Solving PDEs with PETSc

William Gropp

University of Illinois at Urbana-Champaign

Introduction

- What and why is PETSc?
- PETSc is a portable library for solving linear and nonlinear systems of equations in parallel
- PETSc was originally designed to provide a library for experimentation in domain decomposition algorithms
- What is Domain Decomposition?
- DD is a algorithmic technique for dividing problems into subproblems and combining the results to solve (or approximate) the solution
- DD is a natural method for effective parallel algorithms for distributed memory computers

Overview

- Introduction to PETSc-Hello World
- Building a Poisson Solver in PETSc
- Using distributed arrays to describe data parallelism
- Using domain decomposition methods in PETSc
- Solving Nonlinear problems
- Algorithms for nonlinear problems
- Bratu example
- More on distributed arrays in PETSc

Few Comments Before We Start

- PETSc is a very large library
- This tutorial is designed to introduce PETSc without overwhelming you with information
- Many features will not be covered. PETSc comes with extensive examples and documentation
- PETSc is a freely available and supported research code
- Available via http://www.mcs.anl.gov/petsc
- Free for everyone, including industrial users
- Hyperlinked documentation and manual pages for all routines
- Many tutorial-style examples
- Support via email: petsc-maint@mcs.anl.gov
- Usable from Fortran 77/90, C, and C++
- Portable to any parallel system supporting MPI, including
- Tightly coupled systems Cray XTn, IBM BlueGene, SGI Altix, SiCortex, Sun, ...
- Loosely coupled systems, e.g., networks of workstations HP, IBM, SGI, Sun, and PCs running Linux or Windows, and Apple Macs
- What is not in PETSc
- Discretizations
- Unstructured mesh generation or refinement
- Load balancing tools
- Sophisticated visualization support
- (But PETSc provides ways to interface to other tools)

A First PETSc Program

- What do PETSc programs look like?
- What do PETSc parallel programs look like?
- How to compile, link, and run PETSc programs?

Hello World

```
#include "petsc.h"
int main( int argc, char *argv[] )
{
    PetscInitialize( &argc, &argv, 0, 0 );
    PetscPrintf( PETSC_COMM_WORLD, "Hello World\n" );
    PetscFinalize( );
    return 0;
}
```


Understanding the Code

PetscInitialize Initialize PETSc. The arguments allow PETSc to initialize MPI if necessary
PetscFinalize Finalize PETSc. Causes PETSc to call MP I_Finalize if necessary and also to generate summary reports.
PetscPrintf Ensures that only one process prints the data (Try it!)

Hello World in Fortran

integer ierr, rank
\#include "include/finclude/petsc.h"
call PetscInitialize(PETSC_NULL_CHARACTER, ierr)
call MPI_Comm_rank(PETSC_COMM_WORLD, rank, ierr)
if (rank .eq. 0) then
print *, 'Hello World'
endif
call PetscFinalize(ierr)
end

Understanding the Code

- Like the C code, except
- Petsclnitialize has fewer arguments because Fortran has no argc or argv
- Must use MPI_Comm_rank and print because Fortran I/O uses a interface unavailable to libraries
- PETSc 2.1.6 adds a routine that can be used with a single character string (Fortran can't implement its own I/O operations, so PETSc can't provide parallel replacements)

A Parallel Program

- PETSc uses the distributed memory, shared-nothing model
- Parallel PETSc programs consist of separate communicating processes
- PETSc uses MPI for parallelism
- You can always access MPI routines
- You will rarely need to use MPI while using PETSc
- Many PETSc routines are collective in the MPI sense (all processes must call); others are local.
- Common uses of MPI in PETSc are the routines for communicator size and rank and for processor name.
- This is illustrated in a revised (and obviously parallel) hello world program.

Hello World Revisited

```
#include "petsc.h"
int main( int argc, char *argv[] )
{
    int rank;
    PetscInitialize( &argc, &argv, 0, 0 );
    MPI_Comm_rank( PETSC_COMM_WORLD, &rank );
    PetscSynchronizedPrintf( PETSC_COMM_WORLD,
                            "Hello World from rank %d\n", rank );
    PetscSynchronizedFlush( PETSC_COMM_WORLD );
    PetscFinalize( );
    return 0;
}
```


Understanding the Program

PetscSynchronizedPrintf Like PetscPrintf, except output comes from all processes in rank order.

PetscSynchronizedFlush Indicates that the calling process is done printing.

- Allows the use of multiple PetscSynchronizedPrintf calls

PETSC_COMM_WORLD The PETSc version of
MPI_COMM_WORLD, they are usually the same set of processes. PetscSetCommWorld, used before PetscInitialize, may be used to give PETSc a subset of processes

PETSc and PDEs

- PETSc is designed around the mathematics of the problem
- Specify the data in terms of vectors
- Specify the problem as linear (using matrices) or nonlinear (using vector-valued functions) equations to be solved
- Support parallel computing by automatically distributing these objects across all processes
- We'll see a sequence of increasingly sophisticated PDE examples...

Poisson Problem

Lets solve a simple linear elliptic PDE

$$
\begin{aligned}
\nabla^{2} u & =f \text { in }[0,1] \times[0,1] \\
u & =0 \text { on the boundary }
\end{aligned}
$$

using a simple discretization $\left(u_{i, j}=u\left(x_{i}, y_{j}\right), x_{i}=i h\right)$

$$
\begin{aligned}
& \frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{h^{2}}+ \\
& \frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{h^{2}}=f\left(x_{i}, y_{j}\right) .
\end{aligned}
$$

(We use finite differences for simplicity; finite elements can be used as well.) For simplicity, consider $f=\sin (\pi x) \sin (\pi y)$.
We will discretize the interior of the mesh only for this example.

