CS 573: Graduate Algorithms, Fall 2011
HW 3 (due in class on Tuesday, October 18th)

This homework contains five problems. Read the instructions for submitting homework on
the course webpage. In particular, make sure that you write the solutions for the problems on
separate sheets of paper. Write your name and netid on each sheet.

Collaboration Policy: For this home work students can work in groups of up to three students
each. Only one copy of the homework is to be submitted for each group. Make sure to list all the
names/netids clearly on each page.

Note on Proofs: Details are important in proofs but so is conciseness. Striking a good balance
between them is a skill that is very useful to develop, especially at the graduate level.

1. (20 pts) Given a directed graph G = (V, E) and two nodes s,t, an s-t walk is a sequence of
nodes s = vg, v1,...,vr =t where (v;,v;41) is an edge of G for 0 < i < k. Note that a node
may be visited multiple times in a walk — this is how it differs from a path. Given G, s,t
and an integer k£ < n, design a linear time algorithm to check if there is an s-t walk in G
that visits at least k distinct nodes including s and ¢. Hint: You need to use a linear time
algorithm to find all strong connected components of a directed graph. Moreover you need
to understand the DAG representation of the strong connected components of a graph. You
can assume that you have an algorithm for giving you such a representation. Read Chandra’s
CS 473 lecture notes if you are unfamiliar with this.

2. (20 pts) You are given a directed graph G = (V, E') where each edge e has a length/cost ¢,
(which may be negative) and you want to find shortest path distances from a given node s
to all the nodes in V. The Bellman-Ford algorithm takes O(nm) time where n = |V| and
m = |E| while Dijkstra’s algorithm can be implemented in O(m + nlogn) time when the
edge lengths are non-negative. Suppse G has only k edges with negative lengths where k is
small. Show how you can take advantage of this to obtain an algorithm that runs in time
O(k(m + nlogn)); in other words the time to run Dijkstra’s algorithm O(k) times. Your
algorithm should output the following: either that there is a negative length cycle in G or
correct shortest path distances from s to each node v. Hint: First solve the problem when
k =1 and then generalize.

3. (20 pts) This problem will lead you to an algorithm for the all-pairs-shortest path problem
(APSP) in undirected unweighted graphs via matrix multiplication. The algorithm is quite
clever to come up with but its analysis can be understood via a sequence of simple claims.
Let G = (V, E) be an undirected graph; its square, denoted by G2, is the graph on the same
vertex set V and there is an edge uv in G? if uv is an edge in G or if there is 2-hop path
u—w—wvin G.

e Given a graph G on n nodes show how to compute G? from G in time O(M (n) + n?)
where M (n) is the time to multiply two n X n matrices.

e If GG is connected show that repeatedly squaring a graph [logn| times results in a com-
plete graph.

For notational simplicity let H be the square of G. We wish to understand how to obtain
information for distances in G from distances in H. Prove the following.

o Let u,v € V. Suppose dg(u,v) is an even number then dg(u,v) = 2dg(u,v) and if
dg(u,v) is an odd number then dg(u,v) = 2dg(u,v) — 1.

The above property shows that if we can recursively compute the distances in H then we
would be able to obtain the distances in G approximately to within an additive error of 1. In
particular if we knew the parity of the distances in G then we would be able to recover the
distances in G from those in H. How do we obtain the parity? We will see that the following
facts are helpful. You should prove them.

e Let u, v be distinct nodes in G. Then for every neighbor w of v in G we have dg(u,v)—1 <
dg(u,w) < dg(u,v) + 1. Moreover there is at least one neighbor w of v such that
da(u,w) = dg(u,v) — 1.

e Let u,v be distinct nodes in G. If dg(u,v) is even then for every neighbor w of v
in G we have dg(u,w) > dg(u,v). And if dg(u,v) is odd then for every neighbor
w of v in G, dy(u,w) < dg(u,v) and there is some neighbor w of v in G for which
di(u,w) < dp(u,v).

As a consequence of the previous two facts prove the following.

e Let u,v be distinct nodes in G. Then dg(u,v) is even if and only if

Z dg (u7 w) > dH(ua 1)) ’ degG’(v)v

w neighbor of v
where degg(v) is the degree of v in G.
With the above in place, show the following.

e Given all pairs shortest path distances in H in a matrix A and the adjancency matrix of
G in B reduce the problem of finding the parity of dg(u,v) for each pair u,v to matrix
multiplication.

Put together all the above observations to describe a recursive algorithm for APSP in an
undirected unweighted graph G on n nodes in O(M (n)logn) time. Here you will be assuming
that M(n) is Q(n?).

. (20 pts) You are given a collection of n jobs that need to be scheduled on a single machine.
Each job j has two attributes: an integer processing time p; > 0 and an integer release time
rj > 0 when it becomes available. A job that is released at r; cannot be scheduled before
rj (naturally). The goal is to schedule the jobs to minimize the total completion time of the
jobs; in other words minimize Z?:l C; where Cj is the completion time of job j. At any
time, only one job can be processed on the machine, however the schedule is allowed to be
pre-emptive; that is, a job that is currently being processed can be set aside to process a new
job that becomes available and so on. A job j is completed when it receives a total of p;
units of processing on the machine. Consider the following simple algorithm. At any time ¢,
schedule the job that has the least amount of time still left to process. See example below for

an illustration of a schedule created by the algorithm. The numbers indicate the processing
time and release time of the job.

e Is this an optimal algorithm? If so, prove its correctness.

e Give a polynomial time algorithm that outputs a schedule for the jobs. The schedule
should be specify for each job the time intervals (the start and end points) during which
the job is processed on the machine. Note that an algorithm that runs in O(}_, p;) time
is mot a polynomial time algorithm.

5,0

1 3,1

time

5. (20 pts) Let T'= (V, E) be a tree and let S C V be a set of special vertices called terminals.
For any given subset of edges X C F let h(X) be the number of connected components in the
forest T\ X that contain at least one terminal from S. Define a tuple (E,Z) where Z C 2F
as follows.

T={XCE|hX)=|X|+1}

e Prove that Mrp g = (E,Z) is a matroid. A loop in a matroid is an element of a ground
set which is a circuit. For a given tree T'= (V, F) and S C V when is an edge e € E a
loop in the matroid M7 g7

e For any matroid M = (N,Z) and integer k define My, = (N,Z’) where I’ = {I € T |
|I| < k}. Show that My, is also a matroid.

e From the above two properties derive a greedy algorithm for the following problem.
Given a tree T' = (V, E) with non-negative edges costs ¢ : E — R, a set of terminals
S C V and an integer k£ < |S| find the smallest cost set of edges in T" whose removal
results in k& components each of which contains at least one terminal. (This is called the
Steiner k-cut problem and is NP-Hard in general graphs but can be solved in trees. The
algorithm on trees leads to a 2-approximation for general graphs via Gomory-Hu tree
representation of a graph.)

