associated “dual” linear program. The LP we refer to by “dual” depends
on the “starting” LP, which is called as the primal LP; in fact the dual of dual LP is exactly the same as the
primal LP. Let us say that the following LP is the primal LP here.

max c · x
Ax ≤ b

We can “derive” the dual by thinking about how we can obtain an upper bound on the optimal value
for the primal LP. Given the system Ax ≤ b, any inequality obtained by non-negative combination of the
inequalities in Ax ≤ b is a valid inequality for the system. We can represent a non-negative combination by
a m× 1 row vector y ≥ 0.

Thus yAx ≤ yb is a valid inequality for y ≥ 0. Take any vector y′ ≥ 0 s.t. y′A = c. Then such a vector
gives us an upperbound on the LP value since y′Ax = cx ≤ y′b is a valid inequality. Therefore one can
obtain an upperbound by minimizing over all y′ ≥ 0 s.t. y′A = c. Therefore the objective function of the
primal LP is upperbounded by the optimum value of

min yb (Dual-LP)

yA = c

y ≥ 0

The above derivation of the Dual LP immediately implies the Weak Duality Theorem.



Theorem 19 (Weak Duality). If x′ and y′ are feasible solutions to Primal-LP and Dual-LP then cx′ ≤ y′b.

Corollary 20. If the primal-LP is unbounded then the Dual-LP is infeasible.

Exercise: Prove that the dual of the Dual-LP is the Primal-LP.
The main result in the theory of linear programming is the following Strong Duality Theorem which is

essentially a min-max result.

Theorem 21 (Strong Duality). If Primal-LP and Dual-LP have feasible solutions, then there exist feasible
solutions x∗ and y∗ such that cx∗ = y∗b.

Proof. Note that by weak duality we have that cx′ ≤ y′b for any feasible pair of x′ and y′. Thus to show
the existence of x∗ and y∗ it suffices to show that the system of inequalities below has a feasible solution
whenever the two LPs are feasible.

cx ≥ yb

Ax ≤ b

yA = c

y ≥ 0

We rewrite this as

Ax ≤ b

yA ≤ c

−yA ≤ −c
−y ≤ 0

−cx+ yb ≤ 0

and apply the Theorem of Alternatives. Note that we have inequalities in n+m variables corresponding to

the x and y variables. By expressing those variables as a vector z =
[
x
yT

]
, we have


A 0
0 AT

0 −AT

0 −I
−c bT


[
x
y

]
≤


b
cT

−cT
0
0


If the above system does not have a solution then there exists a vector

[
s t t′ u v

]
≥ 0, where s

is a m× 1 row vector, t, t′ are n× 1 row vectors, u is a m× 1 row vector and v is a scalar such that

sA− v · c = 0

tAT − t′AT − u+ v · b = 0

sb+ t · c− t · c′ < 0



We replace t− t′ by w and note that now w is not necessarily positive. Hence we obtain that if the strong
duality does not hold then there exist vectors s, u ∈ Rm, w ∈ Rn, v ∈ R such that

s, u, v ≥ 0

sA− v · c = 0

wAT − u+ v · b = 0

sb+ wcT < 0

We consider two cases.
Case 1: v = 0. (note that v is a scalar.)
In this case, the above system simplifies to

s ≥ 0

sA = 0

wAT = 0

sb+ wcT < 0

Since we have y∗A = c and sA = 0, y∗ + αs is a feasible solution for the dual for any scalar α ≥ 0.
Similarly knowing that Ax∗ ≤ b and AwT = 0 (from wAT = 0), it follows that x∗ − αwT is feasible for
the primal for any scalar α ≥ 0. Applying the Weak Duality Theorem, we have that ∀α ≥ 0,

c(x∗ − αwT ) ≤ (y∗ + αs) · b
⇒ cx∗ − y∗b ≤ α(s · b+ c · wT )

However, the LHS is fixed while the RHS can be made arbitrarily small because s · b + c · wT < 0 and α
can be chosen arbitrarily large.
Case 2: v > 0.
Let s′ = 1

v (s), w
′ = 1

v (w), and u′ = 1
v (u). Then, we have

s′, u′ ≥ 0

s′A = c

w′AT − u′ = −b⇒ −A(w′)T = b− u′ ≤ b [Since u′ ≥ 0.]

s′b+ w′cT < 0

From the inequalities above, we observe that s′ is dual feasible and −w′ is primal feasible. Thus by the
Weak Duality, we have −w′ · cT ≤ s′b, contradicting that s′b+ w · cT < 0.

Finally, we make a remark on where the contradiction really comes from for each case. For the first case
where v = 0, note that the inequality −cx + yb ≤ 0, which forces the optimal values for the primal and
the dual meet each other, was never used. In other words, we got a contradiction because there do not exist
feasible solutions satisfying both the primal and the dual. On the other hand, for the second case v > 0,
we had feasible solutions for both LPs, but obtained a contradiction essentially from the assumption that the
two optimal values are different.

Complementary Slackness is a very useful consequence of Strong Duality.

Theorem 22 (Complementary Slackness). Let x∗, y∗ be feasible solutions to the primal and dual LPs. Then
x∗, y∗ are optimal solutions if and only if ∀i ∈ [m], either y∗i = 0 or aix∗ = bi.



Proof. Let α1, α2, ...αm be the row vectors of A. Suppose that the given condition is satisfied. Then we
have y∗Ax∗ =

∑m
i=1 y

∗
i (αix

∗) =
∑m

i=1 y
∗
i bi = y∗b. Also we know that cx∗ = y∗Ax∗ since y∗ is a feasible

solution for the dual. Thus we have cx∗ = y∗b, and by the Weak Duality, we conclude that x∗, y∗ are
optimal.

Conversely, suppose that x∗ and y∗ both are optimal. Then by the Strong Duality and because x∗, y∗

are feasible, we have that y∗b = cx∗ = y∗Ax∗ ≤ y∗b. Thus we obtain the equality y∗Ax∗ = y∗b, that is∑m
i=1 y

∗
i (αix

∗) =
∑m

i=1 y
∗
i bi. This equality forces the desired condition, since αix

∗ ≤ bi, y
∗
i ≥ 0 because

x∗ and y∗ are feasible solutions.
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