Solving PDEswith PET Sc

William Gropp

University of lllinois at Urbana-Champaign

| | ntroduction

e What and why is PETSc?
— PETSc is a portable library for solving linear and
nonlinear systems of equations in parallel

— PETSc was originally designed to provide a library for
experimentation in domain decomposition algorithms

e What is Domain Decomposition?

— DD is a algorithmic technique for dividing problems into
subproblems and combining the results to solve (or
approximate) the solution

— DD is a natural method for effective parallel algorithms
for distributed memory computers

| Overview

e Introduction to PETSc—Hello World

e Building a Poisson Solver in PETSc
— Using distributed arrays to describe data parallelism
— Using domain decomposition methods in PETSc

e Solving Nonlinear problems
— Algorithms for nonlinear problems
— Bratu example
— More on distributed arrays in PETSc

| A Few Comments Before We Start

e PETSc is a very large library

— This tutorial is designed to introduce PETSc without
overwhelming you with information

— Many features will not be covered. PETSc comes with
extensive examples and documentation
e PETSc is a freely available and supported research code
— Available viahtt p: // ww. nts. anl . gov/ pet sc
— Free for everyone, including industrial users
— Hyperlinked documentation and manual pages for all routines
— Many tutorial-style examples
— Support via email: pet sc- nai nt @rcs. anl . gov
— Usable from Fortran 77/90, C, and C++

http://www.mcs.anl.gov/petsc
petsc-maint@mcs.anl.gov

e Portable to any parallel system supporting MPI, including

— Tightly coupled systems
Cray XTn, IBM BlueGene, SGI Altix, SiCortex, Sun, ...

— Loosely coupled systems, e.g., networks of workstations
HP, IBM, SGI, Sun, and PCs running Linux or Windows, and
Apple Macs

e Whatis notin PETSc
— Discretizations
— Unstructured mesh generation or refinement
— Load balancing tools
— Sophisticated visualization support
— (But PETSc provides ways to interface to other tools)

I A First PET Sc Program

e What do PETSc
e What do PETSc

e How to compile,
programs?

orograms look like?
parallel programs look like?

Ink, and run PETSc

Hello World

#i ncl ude "petsc. h"

int main(int argc, char xargv[])

{
Petsclnitialize(&rgc, &argv, 0, 0);

PetscPrintf(PETSC COM WORLD, "Hello World\n");
Pet scFi nal i ze();
return O;

| Understanding the Code

Petscinitialize Initialize PETSc. The arguments
allow PETSc to initialize MPI if necessary

PetscFinalize Finalize PETSc. Causes PETSc to
call MPl _Fi nal i ze If necessary and also to
generate summary reports.

PetscPrintf Ensures that only one process prints
the data (Try it!)

Hello World 1n Fortran

I nteger ierr, rank
#i ncl ude "incl ude/fincl ude/petsc. h"
call Petsclnitialize(PETSC NULL CHARACTER, ierr)
call MPlI _Comm rank(PETSC COMWM WORLD, rank, ierr)
I f (rank .eq. 0) then
print =, "Hello World’
endi f
call PetscFinalize(ierr)
end

| Understanding the Code

e Like the C code, except

— Petsclnitialize has fewer arguments
because Fortran has no ar gc or ar gv

— Must use MPI _Comm r ank and pri nt
because Fortran I/O uses a interface
unavailable to libraries

e PETSc 2.1.6 adds a routine that can be used
with a single character string (Fortran can’t
Implement its own |I/O operations, so PETSc
can’t provide parallel replacements)

I A Parallel Program

e PETSc uses the distributed memory, shared-nothing model

e Parallel PETSc programs consist of separate communicating
processes
e PETSc uses MPI for parallelism
— You can always access MPI routines
— You will rarely need to use MPI while using PETSc

— Many PETSc routines are collective in the MPI sense (all
processes must call); others are local.

— Common uses of MPI in PETSc are the routines for
communicator size and rank and for processor name.

— This is illustrated in a revised (and obviously parallel) hello
world program.

Hello World Revisited

#i ncl ude "petsc. h"

int main(int argc, char xargv[])
{
I nt rank;
Petsclnitialize(&argc, &argv, 0, 0);

MPI _Comm rank(PETSC COVWM WORLD, &rank);
Pet scSynchroni zedPrintf(PETSC COVM WORLD,
"Hello World fromrank %\ n", rank);
Pet scSynchroni zedFl ush(PETSC _COWM WORLD) ;
Pet scFi nal i ze();
return O;

| Understanding the Program

PetscSynchronizedPrintf Like Pet scPri nt f, except output comes
from all processes in rank order.

