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1 Matroid Polytope

In the previous lecture we saw that for a matroid M = (S, I) the following system of inequalities
determines the convex hull of the independent sets of M (i.e., sets in I):

x(U) ≤ rM (U) U ⊆ S
x(e) ≥ 0 e ∈ S

where rM (·) is the rank function of M . The proof was based on a dual fitting technique via the
Greedy algorithm for a maximum weight independent set problem.

In this lecture, we will give a different primal proof that is built on uncrossing. This is based
on [2].

Theorem 1 Let x be an extreme point of the polytope

(∗)

{
x(U) ≤ rM (U) U ⊆ S
x(e) ≥ 0 e ∈ S

Then there is some e ∈ S such that x(e) ∈ {0, 1}.

The following corollary follows by induction from Theorem 1. We leave a formal proof as an
exercise.

Corollary 2 The system of inequalities (∗) determine the independent set polytope of M = (S, I).

Now we turn our attention to the proof of Theorem 1.
Proof of Theorem 1. Let x be an extreme solution for the polytope (∗). Suppose that M has
a loop e. Since rM ({e}) = 0, it follows that x(e) = 0 and we are done. Therefore we may assume
that M does not have any loops and thus the polytope (∗) is full dimensional1. Now suppose that
x(e) ∈ (0, 1) for all elements e ∈ S. Let n denote the number of elements in S. Let

F = {U | U ⊆ S, x(U) = rM (U)}

Differently said, F is the set of all sets whose constraints are tight at x (i.e., sets whose constraints
are satisfied with equality by the solution x).

Before proceeding with the proof, we note that the submodularity for the rank function rM (·)
implies that F has the following “uncrossing” property.

1A polytope is full dimensional if it has an interior point, i.e., a point x that does not satisfy any of the constraints
with equality. Consider x such that, for all e, x(e) = ε for some 0 < ε < 1/|S|. Clearly, x(e) > 0 for any e. For any
set U , we have x(U) = ε|U | < 1. If M does not have any loops, rM (U) ≥ 1 for all sets U . Thus M is full-dimensional
if there are no loops.



Lemma 3 If A,B ∈ F then A ∩B and A ∪B are in F .

Proof: Let A and B be two sets in F ; thus x(A) = rM (A) and x(B) = rM (B). It follows from the
submodularity of the rank function that

x(A) + x(B) = rM (A) + rM (B) ≥ rM (A ∩B) + rM (A ∪B)

Additionally,
x(A) + x(B) = x(A ∩B) + x(A ∪B)

Therefore x(A ∩ B) + x(A ∪ B) ≥ rM (A ∩ B) + rM (A ∪ B). Since x(A ∩ B) ≤ rM (A ∩ B) and
x(A ∪ B) ≤ rM (A ∪ B), it follows that x(A ∩ B) = rM (A ∩ B) and x(A ∪ B) = rM (A ∪ B). Thus
A ∩B and A ∪B are also in F . 2

Let χ(U) denote the characteristic vector of U . Since x is a vertex solution, (∗) is full dimensional,
and x(e) 6= 0 for all e, there is a collection {U1, U2, . . . , Un} of n sets such that x satisfies the
constraint corresponding to each Ui with equality (i.e., x(Ui) = rM (Ui) for 1 ≤ i ≤ n) and the
vectors χ(U1), . . . , χ(Un) are linearly independent. Therefore the set {χ(U) | U ∈ F} has n linearly
independent vectors.

For a set A ⊆ 2S , let span(A) denote span({χ(U) | U ∈ A}), where χ(U) is the characteristic
vector of U .

Lemma 4 There exists a laminar family C ⊆ F such that span(C) = span(F). Moreover, C is a
chain, i.e., for any two sets A,B ∈ C, either A ⊆ B or B ⊆ A.

Assuming Lemma 4, we can complete the proof of Theorem 1 as follows. Let C be the chain
guaranteed by Lemma 4. Since span(C) = span(F), there exists a chain C′ ⊆ C such that |C′| = n
and x is the unique solution to the system

x(U) = rM (U) U ∈ C′

Let C′ = {A1, A2, . . . , An}; wlog, A1 ⊂ A2 ⊂ · · · ⊂ An. Let A0 = ∅. Suppose that there exists an
i such that |Ai \ Ai−1| = 1, and let e ∈ Ai \ Ai−1. Now we claim that we must have x(e) ∈ {0, 1}.
To see why this is true, note that we have

x(e) = x(Ai)− x(Ai−1) = rM (Ai)− rM (Ai−1)

Since rM (Ai) − rM (Ai−1) is an integer and rM (Ai−1) ≤ rM (Ai) ≤ rM (Ai−1) + 1, it follows that
rM (Ai) − rM (Ai−1) ∈ {0, 1}. But this contradicts the fact that x(e) ∈ (0, 1). Therefore we may
assume that |Ai \Ai−1| ≥ 2. But then |S| ≥ 2n, which is a contradiction.

