CS 473g: Algorithms, Fall 2007 Midterm — October 4, 2007

Name:	
Net ID:	Alias:

- This is a closed-book, closed-notes, open-brain exam. If you brought anything with you besides writing instruments and your **handwritten** $8\frac{1}{2}'' \times 11''$ cheat sheet, please leave it at the front of the classroom.
- Print your name, netid, and alias in the boxes above. Print your name at the top of every page (in case the staple falls out!).
- You should answer all the questions on the exam.
- The last few pages of this booklet are blank. Use that for a scratch paper. Please let us know if you need more paper.
- If your cheat sheet is not hand written by yourself, or it is photocopied, please do not use it and leave it in front of the classroom.
- Submit your cheat sheet together with your exam. An exam without your cheat sheet attached to it will not be checked.
- If you are NOT using a cheat sheet you should indicate it in large friendly letters on this page.
- There are 4 questions on the exam. Each question is worth 25 points.
- Answers containing *only* the expression: "I dont know", will get 20% of the points of the question. If you write anything else, it would be ignored. Overall, points given for "I dont know" will not exceed 10 points.
- Write your exam using a pen not a pencil.
- Time limit: 75 minutes.
- Relax. Breathe. This is just an easy, silly and stupid midterm.

#	Score	IDK	Grader
1.			
2.			
3.			
4.			
Total			

1. NP Completeness.

[25 Points]

Prove that the following problem is NP-Complete.

Problem: Monotone Satisfiability

Instance: A CNF formula F over n variables x_1, \ldots, x_n , where NO variable appears in negation. And a parameter k.

Question: Is there a satisfying assignment to F, such that at most k variables are assigned value 1, and all other variables are assigned value 0.

As a concrete example, $F = (x_1 \vee x_2 \vee x_3)(x_1 \vee x_4)$. The formula $F = (\overline{x_1} \vee x_3)$ is of course NOT a legal input for Monotone Satisfiability since it contains negation. Observe that it easy to satisfy a monotone formula, as you can assign all variables the value 1. Here, however, we look for the assignment with minimum number of 1s (or with at most k trues).

2. Maximum matching

[25 Points]

Given a graph G with n vertices and m edges, a **matching** $M \subseteq E(G)$ is a set of edges such that no two edges of M share an endpoint. A natural question is to find a matching of M of maximum size. Provide a simple algorithm that outputs a matching set X, such that $|X| \ge \operatorname{opt}/2$, where opt is the size of the maximum size matching in G. How fast is your algorithm?

Prove that your algorithm provides the required approximation.

3. Majority tree

[25 Points]

Consider a uniform rooted tree of height h (every leaf is at distance h from the root). The root, as well as any internal node, has 3 children. Each leaf has a boolean value associated with it. Each internal node returns the value returned by the majority of its children. The evaluation problem consists of determining the value of the root; at each step, an algorithm can choose one leaf whose value it wishes to read.

Consider the recursive randomized algorithm **EvalTree** that evaluates two subtrees of the root chosen at random. If the values returned disagree, it proceeds to evaluate the third sub-tree. If they agree, it returns the value they agree on.

- (A) [10 Points] For a node v in this tree, EvalTree performs either two or three recursive calls on its children. In the worst case, what is the probability that EvalTree performs only two recursive calls?
 - Let denote this probability by α .
- (B) [10 Points] Let T(h) denote the *expected time* to evaluate a tree of height h by EvalTree (this is just the expected number of leafs evaluated by EvalTree). Give a recurrence that bounds T(h) exactly (as a function of h and α and T(h-1)).
- (C) [5 Points] What is the expected number of leafs that would be read by **EvalTree** if executed on a tree that has n leaves (that is $n = 3^h$)?

4. Maximum weight independent set.

[25 Points]

You are given a tree T defined over n nodes. Every node $v \in V(T)$ has an associated weight $c(v) \geq 0$ with it. Provide an algorithm, as fast as possible, that computes the independent set of maximum weight in T. A weight of a set of vertices is just the total weight of its vertices.

What is the running time of your algorithm? Provide a pseudo-code for your algorithm.