PetscSynchronizedFlush Indicates that the calling process is done
printing.
e Allows the use of multiple PetscSynchronizedPrintf calls

PETSC_.COMM_WORLD The PETSc version of
MPI_COMM_WORLD, they are usually the same set of
processes. PetscSetCommWorld, used before
Petsclnitialize, may be used to give PETSc a subset of
processes

| PET Sc.and PDEs

e PETSc Is designed around the mathematics of the
problem

— Specify the data in terms of vectors

— Specify the problem as linear (using matrices) or
nonlinear (using vector-valued functions) equations
to be solved

— Support parallel computing by automatically
distributing these objects across all processes

e We’'ll see a sequence of increasingly sophisticated
PDE examples...

| Poisson. Pr.oblem

Lets solve a simple linear elliptic PDE

Vu = fin]0,1] x [0,1]

v = 0 onthe boundary

using a simple discretization (u; ; = u(z;,y;), z; = ih)

Uit1,j — 2Uij + Ui-1,j
h2

Uij+1 — 2Uj 5 + Ui -1
h2

+

= f(zi,9;).

(We use finite differences for simplicity; finite elements can be used as
well.) For simplicity, consider f = sin(wz)sin(wy).
We will discretize the interior of the mesh only for this example.

| Schematic for Example

In PETSc, your main program remains in control:

main program
Petsclnitialize()
A = create the matrix
b = create a vector
any other application code
Use KSP to solve Ax =D
print solution
PetscFinalize()

KSP is the “scalable linear equation solver’ component of
PETSc (the name is historical and was originally SLES, and the
first “S” was for “simple”)

Creating the M atrix

1 #include "petscksp. h"

2

3 [/ Formthe matrix for the 5-point finite difference 2d Lapl aci an
4 on the unit square. n is the nunber of interior points along a si
5 Mt FornLapl acian2d(int n)

6 {

7 IVat A

8 I nt r, rowsStart, rowend, i, j;

9 doubl e h, oneByh2;

10

11 h =10/ (n + 1); oneByh2 = 1.0/ (h * h);

12 Mat Creat e(PETSC_COWM WORLD, &A);

13 Mat Set Si zes(A, PETSC DECI DE, PETSC DECIDE, n*n, n*n);

14 Mat Set FronOpti ons(A);

15 Mat Get Owmner shi pRange(A, & owsStart, & owend);

Creating the Matrix |1

16 /[This is a sinple but inefficient way to set the matrix =/
17 for (r=rowStart; r<rowknd; r++) {

18 I =1 %n;, j =r [n;

19 if (j - 1>0) {

20 Mat Set Value(A, r, r - n, oneByh2, | NSERT VALUES); }
21 if (i - 1>0) {

22 Mat Set Value(A, r, r - 1, oneByh2, | NSERT VALUES); }
23 MVat Set Val ue(A, r, r, -4*oneByh2, | NSERT_ VALUES);

24 If (i +1<n- 1) {

25 Mat Set Value(A, r, r + 1, oneByh2, | NSERT VALUES); }
26 if (j +1<n-1) {

27 Mat Set Value(A, r, r + n, oneByh2, | NSERT VALUES); }
28 }

29 Mat Assenbl yBegi n(A, MAT_FI NAL_ASSEMBLY) ;

30 Mat Assenbl yEnd(A, MAT_FI NAL_ASSEMBLY) ;

31 return A;

32 }

33

Understanding the Code |

MatCreate Create a matrix object.
MatSetSizes Set the size of the matrix

e n? equations, so matrix is of size n*nxn*n

e PETSC_ DECIDE tells PETSc to choose the distribution of the matrix across
the processes

MatSetFromOptions Set basic matrix properties (such as data structure)
from command line

MatGetOwnershipRange Get the rows of the matrix that PETSc assigned
to this process

e PETSc uses a simple assignment of consecutive rows to a process. This

simplifies much of the internal structure of PETSc, and, as we shall see, does
not reduce the generality

e It is not necessary to set values on the “owning” process

e Returns first row to one + last row on process.
— Matches common Cidiom (for (i=start; i<end; i++))
— Number of rows is end- st art

| Understanding the Code |

MatSetValue Insert (or optionally add with ADD_VALUES) a value to a
matrix (Warning: This is a macro and needs braces)

MatAssemblyBegin and MatAssemblyEnd Complete the creation of matrix.
The matrix may not be used for any operation (other than
MatSetValue) until after MatAssemblyEnd.