Finally, we turn our attention to the proof of Lemma 4.

Proof of Lemma 4. Let C be a chain in F that is maximal with respect to inclusion (i.e., C is
not a proper subset of any chain in F). We claim that span(C) = span(F). Suppose not and let
A ∈ F be such that χ(A) ∈ span(F) \ span(C). If there are several such sets A, we choose one that
minimizes the number of sets in C that it properly intersects2.

2Two sets X and Y properly intersect if X ∩ Y,X − Y, Y −X are all non-empty.



Now suppose that A does not properly intersect any set in C. Clearly, C+A is not a chain, since
this contradicts the maximality of C. Therefore there exist B,B′ ∈ C such that B is the minimal set
in C that contains A and B′ is the maximal set in C that is contained in B. By Lemma 3, A∪B′ is
in F . If A∪B′ is a proper subset of B, C+ (A∪B′) is a chain, which contradicts the maximality of
C. Therefore we must have A∪B′ = B. Since A and B′ are disjoint, we have χ(A) +χ(B′) = χ(B)
and thus χ(A) is in the span of χ(B) and χ(B′), which contradicts the fact that χ(A) /∈ span(C).

Therefore we may assume that A properly intersects a set B in C. By Lemma 3, A ∪ B and
A ∩B are in F .

Proposition 5 Each of A ∪B, A ∩B properly intersects fewer sets in C than A.

Assuming Proposition 5, we can complete the proof as follows. It follows from our choice of A that
A ∪B and A ∩B are both in span(C). Since χ(A) + χ(B) = χ(A ∪B) + χ(A ∩B), it follows that
χ(A) is in span(C) as well, which is a contradiction. Therefore it suffices to prove Proposition 5.

Proof of Proposition 5. Since each of A ∪B, A ∩B does not properly intersect B, it suffices to
show that if a set B′ ∈ C properly intersects A∪B (or A∩B) then it properly intersects A as well.

Let B′ ∈ C be a set that properly intersects A ∪ B. Since B and B′ are both in C, it follows
that one of B,B′ is a subset of the other. If B′ is a subset of B, B′ is contained in A ∪ B (and
thus does not properly intersect A ∪ B). Therefore B must be a proper subset of B′. Clearly, B′

intersects A (since A ∩ B is nonempty). If B′ does not properly intersect A, it follows that one
of A,B′ is a subset of the other. If A ⊆ B′, it follows that A ∪ B ⊆ B′, which is a contradiction.
Therefore we must have B ⊂ B′ ⊆ A, which is a contradiction as well. Thus B′ properly intersects
A.

Let B′ ∈ C be a set that properly intersects A ∩B. Clearly, B′ intersects A and thus it suffices
to show that B′ \A is nonempty. As before, one of B,B′ is a subset of the other. Clearly, B′ must
be a subset of B (since otherwise A ∩ B ⊆ B ⊆ B′). Now suppose that B′ ⊆ A. Since B′ is a
subset of B, it follows that B′ ⊆ A ∩ B, which is a contradiction. Therefore B′ \ A is non-empty,
as desired. 2

2 Facets and Edges of Matroid Polytopes

Recall that the following system of inequalities determines the matroid polytope.

(∗)

{
x(U) ≤ rM (U) U ⊆ S
x(e) ≥ 0 e ∈ S

Throughout this section, we assume that the matroid has no loops and thus the polytope is full
dimensional.

It is useful to know which inequalities in the above system are redundant. As we will see shortly,
for certain matroids, the removal of redundant inequalities gives us a system with only polynomially
many constraints.

Recall that a flat is a subset U ⊆ S such that U = span(U). Consider a set U that is not a flat.
Since rM (U) = rM (span(U)) and U ⊂ span(U), any solution x that satisfies the constraint

x(span(U)) ≤ rM (span(U))



also satisfies the inequality
x(U) ≤ rM (U)

Therefore we can replace the system (∗) by

(∗∗)

{
x(F ) ≤ rM (F ) F ⊆ S, F is a flat
x(e) ≥ 0 e ∈ S

Definition 1 A flat F is separable if there exist flats F1, F2 such that F1 and F2 partition F and

rM (F1) + rM (F2) = rM (F )

If F is a separable flat, any solution x that satisfies the constraints

x(F1) ≤ rM (F1)

x(F2) ≤ rM (F2)

also satisfies the constraint
x(F ) ≤ rM (F )

since x(F ) = x(F1)+x(F2) and rM (F ) = rM (F1)+rM (F2). Therefore we can remove the constraint
x(F ) ≤ rM (F ) from (∗∗). Perhaps surprisingly, the resulting system does not have any redundant
constraints. The interested reader can consult Chapter 40 in Schrijver [?] for a proof.