Schematic for Example

In PETSc, your main program remains in control:

main program
PetscInitialize()
A = create the matrix
b = create a vector
any other application code
Use KSP to solve $\mathrm{A} x=\mathrm{b}$
print solution
PetscFinalize()

KSP is the "scalable linear equation solver" component of PETSc (the name is historical and was originally SLES, and the first "S" was for "simple")

Creating the Matrix

```
#include "petscksp.h"
/* Form the matrix for the 5-point finite difference 2d Laplacian
        on the unit square. n is the number of interior points along a si
Mat FormLaplacian2d( int n )
    Mat A;
    int r, rowStart, rowEnd, i, j;
    double h, oneByh2;
    h = 1.0 / (n + 1); oneByh2 = 1.0 / (h * h);
    MatCreate( PETSC_COMM_WORLD, &A );
    MatSetSizes( A, PETSC_DECIDE, PETSC_DECIDE, n*n, n*n );
    MatSetFromOptions( A );
    MatGetOwnershipRange( A, &rowStart, &rowEnd );
```


Creating the Matrix II

/* This is a simple but inefficient way to set the matrix */
for (r=rowStart; r<rowEnd; r++) \{
$i=r \% n ; j=r / n ;$
if (j - $1>0$) \{
MatSetValue(A, r, r - n, oneByh2, INSERT_VALUES); \}
if (i - 1 > 0) \{
MatSetValue(A, r, r - 1, oneByh2, INSERT_VALUES); \}
MatSetValue(A, r, r, $\left.-4 * o n e B y h 2, ~ I N S E R T _V A L U E S ~\right) ; ~$
if (i + $1<n-1)$ \{
MatSetValue(A, r, r + 1, oneByh2, INSERT_VALUES); \}
if (j + $1<n-1)$ \{
MatSetValue(A, r, r + n, oneByh2, INSERT_VALUES); \}
\}
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY);
return A;

Understanding the Code I

MatCreate Create a matrix object.
MatSetSizes Set the size of the matrix

- n^{2} equations, so matrix is of size $\mathbf{n}^{*} \mathbf{n} \times \mathbf{n}^{*} \mathbf{n}$
- PETSC_DECIDE tells PETSc to choose the distribution of the matrix across the processes

MatSetFromOptions Set basic matrix properties (such as data structure) from command line

MatGetOwnershipRange Get the rows of the matrix that PETSc assigned to this process

- PETSc uses a simple assignment of consecutive rows to a process. This simplifies much of the internal structure of PETSc, and, as we shall see, does not reduce the generality
- It is not necessary to set values on the "owning" process
- Returns first row to one + last row on process.
- Matches common C idiom (for (i=start; i<end; i++))
- Number of rows is end-start

Understanding the Code II

MatSetValue Insert (or optionally add with ADD_VALUES) a value to a matrix (Warning: This is a macro and needs braces)

MatAssemblyBegin and MatAssemblyEnd Complete the creation of matrix.
The matrix may not be used for any operation (other than MatSetValue) until after MatAssemblyEnd.

The approach of separating setting values from assembly has several benefits

- Any process may set a value to any element of the matrix, even ones not "owned" by the calling process.
- PETSc manages all data communication between processes, automatically moving data if necessary
- PETSc can optimize the insertion of matrix elements

Data Structure Neutral Design

- PETSc matrices are objects for storing linear operators
- They allow many types of data structures:
- Default sparse format MATMPIAIJ and MATSEQAIJ
- Block sparse MATMPIBAIJ and MATSEQBAIJ
- Symmetric block sparse MATMPISBAIJ and MATSEQSBAIJ
- Block diagonal MATMPIBDIAG and MATSEQBDIAG
- Dense MATMPIDENSE and MATSEQDENSE
- Many others (see \$PETSC_DIR/include/petscmat.h)
- Choice of format is made from command line (with MatSetFromOptions) or program (with MatSetType)
- The same routines are used for all choices of data structure
- User-defined data-structures supported with "Shell" objects

Data Decomposition in PETSc

- How are objects distributed among processes in PETSc?
- Continguous rows of a vector or matrix are assigned to processes, starting from the process with rank zero
- The matrix and vector for a 3×3 mesh, with two processes, has the following decomposition
$\xlongequal[\boldsymbol{p}]{\boldsymbol{\rho}} \boldsymbol{\sim}\left(\begin{array}{l}x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ x_{7} \\ x_{8}\end{array}\right)=\left(\begin{array}{ccccccccc}4 & -1 & & -1 & & & & & \\ -1 & 4 & -1 & & -1 & & & \\ & -1 & 4 & & & -1 & & & \\ -1 & & & 4 & -1 & & -1 & & \\ & -1 & & -1 & 4 & -1 & & -1 & \\ \hline & & -1 & & -1 & 4 & & & -1 \\ & & & -1 & & & 4 & -1 & \\ & & & & -1 & & -1 & 4 & -1 \\ & & & & -1 & & -1 & 4\end{array}\right)$

Why Are PETSc Matrices The Way They Are?

- No one data structure is appropriate for all problems
- Blocked and diagonal formats provide significant performance benefits
- PETSc provides a large selection of formats and makes it (relatively) easy to extend PETSc by adding new data structures
- Matrix assembly is difficult enough without being forced to worry about data partitioning
- PETSc provide parallel assembly routines
- Achieving high performance still requires making most operations local to a process, but this approach allows incremental development of programs
- Matrix decomposition by consecutive rows across processes is simple and makes it easier to work with other codes
- For applications with other ordering needs, PETSc provides "Application Orderings" (AO)

Vectors In PETSc

- In order to support the distributed memory "shared nothing" model, as well as single processors and shared memory systems, a PETSc vector is a "handle" to the real vector
- Allows the vector to be distributed across many processes
- To access the elements of the vector, we cannot simply do

$$
\text { for (i=0; } i<n \text {; } i++ \text {) } v[i]=i ;
$$

- We do not want to require that the programmer work only with the "local" part of the vector; we want to permit operations, such as setting an element of a vector, to be performed by any process.
- The solution is to make vectors an object, just like a parallel matrix

Creating the Vectors I

```
#include "petscvec.h"
/* Form a vector based on a function for a 2-d regular mesh on the
unit square */
Vec FormVecFromFunction2d( int n, double (*f)( double, double ) )
{
    Vec V;
    int r, rowStart, rowEnd, i, j;
    double h;
    h = 1.0 / (n + 1);
    VecCreate( PETSC_COMM_WORLD, &V );
    VecSetSizes( V, PETSC_DECIDE, n*n );
    VecSetFromOptions( V );
```


Creating the Vectors II

VecGetOwnershipRange (V, \&rowStart, \&rowEnd);
/* This is a simple but inefficient way to set the vector */
for (r=rowStart; r<rowEnd; r++) \{
$i=(r o n)+1 ;$
$j=(r / n)+1 ;$
VecSetValue(V, r, (*f) (i * h, j * h), INSERT_VALUES);
\}
VecAssemblyBegin(V);
VecAssemblyEnd(V);
return V;
\}

Understanding the Code

VecCreate Creates the vector.
VecSetSizes Sets the global and local size of the vector. Use
PETSC_DECIDE to have PETSc choose the distribution across processes

VecSetFromOptions Like the matrix counterpart. VecSetType may be used instead.