The approach of separating setting values from assembly has several
benefits

e Any process may set a value to any element of the matrix, even
ones not “owned” by the calling process.

e PETSc manages all data communication between processes,
automatically moving data if necessary

e PETSc can optimize the insertion of matrix elements

I Data Structure Neutral Design

e PETSc matrices are objects for storing linear operators

e They allow many types of data structures:
— Default sparse format MATMPIAIJ and MATSEQAIJ
— Block sparse MATMPIBAIJ and MATSEQBAIJ
— Symmetric block sparse MATMPISBAIJ and MATSEQSBAIJ
— Block diagonal MATMPIBDIAG and MATSEQBDIAG
— Dense MATMPIDENSE and MATSEQDENSE
— Many others (see $PETSC_DIR/include/petscmat.h)

e Choice of format is made from command line (with
MatSetFromOptions) or program (with MatSetType)

e The same routines are used for all choices of data structure

e User-defined data-structures supported with “Shell” objects

Data Decomposition in PETSc

e How are objects distributed among processes in PETSc?

— Continguous rows of a vector or matrix are assigned to processes, starting
from the process with rank zero

e The matrix and vector for a 3 x 3 mesh, with two processes, has the following

decomposition

0 4 -1 —1
/:m\ (—1 4 -1 —1 \
To —-1 4 —1

PO T3 —1 4 -1 —1
s | = —1 -1 4 -1 —1
x5 —1 —1 4 1
T6 —1 4 -1

Pl \567 —1 -1 4 -1
s

) \ 1 1 4)

Why Are PETSc Matrices The Way They Are?

e NoO one data structure is appropriate for all problems
— Blocked and diagonal formats provide significant performance benefits
— PETSc provides a large selection of formats and makes it (relatively) easy to
extend PETSc by adding new data structures
e Matrix assembly is difficult enough without being forced to worry about data
partitioning
— PETSc provide parallel assembly routines
— Achieving high performance still requires making most operations local to a
process, but this approach allows incremental development of programs
e Matrix decomposition by consecutive rows across processes is simple and makes
it easier to work with other codes

— For applications with other ordering needs, PETSc provides “Application
Orderings” (AO)

| Vectorsln PET Sc

e In order to support the distributed memory “shared nothing”
model, as well as single processors and shared memory systems,
a PETSc vector is a “handle” to the real vector

— Allows the vector to be distributed across many processes
— To access the elements of the vector, we cannot simply do
for (1=0; i<n; i++) Vv[i] =1;
— We do not want to require that the programmer work only with
the “local” part of the vector; we want to permit operations,

such as setting an element of a vector, to be performed by any
process.

e The solution is to make vectors an object, just like a parallel matrix

Creating the Vectorsl|

1 #include "petscvec. h"

2

3 [/* Forma vector based on a function for a 2-d regular nesh on the
4 unit square =/

5 Vec FornmVecFrontunction2d(int n, double (*f)(double, double))
6 {

7 Vec V,

8 | nt r, rowStart, rowend, i, j;

9 doubl e h;

10

11 h =10/ (n + 1);

12 VecCreate(PETSC COWM WORLD, &V);

13 VecSet Si zes(V, PETSC DECIDE, n*n);

14 VecSet FronOpti ons(V);

Creating the Vectors||

15 VecCGet Omner shi pRange(V, &owStart, & owknd);

16 [+ This is a sinple but inefficient way to set the vector =*/
17 for (r=rowStart; r<rowkend; r++) {

18 I = (r %n) + 1;

19 j =(r [/ n) + 1;

20 VecSetValue(V, r, (*f)(i = h, j = h), INSERT_VALUES);
21 }

22 VecAssenbl yBegi n(V);

23 VecAssenbl yEnd(V) ;

24

25 return V,

26 }

27

| Understanding the Code

VecCreate Creates the vector.

VecSetSizes Sets the global and local size of the vector. Use
PETSC_ DECIDE to have PETSc choose the distribution across
processes

VecSetFromOptions Like the matrix counterpart. VecSetType may be
used instead.

VecGetOwnershipRange Like the matrix counterpart

VecSetValue Sets the value for a vector element. Use ADD_VALUES to
add to a vector element. Like the matrix routines, elements can be
inserted or added by any process.

VecAssemblyBegin and VecAssemblyEnd Like the Matrix counterparts

Solving.a Poisson Problem |

1 #include <math. h>

2 #include "petscksp. h"

3 extern Mat Fornliapl aci an2d(int);

4 extern Vec FornWecFronfunction2d(int, double (*)(double, double));
5 [* This function is used to define the right-hand side of the
6 Poi sson equation to be solved =/

7 double func(double x, double y) {

8 return sin(x*MPlI)*sin(y=MPI); }

9

10 int main(int argc, char *argv[])

11 {

12 KSP sl es;

13 IVat A

14 Vec b, X;

15 | nt its, n;

16

17 Petsclnitialize(&rgc, &argv, 0, 0);

Solving.a Poisson Problem ||

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

n = 10; [+ Get the nesh size.
Pet scOptionsGetlnt(PETSC NULL,

A = FornlLapl aci an2d(n);

Use 10 by default =*/

"-n", &, 0);

b = FornVecFronfuncti on2d(n, func);

VecDuplicate(b, &«);

