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1 Matroid Union

Matroid union and matroid intersection are closely related in the sense that one can be derived
from the other. However they are from different perspectives and have different applications.

To motivate matroid union theorem we state a well known theorem of Tutte and Nash-Williams
on packing disjoint spanning trees in graphs.

Theorem 1 (Nash-Williams and Tutte) An undirected multi-graph G = (V,E) contains k
edge-disjoint spanning trees iff for every partition P of V into ` sets, V1, V2, . . . , V`, the number of
edges crossing the partition P is at least k(`− 1).

It is easy to see that the condition is necessary; if T1, . . . , Tk are the edge-disjoint spanning trees
then each Ti has to contain at least ` − 1 edges across the partition P to connect them. A useful
corollary of the above was observed by Gusfield. It is an easy exercise to derive this from the above
theorem.

Corollary 2 If a multi-graph G = (V,E) is 2k-edge-connected then G contains k edge-disjoint
spanning trees.

Nash-Williams proved a related theorem on covering the edge-set of a graph by forests.

Theorem 3 (Nash-Williams) Let G = (V,E) be an undirected multi-graph. Then E can be
partitioned into k forests iff for each set U ⊆ V ,

|E[U ]| ≤ k(|U | − 1). (1)

Again, necessity is easy to see; any forest can contain at most |U | − 1 edges from E[U ]. The
above two theorems were first shown via graph theoretica arguments but turn out to be special
cases of the matroid union theorem, and hence are properly viewed as matroidal results. We start
with a basic result of Nash-Williams that gives a clean proof of the matroid union theorem to
follow.

Theorem 4 (Nash-Williams) Let M′ = (S′, I ′) be a maroid with rank function r′. Let f : S′ →
S be a function mapping S′ to S. Let M = (S, I) , where I = {f(I ′)|I ′ ∈ I ′}. Then M is a
matroid with rank function r, where

r(U) = min
T⊆U

(|U\T |+ r′(f−1(T ))). (2)

Proof:
We verify the three axioms.

1. f(∅) = ∅ and hence ∅ ∈ I.



2. Say A ∈ I and B ⊆ A. Then

A ∈ I ⇒ ∃A′ ∈ I ′, s.t. f(A′) = A

⇒ ∀u ∈ A, f−1(u) ∩A′ 6= ∅.

Let B′ = {u′ ∈ A′|f(u′) ∈ B}, then B = f(B′) and since B′ ⊆ A′, B′ ∈ I ′ and hence B ∈ I.

3. Say A,B ∈ I and |B| > |A|. Let A′ be minimal s.t. f(A′) = A. Similarly let B′ be minimal
s.t. f(B′) = B. Then

|f−1(u) ∩A′| = 1,∀u ∈ A.

Similarly,
|f−1(u) ∩B′| = 1,∀u ∈ B.

Therefore,
|A′| = |A| and |B′| = |B|.

Since
A′, B′ ∈ I ′ and |B′| > |A′|,

⇒ ∃u′ ∈ B′\A′, s.t. A′ + u′ ∈ I ′.

Then
A+ f(u′) ∈ I and f(u′) ∈ B\A.

Therefore M is a matroid.
We now derive the rank formula for M. Although one can derive it from elementary methods,

it is easy to obtain it from the matroid intersection theorem. Recall that if M1 = (N, I1) and
M2 = (N, I2) are two matroids on N , then the max cardinality of a common independent set in
I1 ∧ I2 is given by

min
X⊆N

r1(X) + r2(N\X).

Now consider U ⊆ S. Let U ′ = f−1(U). We observe that A ⊆ U is independent in I iff there
is an A′ ⊆ f−1(U) such that |A′| = |A|, f(A′) = A and A′ is independent in I ′.

Define a matroid M′′ = (S′, I ′′), where

I ′′ = {I ⊆ f−1(U) | |I ∩ f−1(U)| ≤ 1, u ∈ U}.

Note that M′′ is a partition matroid. Let r′′ be the rank of M′′. We leave the following claim
as an exercise.

Claim 5 r(U) is the size of a maximum cardinality independent set in M′ ∧M′′.