VecGetOwnershipRange Like the matrix counterpart
VecSetValue Sets the value for a vector element. Use ADD_VALUES to add to a vector element. Like the matrix routines, elements can be inserted or added by any process.

VecAssemblyBegin and VecAssemblyEnd Like the Matrix counterparts

Solving a Poisson Problem I

```
#include <math.h>
#include "petscksp.h"
extern Mat FormLaplacian2d( int );
extern Vec FormVecFromFunction2d( int, double (*)(double,double) );
/* This function is used to define the right-hand side of the
    Poisson equation to be solved */
double func( double x, double y ) {
    return sin(x*M_PI)*sin(y*M_PI); }
int main( int argc, char *argv[] )
{
    KSP sles;
    Mat A;
    Vec b, x;
    int its, n;
    PetscInitialize( &argc, &argv, 0, 0 );
```


Solving a Poisson Problem II

```
    n = 10; /* Get the mesh size. Use 10 by default */
    PetscOptionsGetInt( PETSC_NULL, "-n", &n, 0 );
    A = FormLaplacian2d( n );
    b = FormVecFromFunction2d( n, func );
    VecDuplicate( b, &x );
    KSPCreate( PETSC_COMM_WORLD, &sles );
    KSPSetOperators( sles, A, A, DIFFERENT_NONZERO_PATTERN );
    KSPSetFromOptions( sles );
    KSPSolve( sles, b, x );
    KSPGetIterationNumber( sles, &its );
    PetscPrintf( PETSC_COMM_WORLD, "Solution in %d iterations is:\n"
    VecView( x, PETSC_VIEWER_STDOUT_WORLD );
    MatDestroy( A ); VecDestroy( b ); VecDestroy( x );
    KSPDestroy( sles );
    PetscFinalize( );
    return 0;
```


Understanding the Code

KSPCreate Create a context used to to solve a linear system. This routine is used for all solvers, independent of the choice of algorithm or data structure

KSPSetOperators Define the problem.

- The third argument allows the use of a different matrix for preconditioning
- DIFFERENT_NONZERO_PATTERN indicates whether the preconditioner has the same nonzero pattern each time a system is solved. This default works with all preconditioners. Other values (e.g., SAME_NONZERO_PATTERN) can be used for particular preconditioners. Ignored when solving only one system

KSPSetFromoptions Set the algorithm, preconditioner, and the associated parameters, using the command-line

KSPSolve Actually solve the system of linear equations.
KSPGetIterationNumber The number of iterations is returned If a direct method is used, one is returned in its

KspDestroy Free the KSP context and all storage associated with it

Objects in PETSc

- How should a matrix be described in a program?
- Old way:
- Dense matrix

```
double precision A(10,10)
```

- Sparse matrix

```
integer ia(11), ja(max_nz)
double precision a(max_nz)
```

- New way:
Mat M
- Hides the choice of data structure
- Of course, the library still needs to represent the matrix with some choice of data structure, but this is an implementation detail
- Benefit
- Programs become independent of any particular choice of data structure, making it easier to modify and adapt programs.

Operations in PETSc

- How should operations like "solve linear system" be described in a program?
- Old way

```
mpiaijgmres( ia, ja, a, comm, x, b, nlocal, nglobal,
    ndir, orthomethod, convtol, &its )
```

- New way

```
KSPSolve( ksp, b, x )
KSPGetIterationNumber( ksp, &its )
```

- Hides the choice of algorithm
- Algorithms are to operations as data structures are to objects
- Benefit
- Programs become independent of a particular choice of algorithm, making it easier to explore algorithmic choices and to adapt to new methods
- In PETSc, operations have their own "handle", called a "context variable"

Context Variables in PETSc

- Context variables are the key to solver organization
- They contain the complete state of an algorithm, including
- parameters (e.g., convergence tolerance)
- functions run by the algorithm (e.g., convergence monitoring routine)
- information about the current state (e.g., iteration number)
- Each KSP object contains two important objects:
Krylov Space Method
- The iterative method
- The KSP context contains information on the method parameters, e.g. GMRES restart and search directions)
PC Preconditioners
- Knows how to apply the preconditioner
- The context contains information on the preconditioner, such as ILU fill level

Available Methods

KSP		PC	
Name	PETSc option	Name	PETSc option
Conjugate Gradient	cg	Block Jacobi	bjacobi
GMRES	gmres	Overlapping Additive	asm
		Schwarz	
Bi-CG-stab	bicg	ILU	ilu
Transpose-free QMR	tfqmr	SOR	sor
Richardson	richardson	LU (direct solve)	lu
CG-Squared	cgs	Multigrid	mg
SYMMLQ	symmlq	Arbitrary matrix	mat
others		others	

- PETSc makes it each to try different algorithms

```
mpiexec -n 4 poisson -ksp_type cg
mpiexec -n 4 poisson -ksp_type gmres
mpiexec -n 4 poisson -pc_type bjacobi -sub_pc_type ilu \
    -ksp_type bocgs
```

- PETSc make experimentation with different algorithms easy
- Many are already built-in
- You can add new algorithms and data structures to PETSc; these are then used just like the built-in ones (e.g., a new preconditioner can be used with an existing source code without any changes. (However, this is not a one-day project.)
- Many other options available. Use
poisson -help | more
to get a list of available options

Monitoring Convergence

- PETSc provides routines to check for and monitor convergence
- The choice of monitor and the output from that monitor can be controlled from the command line -ksp_monitor Print the preconditioned residual norm -ksp_monitor_draw Plot the preconditioned residual norm -ksp_monitor_true_residual_norm Print the true residual norm $\|A x-b\|_{2}$
-ksp_monitor_draw_true_residual Plot the true residual norm
- Custom monitors can be defined by the user

Accessing the Solution

- Viewers are used in PETSc to access and display the contents of an object
- A simple viewer prints data out standard output:
VecView (V, PETSC_VIEWER_STDOUT_WORLD);
- PETSc provides a wide range of viewers for all major objects
- Viewers make it easy to send vectors and matrices to Matlab
- Graphical viewers make it easy to display data
- Binary viewers make it easy to save and load data