KSPCr eat e(PETSC_COWM WORLD, &sles);
KSPSet Operators(sles, A A, DI FFERENT NONZERO PATTERN);

KSPSet FronOpt i ons(sl es);
KSPSol ve(sles, b, x);

KSPCGet I t erati onNunber(sles, &ts);
PetscPrintf(PETSC COMWM WORLD, "Solution in %l iterations is:\n"
VecVi ewm(x, PETSC VI EWMER STDOUT WORLD);

Vat Destroy(A); VecDestroy(b);
KSPDestroy(sles);

Pet scFinalize();

return O;

VecDestroy(x);

Understanding the Code

KSPCr eat e Create a context used to to solve a linear system. This routine is used for
all solvers, independent of the choice of algorithm or data structure
KSPSet Oper at or s Define the problem.
e The third argument allows the use of a different matrix for preconditioning

e DI FFERENT NONZERO PATTERN indicates whether the preconditioner has
the same nonzero pattern each time a system is solved. This default works
with all preconditioners. Other values (e.g., SAME_NONZERO PATTERN) can
be used for particular preconditioners. Ignored when solving only one system

KSPSet Fr onOpt i ons Set the algorithm, preconditioner, and the associated
parameters, using the command-line

KSPSol ve Actually solve the system of linear equations.

KSPGet | t er at i onNunber The number of iterations is returned If a direct method is
used, oneisreturnedinits

KSPDest r oy Free the KSP context and all storage associated with it

Objectsin PET Sc

e How should a matrix be described in a program?

— Old way:
— Dense matrix
doubl e precision A(10, 10)
— Sparse matrix
i nteger ia(1l1l), ja(max_nz)
doubl e preci sion a(nmax_nz)
— New way:

Vat M

e Hides the choice of data structure
— Of course, the library still needs to represent the matrix with some choice of
data structure, but this is an implementation detail
e Benefit

— Programs become independent of any particular choice of data structure,
making it easier to modify and adapt programs.

Operations in PETSc

e How should operations like “solve linear system” be described in a program?
— Old way

npiaijgnmes(ia, ja, a, comm X, b, nlocal, nglobal,
ndir, orthonethod, convtol, &ts)

— New way

KSPSol ve(ksp, b, x)
KSPCGet | t erati onNunber (ksp, & ts)

e Hides the choice of algorithm
— Algorithms are to operations as data structures are to objects

e Benefit

— Programs become independent of a particular choice of algorithm, making it
easier to explore algorithmic choices and to adapt to new methods

e In PETSc, operations have their own “handle”, called a “context variable”

| Context Variablesin PET Sc

e Context variables are the key to solver
organization

e They contain the complete state of an
algorithm, including
— parameters (e.g., convergence tolerance)

— functions run by the algorithm (e.g.,
convergence monitoring routine)

— Information about the current state (e.g.,
iteration number)

| KSP Structure

e Each KSP object contains two important
objects:

Krylov Space Method
— The iterative method
— The KSP context contains information on
the method parameters, e.g. GMRES
restart and search directions)

PC Preconditioners
— Knows how to apply the preconditioner
— The context contains information on the
preconditioner, such as ILU fill level

| Avallable M ethods

others

others

KSP PC
Name PETSc Name PETSc
option option
Conjugate Gradient cg Block Jacobi bjacobi
GMRES gmres Overlapping asm
Additive
Schwarz
Bi-CG-stab bicg ILU Hu
Transpose-free QMR tfgmr SOR sor
Richardson richardson | LU (direct solve) Iu
CG-Squared cgs Multigrid mg
SYMMLQ symmiq Arbitrary matrix ~ mat

| Using the Command Line Interface

e PETSc makes it each to try different algorithms

npi exec -n 4 poisson -ksp type cg

npi exec -n 4 poisson -ksp type gnres

npi exec -n 4 poisson -pc_type bjacobi -sub pc type ilu \
-ksp_type bcgs

e PETSc make experimentation with different algorithms easy

— Many are already built-in

— You can add new algorithms and data structures to PETSc;
these are then used just like the built-in ones (e.g., a new
preconditioner can be used with an existing source code
without any changes. (However, this is not a one-day project.)

e Many other options available. Use
poi sson -help | nore

to get a list of available options

I M onitoring Convergence

e PETSc provides routines to check for and monitor
convergence

e The choice of monitor and the output from that monitor
can be controlled from the command line
-ksp_monitor Print the preconditioned residual norm
-ksp_monitor_draw Plot the preconditioned residual norm