Therefore, by the matroid intersection theorem we have that

r(U) = min
T⊆U ′

(r′(T ) + r′′(U ′ \ T )) = min
T⊆U

(r′(f−1(T )) + |U \ T |),

using the fact thatM′′ is a partition matroid. We leave it to the reader to verify the second equality
in the above. 2

From the above we obtain the matroid union theorem before that was formulated by Edmonds.
Let M1 = (S1, I1), . . . ,Mk = (Sk, Ik) be matroids. Define

M =M1 ∨M2 ∨ · · · ∨Mk = (S1 ∪ S2 ∪ · · · ∪ Sk, I),

where
I = I1 ∨ I2 ∨ · · · ∨ Ik := {I1 ∪ I2 ∪ · · · ∪ Ik|Ii ∈ Ii, 1 ≤ i ≤ k}.

Theorem 6 (Matroid Union) Let M1 = (S1, I1), . . . ,Mk = (Sk, Ik) be matroids. Then

M =M1 ∨M2 ∨ · · · ∨Mk (3)

is a matroid. The rank function of M is given by r, where

r(U) = min
T⊆U

(|U\T |+ r1(T ∩ S1) + · · ·+ rk(T ∩ Sk)). (4)

Proof: Let S′1, . . . , S
′
k be copies of S1, . . . , Sk, such that

S′i ∩ S′j = ∅, i 6= j.

LetM′i = (S′i, I ′i), where I ′i corresponds to Ii. Let S′ = S′1]S′2]· · ·]S′k and defineM′ = (S′, I ′),
where

I ′ = {I ′1 ∪ I ′2 ∪ · · · ∪ I ′k | I ′i ∈ Ii}.

Clearly M′ is a matroid since it is disjoint union of matroids.
Now define f : S′ → S where S = S1 ∪ S2 ∪ · · · ∪ Sk, and f(s′) = s if s′ is the copy of s. Then

M is obtained from M′ by f and hence by Theorem 4, M is a matroid. The rank formula easily
follows by applying the formula in Theorem 4 M′ and M. 2

The above theorem is also referred to as the matroid partition theorem for the following reason.
A U ∈ S is M independent iff U can be partitioned into U1, . . . , Uk , such that for 1 ≤ i ≤ k, Ui is
independent in Ii; note that Ui are allowed to be ∅.

We state a useful corollary.

Corollary 7 Let M = (S, I) be a matroid and k be an integer. Then the maximum rank of the
union of k independent sets of M is equal to

min
U⊆S

(|S \ U |+ k · r(U)). (5)



Proof: Take M′ to be union of M1 ∨M2 ∨ · · · ∨ Mk, where Mi = M. Then the union of k
independent sets inM is an independent set inM′. Thus we are asking for the maximum possible
rank in M′. S achieves the maximum rank and by the previous theorem

r′(S) = min
U⊆S

(|S \ U |+ k · r(S ∩ U)) (6)

= min
U⊆S

(|S \ U |+ k · r(U)). (7)

2

We now easily derive two important theorems that were first stated by Edmonds.

Theorem 8 (Matroid base covering theorem) Let M = (S, I) be a matroid. Then S can be
covered by k independent sets iff

|U | ≤ k · r(U),∀U ⊆ S. (8)

Proof: S can be covered by k independent sets iff the rank of S in the union ofM1∨M2∨· · ·∨Mk,
where Mi =M, is equal to |S|. By Corollary 7, this is equivalent to

|S \ U |+ k · r(U) ≥ |S|,∀U ⊆ S

⇒ k · r(U) ≥ |U |,∀U ⊆ S.
2

Exercise 9 Derive Nash-Williams forest-cover theorem (Theorem 3) as a corollary.

Now we derive the matroid base packing theorem, also formulated by Edmonds.

Theorem 10 (Matroid Base Packing Theorem) Let M = (S, I) be a matroid. Then there
are k disjoint bases in M iff

k(r(S)− r(U)) ≤ |S \ U |, ∀U ⊆ S. (9)

Proof: To see necessity, consider any set U ⊆ S. Any base B has the property that r(B) = r(S).
And r(B ∩ U) ≤ r(U). Thus

B ∩ (S \ U) ≥ r(S)− r(U).