PETSc Viewers

- PETSc has many viewers

PETSC_VIEWER_STDOUT_SELF Sequential, prints to stdout PETSC_VIEWER_STDOUT_WORLD Parallel, prints to stdout PETSC_VIEWER_DRAW_WORLD Parallel, draws using X-Windows

- Viewers exist for matrices, vectors, and other objects
- Matrix viewers provide information and graphical display of matrix sparsity structure and assembly (try
-mat_view_draw, -mat_view_info, or -mat_view
- Viewers on other objects can print out information about the object
- It is sometimes helpful to have direct access to the storage for the local elements of a vector
- The routines VecGetArray and VecRestoreArray may be used to get and return the local elements
- The routine VecGetLocalSize returns the number of elements in the local part of the vector
- VecGetArray returns a pointer to an array that contains the locally-owned values in the vector. Normally, this is just a pointer into the storage that PETSc uses, but for special vector implementations, it may be different storage used just for VecGetArray
- VecRestoreArray gives the array back to PETSc. Normally, this has no work to do, but if PETSc had to allocate storage for VecGetArray, this routine will free that storage
- Often need to compute $\|x-y\|$, for example, for convergence tests. Also useful in checking a solution
- PETSc does provide routines to compute $x+\alpha y$ and $\|x\|$, but no single routine to compute the norm of the difference of two vectors
- As an example of accessing local elements of a vector, we will implement "mVecNormXPAY" which computes $\|x+\alpha y\|$
- Accepts all PETSc norm types: NORM_1, NORM_2, and NORM_INFINITY.
- A single routine avoids creating an unneeded temporary vector and avoids extra memory motion needed when using multiple routines

Computing $\|x-y\| \mathbf{I}$

```
```

\#include "petscvec.h"

```
```

\#include "petscvec.h"
/* Comment out this next define if the compiler is
/* Comment out this next define if the compiler is
not broken and supports C2000 */
not broken and supports C2000 */
\#define restrict
\#define restrict
/* This is a new vector routine for PETSc, illustating the use
/* This is a new vector routine for PETSc, illustating the use
of several PETSc functions for accessing vector elements */
of several PETSc functions for accessing vector elements */
int mVecNormXPAY(Vec x, Vec y, const PetscScalar a, NormType ntype,
int mVecNormXPAY(Vec x, Vec y, const PetscScalar a, NormType ntype,
PetscReal *norm)

```
                                PetscReal *norm )
```

```
{
```

{
const double * restrict xvals, * restrict yvals;
const double * restrict xvals, * restrict yvals;
int nlocal, i, ierr = 0;
int nlocal, i, ierr = 0;
MPI_Op normop;
MPI_Op normop;
double sum = 0.0, totsum;
double sum = 0.0, totsum;
/* Get the local arrays and the size */
/* Get the local arrays and the size */
VecGetArray(x, (PetscScalar **)\&xvals);
VecGetArray(x, (PetscScalar **)\&xvals);
VecGetArray(y, (PetscScalar **)\&yvals);

```
        VecGetArray( y, (PetscScalar **)&yvals );
```


Computing $\|x-y\|$ II

```
VecGetLocalSize( x, &nlocal );
if (a == -1) {
    /* Special case for difference of two vectors */
    switch (ntype) {
    case NORM_1:
        for (i=0; i<nlocal; i++) {
        sum += fabs(xvals[i] - yvals[i]);
        }
        normop = MPI_SUM;
        break;
        case NORM_2:
            for (i=0; i<nlocal; i++) {
            register PetscScalar tmp;
            tmp = xvals[i] - yvals[i];
            sum += tmp*tmp;
        }
        normop = MPI_SUM;
```


Computing $\|x-y\|$ III

```
    break;
    case NORM_INFINITY:
            for (i=0; i<nlocal; i++) {
        register PetscScalar tmp;
        tmp = fabs(xvals[i] - yvals[i]);
        if (tmp > sum) sum = tmp;
        }
        normop = MPI_MAX;
        break;
        default:
            ierr = 1;
            break;
    }
}
else {
    /* Unimplemented */
    ierr = 1;
}
```


Computing $\|x-y\|$ IV

56
if (!ierr) \{
MPI_Comm comm;
PetscObjectGetComm((PetscObject)x, \&comm);
MPI_Allreduce(\&sum, \&totsum, 1, MPI_DOUBLE, comm, normop);
if (ntype == NORM_2) \{
totsum $=$ sqrt(totsum);
\}
*norm $=$ totsum;
\}
VecRestoreArray (x, (PetscScalar **) \&xvals);
VecRestoreArray(y, (PetscScalar **) \&xvals);
return ierr;
70 \}

PetscScalar is just a name for double; using this name allows the PETSc to be rebuilt for float or Complex scalars.

Distributed Arrays in PETSc

How should a vector be distributed across processes? PETSc's default is a "one-dimensional decomposition"
How can you make use of different data decompositions in PETSc? PETSc provides "Distributed Arrays" (DAs) for this purpose.
For example, consider the layout of a mesh onto this processor mesh:

P2	P3
P0	P1

Layout Of Distributed Arrays

On this 2×2 process grid, the vector elements are numbered like this:
\(\left.$$
\begin{array}{|ccc|cc|}\hline 20 & 21 & 22 \\
15 & 16 & 17 & 23 & 24 \\
18 & 19\end{array}
$$\left|$$
\begin{array}{|ccc|}\hline 10 & 11 & 12 \\
5 & 6 & 7 \\
0 & 1 & 2\end{array}
$$\right| \begin{array}{ccc}13 \& 14

8 \& 9

3 \& 4\end{array}\right] \rightarrow\)| 23 | 24 | |
| :---: | :---: | :---: |
| 15 | 16 | 17 |\(\left|\begin{array}{ccc}6 \& 7 \& 8

3 \& 4 \& 5

0 \& 1 \& 2\end{array}\right|\)| 13 | 14 |
| :---: | :---: |
| 11 | 12 |
| 9 | 10 |

Natural numbering
PETSc's internal numbering DAs provide a "logically Cartesian" decomposition. There are no physical coordinates associated with a DA.