-ksp_monitor_true_residual_norm Print the true residual
norm ||Ax — b||2

-ksp_monitor_draw_true_residual Plot the true residual
norm

e Custom monitors can be defined by the user

I Accessing the Solution

e Viewers are used in PETSc to access and display the
contents of an object

e A simple viewer prints data out standard output:
VecView(V, PETSC VI EVER STDOUT WORLD);

e PETSc provides a wide range of viewers for all major
objects

— Viewers make it easy to send vectors and matrices
to Matlab

— Graphical viewers make it easy to display data
— Binary viewers make it easy to save and load data

| PET Sc \Viewers

e PETSc has many viewers
PETSC_VIEWER_STDOUT_SELF Sequential, prints to stdout
PETSC_VIEWER_STDOUT_WORLD Parallel, prints to stdout
PETSC_VIEWER_DRAW_WORLD Parallel, draws using
X-Windows
e Viewers exist for matrices, vectors, and other objects

— Matrix viewers provide information and graphical display
of matrix sparsity structure and assembly (try
-mat _view draw,-nat _view I nfo,or-mat_view
— Viewers on other objects can print out information about
the object

I Wor king With Vectors

e |t is sometimes helpful to have direct access to the storage for the
local elements of a vector

e The routines VecGetArray and VecRestoreArray may be used to
get and return the local elements

e The routine VecGetLocalSize returns the number of elements in
the local part of the vector

e VecGetArray returns a pointer to an array that contains the
locally-owned values in the vector. Normally, this is just a pointer
Into the storage that PETSc uses, but for special vector
Implementations, it may be different storage used just for
VecGetArray

e \ecRestoreArray gives the array back to PETSc. Normally, this
has no work to do, but if PETSc had to allocate storage for
VecGetArray, this routine will free that storage

| Example: Computing ||z — y/]

e Often need to compute ||z — y||, for example, for
convergence tests. Also useful in checking a solution

e PETSc does provide routines to compute = + ay and ||z||,
but no single routine to compute the norm of the difference
of two vectors

e As an example of accessing local elements of a vector, we
will implement “mVecNormXPAY” which computes ||z + ay||

— Accepts all PETSc norm types: NORM_1, NORM_2,
and NORM _INFINITY.

e A single routine avoids creating an unneeded temporary
vector and avoids extra memory motion needed when using
multiple routines

Computing ||z — y|| |

1 #include "petscvec. h"

2

3 [+ Comment out this next define if the conpiler is

4 not broken and supports C2000 =*/

5 #define restrict

6 /* This is a new vector routine for PETSc, illustating the use
7 of several PETSc functions for accessing vector elenents =*/
8

9 int nWecNor mXPAY(Vec x, Vec y, const PetscScal ar a, Normlype ntype,
10 Pet scReal *norm)

11 {

12 const double * restrict xvals, * restrict yvals;

13 | nt nlocal, i, ierr = 0;

14 MPI _OQp nor nop;

15 doubl e sum = 0.0, totsum

16

17 [+ Get the local arrays and the size */

18 VecGet Array(x, (PetscScal ar *x)&xvals);

19 VecCGet Array(vy, (PetscScal ar *x)&yvals);

Computing ||z — y|| 11

20 VecCet Local Si ze(x, &nlocal);

21

22 if (a ==-1) {

23 [+ Special case for difference of two vectors =*/
24 swtch (ntype) {

25 case NORM 1:

26 for (i=0; i<nlocal; i++) {

27 sum += fabs(xval s[i] - yvals[i]);
28 }

29 nor mop = MPI _SUM

30 br eak;

31 case NORM 2:

32 for (i=0; i<nlocal; i++) {

33 regi ster PetscScal ar tnp;

34 tnp = xvals[i] - yvals[i];

35 sum += t np*t np;

36 }

37 nor mop = MPI _SUM

Computing ||z — vl 111

38 br eak;

39 case NORM I NFI NI TY:

40 for (i=0; i<nlocal; i++) {

41 regi ster PetscScal ar tnp;
42 tnp = fabs(xvals[i] - yvals[i]);
43 if (tnp > sum sum = tnp;
44 }

45 nor mop = MPI _NAX;

46 br eak;

47 defaul t:

48 lerr = 1;

49 br eak;

50 }

51 }

52 el se {

53 /* Uni npl ement ed =/

54 lerr = 1;

55 }

Computing ||z — y|| 1V

56 1 f (lierr) {

57 MPI _Comm conm

58 Pet scbj ect Get Comn((PetscOnj ect)x, &conm) ;
59 MPI _Allreduce(&um & otsum 1, MPI _DOUBLE, comm nornop);
60 I f (ntype == NORM 2) {

61 totsum = sqgrt(totsum);

62 }

63 *norm = t otsum

64 }

65

66 VecRestoreArray(x, (PetscScalar *=*)&xvals);

67 VecRestoreArray(y, (PetscScalar *=*)&xvals);

68

69 return ierr;

70 }

PetscScalar is just a name for doubl e; using this name allows the
PETSc to be rebuilt for f | oat or Conpl ex scalars.