Therefore if there are k disjoint bases then each of these bases requires r(S) − r(U) distinct
elements from S \ U , and hence

k(r(S)− r(U)) ≤ |S \ U |.
For sufficiency, we take the k-fold union ofM and there are k disjoint bases if r′(S) in the union

matroid M′ satisfies the equation
r′(S) = k · r(S)

in other words,
min
U⊆S
|S \ U |+ k · r(U) = k · r(S)

⇒ |S \ U |+ k · r(U) ≥ k · r(S)|
2

Exercise 11 Derive Nash-Williams-Tutte theorem on packing spanning trees (Theorem 1) as a
corollary.



2 Algorithmic and Polyhedral Aspects

Let M = M1 ∨M2 ∨ · · · ∨ Mk. Algorithmic results for M follow from an independence oracle
or rank oracle for M. Recall that a set I ∈ I is independent in M iff I an be partitioned into
I1, I2, . . . , Ik such that for 1 ≤ i ≤ k, Ii is independent in Ii. Note that this is non-trivial to solve.

Theorem 12 Given rank functions r1, . . . , rk forM1, . . . ,Mk, as polynomial time oracles, there is
a polynomial time algorithm to implement the rank function oracle r forM =M1∨M2∨· · ·∨Mk.

We sketch the proof of the above theorem. Recall the construction in Theorem 6 that showed
M is a matroid. We first constructed an intermediate matroidM′ by taking copies ofM1, . . . ,Mk

and then applied Theorem 4 to map M′ to M.
For the matroid M′, one easily obtains an algorithm to implement r′ from r1, . . . , rk, i.e.

r′(U) =
k∑

i=1

ri(U ∩ S′i).

Recall that we obtained the rank function r for M from r′ for M′ using matroid intersection
(see proof of Theorem 4). Thus, one can verify that an algorithm for matroid intersection implies
an algorithm for r using algorithms for r1, . . . , rk. There is also a direct algorithm that avoids using
the matroid intersection algorithm — see [1] for details.

Polyhedrally, the base covering and packing theorems imply and are implied by the following

Theorem 13 Given a matroid M = (S, I), the independent set polytope and base polytope of M
have the integer decomposition property.

Exercise 14 Prove the above theorem using Theorem 8 and 10.

Capacitated case and algorithmic aspects of packing and covering: The matroid union
algorithm allows us to obtain algorithmic versions of the matroid base covering and base packing
theorems. As a consequence, for example, there is a polynomial time algorithm that given a multi-
graph G = (V,E), outputs the maximum number of edge-disjoint spanning trees in G. It is also
possible to solve the capacitated version of the problems in polynomial time. More precisely, let
M = (S, I) and let c : S → Z+ be integer capacities on the elements of S. The capacitated version
of the base packing theorem is to ask for the maximum number of bases such that no element
e ∈ S is in more than c(e) bases. Similarly, for the base covering theorem, one seeks a minimum
number of independent sets such that each element e is in at least c(e) independent sets. The
capacitated case be handled by making c(e) copies of each element e, however, this would give only
a pseudo-polynomial time algorithm.

Assuming we have a polynomial time rank oracle for M, the following capaciatated problems
can be solved in polynomial time. To solve the capacitated versions, one needs polyhedral methods;
see [1] for more details.

1. fractional packing of bases, i.e., let B denote the set of bases of M,



max
B∈B

λB∑
B3e

λB ≤ c(e),∀e ∈ S

λB ≥ 0

2. integer packing of bases, same as above but λB are restricted to be integer.

3. fractional covering by independent sets, i.e.

min
I∈I

λI∑
I3e

λI ≥ c(e), ∀e ∈ S

λ ≥ 0

4. integer covering by independent sets, same as above but λI are constrained to be integer.

Matroid Intersection from Matroid Union: We have seen that the matroid union algorithm
follows from an algorithm for matroid intersection. The converse can also be shown. To see this,
let M1 and M2 be two matroids on the same ground set S. Then, one can find the maximum
cardinality common independent set in M1 ∧M2 be considering M1 ∨M∗2 where M∗2 is the dual
of M2; See Problem 4 in Homework 3 for details on this.
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