Distributed Arrays

- PETSc's distributed array (DA) provides a way to describe a multidimensional array, distributed across a parallel computer
- DAs provide a way to use more complex data decompositions

```
DACreate2d( PETSC_COMM_WORLD, DA_NONPERIODIC,
    DA_STENCIL_STAR,
    nx, ny, px, py, 1, 1, 0, 0, &grid );
```

creates a global $n x \times n y$ grid, with a $p x \times p y$ process decomposition

- The DA_STENCIL_STAR and the arguments after py have to do with the difference stencil that may be used with this array and will be discussed later.
- MPI_Dims_create may be used to determine good values for px and py.

Setting the Vector Values I

```
#include "petsc.h"
#include "petscvec.h"
#include "petscda.h"
/* Form a vector based on a function for a 2-d regular mesh on the
    unit square */
Vec FormVecFromFunctionDA2d( DA grid, int n,
                                    double (*f)( double, double ) )
10 Vec V;
h = 1.0 / (n + 1);
DACreateGlobalVector( grid, &V );
```

9 \{
11
12
13
14
15

Setting the Vector Values II

DAVecGetArray(grid, V, (void **) \&vval);
/* Get global coordinates of this patch in the DA grid */ DAGetCorners(grid, \&is, \&js, 0, \&in, \&jn, 0);
ie $=$ is + in - 1;
je = js + jn - 1;
for (i=is ; i<=ie ; i++) \{
for (j=js ; j<=je ; j++) \{
vval[j][i] = (*f) ((i + 1) * h, (j + 1) * h);
\}
\}
DAVecRestoreArray (grid, V, (void **)\&vval);
return V;
\}

Understanding the Code

DACreateGlobalVector Creates a PETSc vector that may be used with DAs

DAVecGetArray Get a multidimensional array that gives the illusion of a global array (PETSc uses tricks with the array indexing to provide access to the local elements of the vector). Otherwise, like VecGetArray.

DAVecRestoreArray Like VecRestoreArray, used to allow PETSc to free any storage allocated by DAVecGetArray

DAGetCorners Returns the indices of the lower-left corner of the local part of the distributed array relative to the global coordinates, along with the number of points in each direction.

Setting the Matrix Elements I

```
#include "petscksp.h"
#include "petscda.h"
/* Form the matrix for the 5-point finite difference 2d Laplacian
    on the unit square. n is the number of interior points along a
    side */
Mat FormLaplacianDA2d( DA grid, int n )
    Mat A;
    int r, i, j, is, ie, js, je, in, jn, nelm;
    MatStencil cols[5], row;
    double h, oneByh2, vals[5];
    h = 1.0 / (n + 1); oneByh2 = 1.0 / (h*h);
    DAGetMatrix( grid, MATMPIAIJ, &A );
    /* Get global coordinates of this patch in the DA grid */
```


Setting the Matrix Elements II

DAGetCorners(grid, \&is, \&js, 0, \&in, \&jn, 0);
ie $=$ is + in - 1;
je $=j s+j n-1 ;$
/* This is a simple but inefficient way to set the matrix */ for (i=is; i<=ie; i++) \{
for (j=js; j<=je; j++) \{ row.j = j; row.i = i; nelm = 0; if (j - $1>0$) \{
vals[nelm] = oneByh2;
cols[nelm].j $=$ j - 1; cols[nelm++].i = i; \} if (i - 1 > 0) \{
vals[nelm] = oneByh2;
cols[nelm].j = j; cols[nelm++].i = i - 1; \}
vals[nelm] $=-4$ * oneByh2;
cols[nelm].j $=j ; \quad$ cols[nelm++].i $=i ;$ if (i + $1<n-1$) \{
vals[nelm] = oneByh2;
cols[nelm].j $=$ j; cols[nelm++].i $=i+1 ;\}$

Setting the Matrix Elements III

```
if (j + 1 < n - 1) {
    vals[nelm] = oneByh2;
    cols[nelm].j = j + 1; cols[nelm++].i = i;}
```

MatSetValuesStencil(A, 1, \&row, nelm, cols, vals,
INSERT_VALUES);
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
return A;
\}

Understanding the Code

DAGetMatrix Returns a matrix whose elements can be accessed with the coordinates of the distributed array. The type of the matrix must be specified; this choses a parallel matrix using AIJ format (MATMPIAIJ).
MatSetValuesStencil Sets elements of a matrix using grid coordinates

MatStencil Data structure that contains the indices of a point in the DA, using the i, j, k members of the structure

Poisson Solver Revisited

```
#include <math.h>
#include "petscksp.h"
#include "petscda.h"
extern Mat FormLaplacianDA2d( DA, int );
extern Vec FormVecFromFunctionDA2d( DA, int, double (*)(double,doubl
/* This function is used to define the right-hand side of the
    Poisson equation to be solved */
double func( double x, double y ) {
    return sin(x*M_PI)*sin(y*M_PI); }
int main( int argc, char *argv[] )
{
    KSP ksp;
    Mat A;
    Vec b, x;
    DA grid;
    int its, n, px, py, worldSize;
```


Poisson Solver Revisited II

$$
\text { PetscInitialize(\&argc, \&argv, 0, } 0 \text {); }
$$

/* Get the mesh size. Use 10 by default */
$\mathrm{n}=10$;
PetscoptionsGetInt (PETSC_NULL, "-n", \&n, 0);
/* Get the process decomposition. Default it the same as withou DAs */
$\mathrm{px}=1$;
PetscoptionsGetInt (PETSC_NULL, "-px", \&px, 0);
MPI_Comm_size(PETSC_COMM_WORLD, \&worldSize);
py = worldSize / px;
/* Create a distributed array */
DACreate2d(PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR, n, $n, ~ p x, ~ p y, ~ 1, ~ 1, ~ 0, ~ 0, ~ \& g r i d) ;$
/* Form the matrix and the vector corresponding to the DA */

Poisson Solver Revisited III

A = FormLaplacianDA2d(grid, n);
b = FormVecFromFunctionDA2d(grid, n, func);
VecDuplicate (b, \&x);
KSPCreate (PETSC_COMM_WORLD, \&ksp);
KSPSetOperators(ksp, A, A, DIFFERENT_NONZERO_PATTERN);
KSPSetFromOptions(ksp);
KSPSolve(ksp, b, x);
KSPGetIterationNumber(ksp, \&its);
PetscPrintf(PETSC_COMM_WORLD, "Solution is:\n");
VecView (x, PETSC_VIEWER_STDOUT_WORLD);
PetscPrintf(PETSC_COMM_WORLD, "Required \%d iterations\n", its)
MatDestroy (A); VecDestroy (b); VecDestroy (x);
KSPDestroy (ksp); DADestroy (grid);
PetscFinalize();
return 0;

More Preconditioners

- PETSc provides a large collection of preconditioners, including domain decomposition preconditioners
- Additive Schwarz

```
mpiexec -n 4 poisson -pc_type asm
```

- Control the subdomain solver with -sub_pc_type:

```
mpiexec -n 4 poisson -pc_type asm -sub_pc_type ilu
```

(In general, -sub_pc_<pcparmname> may be used to change the PC parameter pcparmname in the subdomain, and -sub_ksp_<kspparmname> for KSP in the subdomain.)