I Distributed Arraysin PETSc

How should a vector be distributed across processes? PETSc’s
default is a “one-dimensional decomposition”

How can you make use of different data decompositions in
PETSc? PETSc provides “Distributed Arrays” (DAS) for this
purpose.

For example, consider the layout of a mesh onto this processor
mesh:

P2 | P3
PO | P1

I L ayout Of Distributed Arrays

On this 2 x 2 process grid, the vector elements are

numbered like this:

20 21 22 23 24 18 19 20 23 24
15 16 17 18 19 15 16 17 21 22
10 11 12 13 14 N 6 7 8 13 14
5 6 7 8 9 3 4 5 11 12
0O 1 2 3 4 0 1 2 9 10
Natural numbering PETSc’s internal numbering

DAs provide a “logically Cartesian” decomposition. There
are no physical coordinates associated with a DA.

I Distributed Arrays

e PETSCc’s distributed array (DA) provides a way to describe a multidimensional
array, distributed across a parallel computer

e DAs provide a way to use more complex data decompositions

DACr eat e2d(PETSC_COMM WORLD, DA _NONPERI QDI C,
DA STENCI L_STAR,
nx, ny, px, py, 1, 1, 0, 0, &grid);
creates a global nx x ny grid, with a px x py process
decomposition

e The DA _STENCIL_STAR and the arguments after py have to do
with the difference stencil that may be used with this array and will
be discussed later.

e MPI _Dims_create may be used to determine good values for px
and py.

Setting the Vector Values|

1 #include "petsc. h"

2 #include "petscvec. h"

3 #include "petscda. h"

4

5 [+ Forma vector based on a function for a 2-d regular nesh on the
6 unit square */

7 Vec FornmVecFrontuncti onDA2d(DA grid, int n,

8 double (*f)(double, double))
9o |

10 Vec V,

11 | nt s, ie, s, je, in, jn, i, j;

12 doubl e h;

13 doubl e **vval ;

14

15 h =210/ (n + 1);

16 DACr eat e obal Vector(grid, &V);

Setting the Vector Values||

18 DAVecCGet Array(grid, V, (void *x)&val);

19 /* Get gl obal coordinates of this patch in the DA grid */
20 DAGet Corners(grid, & s, &s, 0, &n, &n, 0);

21 ie =is +in - 1;

22 je =js +jn - 1;

23 for (i=is ; i<=ie ; i++) {

24 for (j=js ; j<sje ; j++){

25 vval [JJ[1] = («f)C (i +1) = h (j +1) * h);
26 }

27 }

28 DAVecRestoreArray(grid, V, (void **)&val);

29

30 return V;

31 }

32

| Understanding the Code

DACreateGlobalVector Creates a PETSc vector that may be used with
DAs

DAVecGetArray Get a multidimensional array that gives the illusion of a
global array (PETSc uses tricks with the array indexing to provide
access to the local elements of the vector). Otherwise, like
VecGetArray.

DAVecRestoreArray Like VecRestoreArray, used to allow PETSc to free
any storage allocated by DAVecGetArray

DAGetCorners Returns the indices of the lower-left corner of the local
part of the distributed array relative to the global coordinates,
along with the number of points in each direction.

Setting the M atrix Elements|

© 00 N O O b~ W DN P

#i ncl ude "petscksp. h"
#i ncl ude "petscda. h"

[+ Formthe matrix for the 5-point finite difference 2d Lapl aci an
on the unit square. n is the nunber of interior points along a

side =/
Mat For mLapl aci anDA2d(DA grid, int n)
{
IVat A
| nt r, i, j, is, ie, js, je, in, jn, nelm
Mat St enci | col s[5], row
doubl e h, oneByh2, val s[5];

h=1.0/ (n + 1); oneByh2 = 1.0/ (h*h);

DAGet Matri x(grid, MATMPIAIJ, &A);
[+ Get global coordinates of this patch in the DA grid =/

Setting the Matrix Elements||

18 DAGet Corners(grid, & s, &s, 0, &n, &n, 0);

19 le =is +1n - 1;

20 je =js +jn - 1,

21 [+ This is a sinple but inefficient way to set the matrix */
22 for (i=is; i<=ie; i++) {

23 for (jgjs; j<Tje; j++){

24 row.j =j; row.i =1; nelm= 0;

25 if (j - 1>0) {

26 val s[nel nj = oneByh2;

27 cols[nelm.j =] - 1; cols[nelm+].i =1i;}

28 if (i - 1>0) {

29 val s[nel nj = oneByh2;

30 cols[nelm.j =j; cols[nelm+].i =i - 1;}
31 val s[nel nj = - 4 x oneByh2;

32 cols[nelnm.j =j; col s[nel m+].i =i;

33 if (i +1<n-1){

34 val s[nel nj = oneByh2;