Theorem 6 The system of inequalities

x(F ) ≤ rM (F ) F ⊆ S, F is an inseparable flat
x(e) ≥ 0 e ∈ S

is a minimal system for the independent set polytope of a loopless matroid M .

As an example, consider the uniform matroid. The independent set polytope for the uniform
matroid is determined by the following constraints:∑

e∈S

x(e) ≤ k

x(e) ≥ 0 e ∈ S

Similarly, the independent set polytope for the partition matroid induced by the partition S1, . . . , Sh

of S and integers k1, . . . , kh is determined by the following constraints:∑
e∈Si

x(e) ≤ ki 1 ≤ i ≤ k

x(e) ≥ 0 e ∈ S



Finally, consider the graphic matroid induced by a graph G = (V,E). The base polytope of
a graphic matroid corresponds to the the spanning tree polytope, which is determined by the
following constraints:

x(E[U ]) ≤ |U | − 1 U ⊆ V
x(E) = |V | − 1
x(e) ≥ 0 e ∈ E

where E[U ] is the set of edges inside the vertex set U ⊆ V .

Definition 2 Two vertices x, x′ of a polyhedron P are adjacent if they are contained in a face F
of P of dimension one, i.e., a line.

Theorem 7 Let M = (S, I) be a loopless matroid. Let I, J ∈ I, I 6= J . Then χ(I) and χ(J) are
adjacent vertices of the independent set polytope of M if and only if |I4J | = 1 or |I\J | = |J \I| = 1
and rM (I) = rM (J) = |I| = |J |.

The interested reader can consult Schrijver [?] for a proof.

3 Further Base Exchange Properties

We saw earlier the following base exchange lemma.

Lemma 8 Let B and B′ be two bases of a matroid M , and let y be an element of B′ \B. Then

(i) there exists x ∈ B \B′ such that B′ − y + x is a base

(ii) there exists x ∈ B \B′ such that B + y − x is a base

We will prove a stronger base exchange theorem below and derive some corollaries that will be
useful in matroid intersection and union.

Theorem 9 (Strong Base Exchange Theorem) Let B,B′ be two bases of a matroid M . Then
for any x ∈ B \B′ there exists an y ∈ B′ \B such that B − x+ y and B′ − y + x are both bases.

Proof: Let x be any element in B \ B′. Since B′ is a base, B′ + x has a unique circuit C. Then
(B ∪ C) − x contains a base. Let B′′ be a base of (B ∪ C) − x that contains B − x. We have
B′′ = B − x+ y, for some y ∈ C − x.

Now suppose that B′ − y+ x is not a base. Then B′ − y+ x has a circuit C ′. Since y ∈ C \C ′,
B′ + x has two distinct circuits C,C ′, which is a contradiction (see Corollary 22 in Lecture 14).
Therefore B′ − y + x is independent and, since |B′ − y + x| = |B′|, B′ − y + x is a base. 2

In fact, Theorem 9 holds when B,B′ are independent sets of the same size instead of bases.

Corollary 10 Let I, J be two independent sets of a matroid M = (S, I) such that |I| = |J |. Then
for any x ∈ I \ J there exists an y ∈ J \ I such that I − x+ y and J − y + x are both independent
sets.



Proof: Let k = |I| = |J |. Let M ′ = (S, I ′), where

I ′ = {I | I ∈ I and |I| ≤ k}

It is straightforward to verify that M ′ is a matroid as well. Additionally, since every independent
set in M ′ has size at most k, I and J are bases in M ′. It follows from Theorem 9 that for any
x ∈ I \ J there exists an y ∈ J \ I such that I − x + y and J − y + x are both bases in M ′, and
thus independent sets in M . 2

Let M = (S, I) be a matroid, and let I ∈ I. We define a directed bipartite graph DM (I) as
follows. The graph DM (I) has vertex set S; more precisely, its bipartition is (I, S \ I). There is an
edge from y ∈ I to z ∈ S \ I iff I − y + z is an independent set.

Lemma 11 Let M = (S, I) be a matroid, and let I, J be two independent sets in M such that
|I| = |J |. Then DM (I) has a perfect matching on I4J3.