- Control the subdomain overlap

```
mpiexec -n 4 poisson -pc_type asm -pc_asm_overlap 2
```


PETSc's Automatic ASM

- PETSc automatically generates overlap by using the structure of the sparse matrix. Control with -pc_asm_overlap
- DAs allow you to control the local physical domain
- By using DAs, you can experiment with the effects of different decompositions

```
mpiexec -n 16 poisson -n 64 -pc_type asm
mpiexec -n 16 poisson2 -n 64 -pc_type asm -mx 8 -my 2
mpiexec -n 16 poisson2 -n 64 -pc_type asm -mx 4 -my 4
```

- Other ASM types are available with -pc_asm_type basic full interpolation and restriction restrict full restriction, local process interpolation interpolate full interpolation, local process restriction none local process restriction and interpolation

Solving Nonlinear Equations

We would like to solve

$$
F(u)=0
$$

for u. A powerful method for this is Newton's method:

$$
u^{k+1}=u^{k}-\left(F^{\prime}\left(u^{k}\right)\right)^{-1} F\left(u^{k}\right), \quad k=0,1, \ldots
$$

where u^{k} is the approximation to u at the k th step. The term $F^{\prime}\left(u^{k}\right)$ is a matrix, and this algorithm can be rewritten as

$$
\begin{aligned}
F^{\prime}\left(u^{k}\right) \Delta u^{k} & =-F\left(u^{k}\right) \\
u^{k+1} & =u^{k}+\Delta u^{k}
\end{aligned}
$$

Newton-based Methods

In practice, various modifications are made to Newton's method. PETSc supports many of the most common:

- Line search strategies
- Trust region strategies
- Pseudo-transient continuation
- Matrix-free varients

PETSc provides a "Simplified Nonlinear Equation Solver" (SNES) for nonlinear problems. SNES is the nonlinear analogue of KSP.

PDE Jacobian

The matrix $F^{\prime}(u)$ is called the Jacobian.
For PDE problems, computing the Jacobian can be tricky. Three choices are:

1. Compute F^{\prime} analytically, then discretize
2. Discretize F, then compute F^{\prime} by finite difference approximation
3. Discretize F, then compute F^{\prime} by analytically differentiating the discretization of F
PETSc provides additional support for 2, and by interfacing to ADIFOR and ADIC, support for 3

A Simple Nonlinear PDE

The Bratu problem is defined by

$$
\begin{aligned}
-\nabla^{2} u-\lambda e^{u} & =0 \text { in }[0,1] \times[0,1] \\
u & =0 \text { on the boundary }
\end{aligned}
$$

We will use the same simple discretization for this problem as for the Poisson problem.

Evaluating the Function

- Evaluating the function $F(u)=-\nabla^{2} u-\lambda e^{u}$ is somewhat difficult because it involves a differential operator. This requires information from the neighboring processes. We will use distributed arrays (DAs) to help with this, taking advantage of their support for different stencils.
- An alternate approach for this example is to use a matrix-vector multiply, using

$$
\text { MatMult (A, x, } Y \text {); }
$$

to compute $y=A x$. This routine handles all data motion required. However, it is suitable only for relatively simple $F(u)$. Thus, we will explore more general techniques

Stencils

Star Stencil
(DA_STENCIL_STAR)

Box Stencil
(DA_STENCIL_BOX)

Stencils

Star Stencil
(DA_STENCIL_STAR)

Box Stencil
(DA_STENCIL_BOX)

Global and Local Representations

- A vector associated with a DA has two representations: the global and the local
- The global representation is nothing more than the natural mesh, distributed across all processes
- The local representation is the local part of the global mesh, plus the ghost points

Global: each process stores a unique local set of vertices, and each vertex is owned by exactly one process

Local: each process stores a unique local set of vertices as well as ghost points from neighboring processes

Using Ghost Points with DAs

A ghost region is defined by the coordinates in the global representation:

The routine DAGetGhostCorners returns this information, similar to DAGetCorners

Moving Data Between the Global and Local Representations

DACreateLocalVector Creates a PETSc vector that can hold the local representation of a DA (the local mesh plus ghost points)

DAGlobalToLocalBegin and DAGlobalToLocalEnd Update the ghostpoint values. This involves communication with the neighboring processes. The update may use INSERT_VALUES or ADD_VALUES.
DALocalToGlobal Transfers values in the local representation back to the global representation. The ghost points are discarded.

Parallel Evaluation of the Function

In the Bratu example,

$$
F(u)=-\nabla^{2} u-\lambda e^{u}
$$

SO

$$
F^{\prime}(u) a=-\nabla^{2} a-\lambda a e^{u},
$$

where $a e^{u}$ is just $\left\{a_{i} \times e^{u_{i}}\right\}$. Thus the Jacobian $F^{\prime}(u)$ is almost the same as the matrix for the Poisson problem, with a diagonal element that depends on u. Now that we know what these are, how do we provide them to PETSc?

Providing the Function and Jacobian

We now have functions that evaluate F and F^{\prime}. How can these be used by the SNESSolve routine?

- The algorithm needs to evaluate both, under control of the algorithm
- The solution used in PETSc is to pass the functions themselves to the routine that defines the problem, much as the matrix defining a linear problem to solve is passed to KSPSetOperators.
- This is a "callback" method, because the user provides functions to the solver that are called back by the algorithm when their results are needed
- The calling sequence for the routine is specified by PETSc.

Specifying Callbacks

- User provides the routines to perform actions that the library requires. For example

```
SNESSetFunction(snes, f, userfunc, userctx )
```

snes SNES context
f Vector that will be used to store the function value
userfunc Name of (really, pointer to) the function userctx Pointer to data passed that will be passed to the function

- The library can call this function whenever it needs to evaluate the function
- The userctx pointer allows the user to provide an "application context" object. By using this approach, the library need never know the details of data needed only by the application.