35 cols[nelm.j =j; cols[nelmt+] .1 =1 + 1;}

Setting the Matrix Elements|||

36
37
38
39
40
41
42
43
44
45
46
47
48
49

if (j +1<n-1) {
val s[nel nj = oneByh2;
cols[nelm.] =j + 1, cols[nelm+].i =1;}
Mat Set Val uesStencil (A, 1, & ow, nelm cols, vals,
| NSERT_VALUES) ;

Mat Assenbl yBegi n(A, MAT_FI NAL_ASSENBLY) :
Mat Assenbl yEnd(A, MAT_FI NAL_ASSENMBLY) :

return A

| Understanding the Code

DAGetMatrix Returns a matrix whose elements
can be accessed with the coordinates of the
distributed array. The type of the matrix must
be specified; this choses a parallel matrix
using AlJ format (MATMPIAIJ).

MatSetValuesStencil Sets elements of a matrix
using grid coordinates

MatStencil Data structure that contains the
Indices of a point in the DA, using the i, |, k
members of the structure

Poisson. Solver Revisited

1 #include <math. h>

2 #include "petscksp. h"

3 #include "petscda. h"

4 extern Mat FornlLapl aci anDA2d(DA, int);

5 extern Vec FornWecFronfuncti onDA2d(DA, int, double (=*)(doubl e, doubl
6 [/* This function is used to define the right-hand side of the
7 Poi sson equation to be sol ved */

8 double func(double x, double y) {

9 return sin(x*MPl)xsin(y*MPI); }

10

11 int main(int argc, char *argv[])

12 {

13 KSP ksp;

14 MVat A

15 Vec b, X;

16 DA grid;

17 | nt Its, n, px, py, worldSize;

Poisson. Solver Revisited ||

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Petsclnitialize(&rgc, &argv, 0, 0);

[+ Get the mesh size. Use 10 by default =/

n = 10;

Pet scOptionsCGetInt(PETSC NULL, "-n", &n, 0);

[+ Get the process deconposition. Default it the same as w thou
DAs */

px = 1;

Pet scOptionsGetlnt(PETSC NULL, "-px", &px, 0);

MPI _Comm si ze(PETSC COWM WORLD, &worl dSi ze);

py = worl dSi ze / px;

/| Create a distributed array =/
DACr eat e2d(PETSC COVM WORLD, DA NONPERI ODI C, DA STENCI L_STAR,
n, n, px, py, 1, 1, 0, 0, &grid);

/[Formthe matri x and the vector corresponding to the DA =/

Poisson. Solver Revisited ||

36 A = FornLapl aci anDA2d(grid, n);

37 b = FornmVecFrontuncti onDA2d(grid, n, func);

38 VecDuplicate(b, &);

39 KSPCr eat e(PETSC COW WORLD, &ksp);

40 KSPSet Oper at ors(ksp, A, A, DI FFERENT _NONZERO PATTERN);
41 KSPSet Fr onOpt i ons(ksp);

42 KSPSol ve(ksp, b, x);

43 KSPGet I t erati onNunber (ksp, &ts);

44

45 PetscPrintf(PETSC COM WORLD, "Solution is:\n");

46 VecVi ewm(x, PETSC VI EVER _STDOUT _WORLD);

47 PetscPrintf(PETSC COMWM WORLD, "Required % iterations\n", its)
48

49 Vat Destroy(A); VecDestroy(b); VecDestroy(x);

50 KSPDestroy(ksp); DADestroy(grid);

51 Pet scFi nalize();

52 return O;

M ore Preconditioners

e PETSc provides a large collection of preconditioners, including
domain decomposition preconditioners
— Additive Schwarz
npi exec -n 4 poisson -pc_type asm
— Control the subdomain solver with - sub_pc_t ype:
npi exec -n 4 poisson -pc_type asm-sub_pc type ilu
(In general, - sub_pc_<pcpar mamne> may be used to change the PC
parameter pcpar mane in the subdomain, and - sub_ksp <ksppar mane>
for KSP in the subdomain.)
— Control the subdomain overlap
npi exec -n 4 poisson -pc_type asm-pc_asmoverlap 2

PET Sc's Automatic ASM

e PETSc automatically generates overlap by using the structure of the sparse
matrix. Control with - pc_asm over | ap

e DAs allow you to control the local physical domain
e By using DAs, you can experiment with the effects of different decompositions
npi exec -n 16 poisson -n 64 -pc_type asm
npi exec -n 16 poisson2 -n 64 -pc_type asm-nx 8 -ny 2
npi exec -n 16 poisson2 -n 64 -pc_type asm-nx 4 -ny 4
e Other ASM types are available with - pc_asm t ype
basic full interpolation and restriction
restrict full restriction, local process interpolation
interpolate full interpolation, local process restriction
none local process restriction and interpolation

