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The purpose of these notes is to explain the simple implications of the rank lemma about vertex
solutions for linear programs. Recall that a polyhedron in Rn is defined as the intersection of finite
collection of half spaces. Without loss of generality we can assume that it is defined by a system of
inequalities of the form Ax ≤ b where A is a m×n matrix and b is a m×1 vector. A polyhedron P
is bounded if P is contained in finite radius ball around the origin. A polytope in Rn is defined as
the convex hull of a finite collection of points. A fundamental theorem about linear programming
states that any bounded polyhedron is a polytope. If the polyhedron is not bounded then it can
be expressed as the Minkowski sum of a polytope and a cone.

A bounded polyhedron P in Rn defined by a system Ax ≤ b must necessarily have m ≥ n. A
point p ∈ P is a basic feasible solution or a vertex solution of the system if it is the unique solution
to a system A′y = b′ where A′ is a sub-matrix of A with n inequalities and the rank of A′ is equal to
n. The inequalities in A′ are said to be tight for y. Note that there may be many other inequalities
in Ax ≤ b that are tight at y and in general there many be many different rank n sub-matrices
that give rise to the same basic feasible solution y.

Lemma 1 Suppose y is a basic feasible solution of a system Ax ≤ b, ` ≤ x ≤ u where A is a m×n
matrix and ` and u are vectors defining lower and upper bounds on the variables x ∈ Rn. Let S =
{i : `i < yi < ui} be the set of indices of “fractional” variables in y. Then |S| ≤ rank(A) ≤ m. In
particular the number of fractional variables in y is at most the number of “non-trivial” constraints
(those that are defined by A).

The lemma is a simple consequence of the definition of basic feasible solution. It is interesting
only when rank(A) or m is smaller than n, otherwise the claim is trivial. Before we prove it formally
we observe some simple corollaries. Suppose we have a system Ax ≤ b, x ≥ 0 where m < n. Then
the number of non-zero variables in a basic feasible solution is at most m. Similarly if the system
is Ax ≤ b, x ∈ [0, 1]n then the number of non-integer variables in y is at most m. For example in
the knapsack LP we have m = 1 and hence in any basic feasible solution there can only be one
fractional variable.

Now for the proof. We consider the system Ax ≤ b,−x ≤ −`, x ≤ u as a single system Cx ≤ d
which has m+2n inequalities. Since y is a basic feasible solution to this system, from the definition,
it is the unique solution of sub-system C ′x = d′ where C ′ is a n × n full-rank matrix. How many
rows of C ′ can come from A? At most rank(A) ≤ m rows. It means that the rest of the rows of C ′

are of the from the other set of inequalities −x ≤ ` or x ≤ u. There are at least n− rank(A) such
rows which are tight at y. Thus n− rank(A) variables in y are tight at lower or upper bounds and
hence there can only be rank(A) fractional variables in y.

See [1] for iterated rounding based methodology for exact and approximation algorithms. The
whole methodology relies on properties of basic feasible solutions to LP relaxations of combinatorial
optimization problems.
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