Forming the Function I

```
#include "petscsnes.h"
#include "petscda.h"
#include "bratu.h"
#include <math.h>
/* Evaluate the function for the Bratu nonlinear problem on the local
    mesh points */
int FormBratuFunction( SNES snes, Vec v, Vec f, void *ctx )
{
UserBratuCtx *bratu = (UserBratuCtx *)ctx;
DA da = bratu->da;
double lambda = bratu->lambda;
double h = bratu->h;
Vec lv;
int i, j;
int lli, llj, ni, nj; /* lower left i,j and size for local
part of mesh */
```


Forming the Function II

```
const double **varr;
double **fvarr;
/* Get the coordinates of our part of the global mesh */
DAGetCorners( da, &lli, &llj, 0, &ni, &nj, 0 );
DAGetLocalVector( da, &lv );
/* Scatter the ghost points to the other processes, using
    the values in the input vector v */
DAGlobalToLocalBegin( da, v, INSERT_VALUES, lv );
DAGlobalToLocalEnd( da, v, INSERT_VALUES, lv );
DAVecGetArray( da, lv, (void **) &varr );
DAVecGetArray( da, f, (void **) &fvarr );
for (j=llj ; j<llj+nj ; j++)
    for (i=lli ; i<lli+ni ; i++) {
```


Forming the Function III

```
if (i \(==0 \quad| | j==0| |\)
        \(i==\) bratu->n \(+1| | j==\) bratu->n +1\()\) \{
        fvarr[j][i] = 0.0;
\}
else \{
        fvarr[j][i] \(=-(\operatorname{varr}[j-1][i]+\operatorname{varr}[j][i-1]+\)
                                    varr[j+1][i] + varr[j][i+1] -
                                    4 * varr[j][i] ) / (h*h) -
            lambda * exp(varr[j][i]);
\}
```

\}

DAVecRestoreArray (da, f, (void **) \&fvarr); DAVecRestoreArray (da, lv, (void **) \&varr); DARestoreLocalVector (da, \&lv);
return 0;
\}

Understanding the Code

- One key feature of this routine is the use of the fourth argument, "ctx", to pass additional information to the Function. In this case, we use a user-defined structure define in bratu.h:

```
/* This typedef defines a struct that contains the
    data that we need to have when evaluating the
    function or the Jacobian for the Bratu problem */
typedef struct {
    DA da; /* DA for grid */
    double h; /* Mesh spacing */
    double lambda; /* parameter in problem */
    int n; /* interior grid is n x n */
} UserBratuCtx;
```

- The rest of the code uses the DA to provide ghost values for the the evaluation of the finite difference scheme
- Boundary conditions, as always, add complexity

Forming the Jacobian I

```
#include "petscsnes.h"
#include "petscda.h"
#include "bratu.h"
#include <math.h>
/* Form the matrix for the Jacobian of the Bratu problem, where the
    function uses a 5-point finite difference 2d Laplacian on the
    unit square. n is the number of interior points along a side */
Mat FormBratuJacobian( SNES snes, Vec u, Mat *A, Mat *B,
                                    MatStructure *flag, void *ctx )
Mat jac = *A;
UserBratuCtx *bratu = (UserBratuCtx *)ctx;
DA da = bratu->da;
int r, i, j, n = bratu->n;
double h = bratu->h, lambda = bratu->lambda;
double oneByh2 = 1.0 / (h*h), **uvals, v[5];
```


Forming the Jacobian II

```
int lli, llj, ni, nj; /* lower left i,j and size for local
                                    part of mesh */
MatStencil row, col[5];
DAGetCorners( da, &lli, &llj, 0, &ni, &nj, 0 );
DAVecGetArray( da, u, (void **) &uvals );
/* This is a simple but inefficient way to set the matrix */
for (j=llj; j<llj+nj; j++) {
    for (i=lli; i<lli+ni; i++) {
        row.i = i; row.j = j;
            if (i == 0 || j == 0 ||
            i == n + 1 || j == n + 1) {
            v[0] = 1.0;
            MatSetValuesStencil( jac, 1, &row, 1, &row, v, INSERT_VALT
        }
        else
            col[0].i = i; col[0].j = j - 1; v[0] = - oneByh2;
```


Forming the Jacobian III

$$
\begin{aligned}
& \operatorname{col}[1] . i=i ; \operatorname{col}[1] . j=j+1 ; v[1]=- \text { oneByh2; } \\
& \operatorname{col}[2] . i=i-1 ; \operatorname{col}[2] \cdot j=j ; v[2]=- \text { oneByh2; } \\
& \operatorname{col}[3] . i=i+1 ; \operatorname{col}[3] . j=j ; v[3]=- \text { oneByh2; } \\
& \operatorname{col}[4] . i=i ; \operatorname{col}[4] . j=j ; \\
& v[4]=4.0 \text { * oneByh2 - lambda } * \exp (\text { uvals[j][i]); }
\end{aligned}
$$

MatSetValuesStencil(jac, 1, \&row, 5, col, v, INSERT_VALU \}
\}
\}

MatAssemblyBegin(jac, MAT_FINAL_ASSEMBLY);
DAVecRestoreArray(da, u, (void **) \&uvals);
flag = SAME_NONZERO_PATTERN; / preconditioner has same structure MatAssemblyEnd(jac, MAT_FINAL_ASSEMBLY);
return 0;

Bratu Example I

```
#include "petscsnes.h"
#include "petscda.h"
#include "bratu.h"
extern int FormBratuJacobian( SNES,Vec,Mat *,Mat *,MatStructure *,void
extern int FormBratuFunction( SNES, Vec, Vec, void * );
int main( int argc, char *argv[] )
{
    UserBratuCtx bratu;
    SNES snes;
    Vec x, r;
    Mat J;
    int its;
    PetscInitialize( &argc, &argv, 0, 0 );
```