Proof: We will prove the lemma using induction on |I4J |. If |I4J | = 0, the lemma is trivially
true. Therefore we may assume that |I4J | ≥ 1. It follows from Corollary 10 that there exists an
y ∈ I and z ∈ J such that I ′ = I − y + z and J ′ = J + y − z are independent sets. Note that
|I ′4J ′| < |I4J | and |I ′| = |J ′|. It follows by induction that DM (I) has a perfect matching N on
I ′4J ′. Then N ∪ {(y, z)} is a perfect matching on I4J . 2

Lemma 12 Let M = (S, I) be a matroid. Let I be an independent set in M , and let J be a subset
of S such that |I| = |J |. If DM (I) has a unique perfect matching on I4J then J is an independent
set.

Before proving the lemma, we note the following useful property of unique perfect matchings.

Proposition 13 Let G = (X,Y,E) be a bipartite graph such that G has a unique perfect matching
N . Then we can label the vertices of X as x1, . . . , xt, and we can label the vertices of Y as y1, . . . , yt

such that
N = {(x1, y1), . . . , (xt, yt)}

and (xi, yj) /∈ E for all i, j such that i < j.

Proof: We start by noting that there is an edge xy ∈ N such that one of x, y has degree one.
We construct a trail4 by alternately taking an edge in N and an edge not in N , until either we
cannot extend the trail or we reach a previously visited vertex. Now suppose that the trail has a
cycle C. Since G is bipartite, C has even length. Thus we can construct a perfect matching from
N by removing the edges of C that are in N and adding the edges of C that are not in N , which
contradicts the fact that G has a unique perfect matching. Therefore we may assume that the trail
is a path. If the last edge of the trail is not in N , we can extend the trail by taking the edge of N
incident to the last vertex. Therefore the last edge must be in N . Then the last vertex on the trail
has degree one, since otherwise we could extend the trail using one of the edges incident to it that
are not in N . It follows that the last edge of the trail is the desired edge.

Now let xy be an edge in N such that one of its endpoints has degree one in G. Suppose that
x has degree one. We let x1 = x, y1 = y, and we remove x and y to get a graph G′. Since N − xy

3A perfect matching on a set U is a matching such that S is the set of endpoints of the edges in the matching.
4A trail is a walk in which all edges are distinct.



is the unique perfect matching in G′, it follows by induction that we can label the vertices of G′

such that
N − xy = {(x2, y2), . . . , (xt, yt)}

such that (xi, yj) is not an edge in G′, for all 2 ≤ i < j ≤ t. Since x1 has degree one in G, we are
done. Therefore we may assume that y has degree one. We let xt = x, yt = y, and we remove x
and y to get a graph G′. As before, it follows by induction that we can label the vertices of G′ such
that

N − xy = {(x1, y1), . . . , (xt−1, yt−1)}
such that (xi, yj) is not an edge in G′, for all 1 ≤ i < j ≤ t − 1. Since yt has degree one in G, we
are done. 2

Proof of Lemma 12. Let G denote the (undirected) subgraph of DM (I) induced by I4J , and
let N denote the unique perfect matching in G. Since G is a bipartite graph, it follows from
Proposition 13 that we can label the vertices of I \ J as y1, . . . , yt, and we can label the vertices of
J \ I as z1, . . . , zt such that

N = {(y1, z1), . . . , (yt, zt)}
and (yi, zj) /∈ E(G), for all 1 ≤ i < j ≤ t.

Now suppose that J is not independent, and let C be a circuit in J . Let i be the smallest index
such that zi ∈ C. Consider any element zj in C − zi. Since j > i, it follows that (yi, zj) /∈ DM (I).
Therefore any element z in C − zi is in spanM (I − yi), since for any z ∈ C − zi, either z is in I ∩ J
or z = zj for some j. Hence C − zi is a subset of span(I − yi). Since C is a circuit,

C ⊆ span(C − zi) ⊆ span(I − yi)

Thus zi ∈ span(I − yi), which contradicts the fact that I − yi + zi is independent. 2

Corollary 14 Let M = (S, I) be a matroid, and let I ∈ I. Let J be a subset of S with the following
properties:

(i) |I| = |J |

(ii) rM (I ∪ J) = |I|

(iii) DM (I) has a unique perfect matching on I4J

Let e be any element not in I ∪ J such that I + e ∈ I. Then J + e ∈ I.

Proof: It follows from Lemma 12 that J is independent. Since rM (I ∪ J) = |I|, both I and J are
maximal independent sets in I∪J . Thus I ⊆ span(J) and J ⊆ span(I). Since I+e is independent,
e /∈ span(I). As we have seen in Lecture 14, since J ⊆ span(I), it follows that span(J) ⊆ span(I).
Therefore e /∈ span(J) and thus J + e is independent. 2
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