Bratu Example II

```
/* Get the problem parameters */
bratu.lambda = 6.0;
PetscOptionsGetReal( 0, "-lambda", &bratu.lambda, 0 );
if (bratu.lambda >= 6.81 || bratu.lambda < 0) {
    SETERRQ(1,"Lambda must be between 0 and 6.81");
}
bratu.n = 10; /* Get the mesh size. Use 10 by default */
PetscOptionsGetInt( PETSC_NULL, "-n", &bratu.n, 0 );
bratu.h = 1.0 / (bratu.n + 1);
SNESCreate( PETSC_COMM_WORLD, &snes );
/* Create the mesh and decomposition */
DACreate2d( PETSC_COMM_WORLD, DA_NONPERIODIC, DA_STENCIL_STAR,
    bratu.n + 2, bratu.n + 2, PETSC_DECIDE, PETSC_DECIDE,
    1, 1, 0, 0, &bratu.da );
DACreateGlobalVector( bratu.da, &x );
```


Bratu Example III

VecDuplicate ($\mathrm{x}, ~ \& r$); /* Use this as the vector to give SetFunctic SNESSetFunction(snes, r, FormBratuFunction, \&bratu);

DAGetMatrix(bratu.da, MATMPIAIJ, \&J);
SNESSetJacobian(snes, J, J, FormBratuJacobian, \&bratu);

SNESSetFromOptions(snes);

FormBratuInitialGuess (\&bratu, x) ;
SNESSolve(snes, x, \&its);

PetscPrintf(PETSC_COMM_WORLD,
"Number of Newton iterations $=\%$ (n", its);

VecDestroy(r); DADestroy(bratu.da);
SNESDestroy (snes) ;
PetscFinalize();
return 0;

Understanding the Code

SNESCreate Creates the SNES context
SNESSetFunction Specify the function to be called to evaluate the function $F(u)$

SNESSetJacobian Specify the function to be called to create the Jacobian matrix.

SNESSetFromOptions Set SNES parameters from the commandline
VecSet Set all elements of a vector to the same value
SNESSolve Solve the system of nonlinear equations. Return the number of iterations in its

SNESDestroy Free the SNES context and recover space
SETERRQ The counterpart to CHKERRQ, it sets the error and returns a message

Using the Command Line Interface

- Easy to control Newton features
- -snes_type ls
- -snes_type tr
- -snes_rtol num (relative convergence tolerance)
- Complete control over solution of Jacobian problem-just use the same commandline parmeters
- -ksp_type cgs
- -pc_type asm

Convenience Functions

- PETSc's design makes it relatively easy to layer functionality
- One example is the support for function and Jacobian evaluation on DAs DASetLocalFunction Attach a function to a DA
DASetLocalJacobian Attach a Jacobian to a DA
SNESDAFormFunction Tell SNES that the function evaluation should use the function on a DA. to provide the function values
SNESDAComputeJacobian Tell SNES that the Jacobian evaluation should use the Jacobian function on a DA
- The functions provide just the computation applied to the local vector (from the DA, which includes the ghost points)
- Wrapper functions provided by DASetLocalFunction and Jacobian handle all of the details of setting up the local vectors and arrays.
- The function passed to DASetLocalFunction has the calling sequence:

```
FormFunctionLocal(DALocalInfo *info,PetscScalar **x,
    PetscScalar **f,AppCtx *user)
```


Example Local Function I

```
int FormFunctionLocal(DALocalInfo *info,PetscScalar **x,
    PetscScalar **f,AppCtx *user)
{
    int ierr,i,j;
    PetscReal two = 2.0,lambda,hx,hy,hxdhy,hydhx,sc;
    PetscScalar u,uxx,uyy;
    PetscFunctionBegin;
    lambda = user->param;
    hx = 1.0/(PetscReal)(info->mx-1);
    hy = 1.0/(PetscReal)(info->my-1);
    sc = hx*hy*lambda;
    hxdhy = hx/hy;
    hydhx = hy/hx;
```


Example Local Function II

```
/*
    Compute function over the locally owned part of the grid
*/
for (j=info->ys; j<info->ys+info->ym; j++) {
    for (i=info->xs; i<info->xs+info->xm; i++) {
        if (i == 0 || j == 0 || i == info->mx-1 || j == info->my-1) {
            f[j][i] = x[j][i];
            } else {
                u = x[j][i];
            uxx = (two*u - x[j][i-1] - x[j][i+1])*hydhx;
            uyy = (two*u - x[j-1][i] - x[j+1][i])*hxdhy;
            f[j][i] = uxx + uyy - sc*PetscExpScalar(u);
            }
    }
}
ierr = PetscLogFlops(11*info->ym*info->xm);CHKERRQ(ierr);
PetscFunctionReturn(0);
```

\}

Conclusion

- PETSc provides a powerful framework for
- Developing applications
- Experimenting with different algorithms
- Using abstractions to simplify parallel programming
- PETSc continues to grow and develop
- New routines added as needed and understood
- PETSc 3 will provide a more powerful framework for combining tools written in different programming languages

References

- Documentation www.mcs.anl.gov/petsc/docs
- PETSc Users Manual
- Manual pages (the most up-to-date)
- Many hyperlinked examples
- FAQ, Troubleshooting info, installation info, etc.
- Publications www.mcs.anl.gov/petsc/publications
- Research and publications that make use of PETSc
- MPI information www.mpi-forum.org
- Using MPI (2 ${ }^{\text {nd }}$ Edition), by Gropp, Lusk, and Skjellum
- Domain Decomposition, by Smith, Björstad, and Gropp
- PETSc contains many features, each introduced to provide a necessary feature for an application or researcher
- Unstructured Meshes
- Matrix free methods
- Access to other packages
- Using different preconditioner matrices
- Others

Using PETSc with Other Packages

- Linear solvers
- AMG
www.mgnet.org/mgnet-codes-gmd.html
- BlockSolve95
www.mcs.anl.gov/BlockSolve95
- Hypre
www.llnl.gov/casc/hypre
- ILUTP www.cs.umn.edu/~saad
- LUSOL
www.sbsi-sol-optimize.com
- SPAI
www.sam.math.ethz.ch/~grote/spai • Others
- SuperLU
www.nersc.gov/~xiaoye/SuperLU
- ODE solvers
- PVODE
wWw.llnl.gov/CASC/PVODE
- Mesh and discretization tools
- Overture
www.llnl.gov/CASC/Overture
- SAMRAI
www.llnl.gov/CASC/SAMRAI
- SUMAA3d
www.mcs.anl.gov/sumaa3d
- Optimization software
- TAO www.mcs.anl.gov/tao
- Veltisto
www.cs.nyu.edu/~biros/veltisto
- Matlab www.mathworks.com
- ParMETIS
www.cs.umn.edu/~karypis/metis/par
- SLEPc
www.grycap.upv.es/slepc