I Solving Nonlinear Equations

We would like to solve
F(u) =0
for u. A powerful method for this is Newton’s method:
uttt = uf — (F'(W*) TFE W), k=0,1,...

where v is the approximation to u at the kth step. The term
F'(u*) is a matrix, and this algorithm can be rewritten as

F'(uMAu = —F@u")

uFHY = uF - AR

| Newton-based M ethods

In practice, various modifications are made to
Newton’s method. PETSc supports many of the
most common:

e Line search strategies

e Trust region strategies

e Pseudo-transient continuation
o Matrix-free varients

PETSc provides a “Simplified Nonlinear Equation
Solver” (SNES) for nonlinear problems. SNES is
the nonlinear analogue of KSP.

| PDE Jacobian

The matrix F'(u) is called the Jacobian.
For PDE problems, computing the Jacobian can
be tricky. Three choices are:

1. Compute F’ analytically, then discretize

2. Discretize F', then compute F’ by finite
difference approximation

3. Discretize F', then compute F’ by analytically
differentiating the discretization of F

PETSc provides additional support for 2, and by
Interfacing to ADIFOR and ADIC, support for 3

I A Simple Nonlinear PDE

The Bratu problem is defined by

—V?u—Xe¥ = 0in]0,1] x [0, 1]
v = 0 on the boundary

We will use the same simple discretization for
this problem as for the Poisson problem.

I Evaluating the Function

e Evaluating the function F(u) = —V?u — \e* is somewhat
difficult because it involves a differential operator. This
requires information from the neighboring processes. We
will use distributed arrays (DAS) to help with this, taking
advantage of their support for different stencils.

e An alternate approach for this example is to use a
matrix-vector multiply, using

MatMult (A X, Y);

to compute y = Az. This routine handles all data motion
required. However, it is suitable only for relatively simple
F(u). Thus, we will explore more general techniques

| Stencils

ooooooo

oooooooo

ooooooo

ooooooooo

Star Stencil
(DA _STENCIL_STAR)

T

Box Stencill
(DA _STENCIL_BOX)

K

| Stencils

ooooooooooooooo

Star Stencil Box Stencill
(DA_STENCIL STAR) (DA_STENCIL_BOX)

T K

Global and L ocal Representations

A vector associated with a DA has two representations: the global and the local

The global representation is nothing more than the natural mesh, distributed
across all processes

The local representation is the local part of the global mesh, plus the ghost points

Global: each process stores a Local: each process stores a
unique local set of vertices, and unique local set of vertices as well
each vertex is owned by exactly one as ghost points from neighboring
process processes

| Using Ghost Pointswith DAs

A ghost region is defined by the coordinates in the global
representation:

Upper right ghost corner

®--—==—1-1
[l

Lower left ghost corner

The routine DAGetGhostCorners returns this information,
similar to DAGetCorners

I M oving Data Between the Global and L ocal Representations

DACreateLocalVector Creates a PETSc vector that
can hold the local representation of a DA (the
local mesh plus ghost points)

DAGlobalToLocalBegin and DAGlobalToLocalEnd
Update the ghostpoint values. This involves
communication with the neighboring
processes. The update may use
INSERT VALUES or ADD VALUES.

DALocalToGlobal Transfers values in the local
representation back to the global
representation. The ghost points are
discarded.

| Parallel Evaluation of the Function

In the Bratu example,

SO
F'(u)a = —V?a — lae",

where ae" is just {a; x e*}. Thus the Jacobian F'(u) is
almost the same as the matrix for the Poisson problem,
with a diagonal element that depends on ». Now that we
know what these are, how do we provide them to PETSc?

I Providing the Function and Jacobian

We now have functions that evaluate ' and F’. How can these be
used by the SNESSolve routine?

e The algorithm needs to evaluate both, under control of the
algorithm

e The solution used in PETSc is to pass the functions themselves to
the routine that defines the problem, much as the matrix defining
a linear problem to solve is passed to KSPSetOperators.

e This is a “callback” method, because the user provides functions
to the solver that are called back by the algorithm when their
results are needed

e The calling sequence for the routine is specified by PETSc.

| Specifying Callbacks

e User provides the routines to perform actions that the library
requires. For example

SNESSet Function(snes, f, userfunc, userctx)

snes SNES context

f Vector that will be used to store the function value

userfunc Name of (really, pointer to) the function

userctx Pointer to data passed that will be passed to the function

e The library can call this function whenever it needs to evaluate the
function

e The userctx pointer allows the user to provide an “application
context” object. By using this approach, the library need never
know the detalils of data needed only by the application.

Formingthe Function |

#i ncl ude "petscsnes. h"
#i ncl ude "petscda. h"
#i ncl ude "bratu. h"

#i ncl ude <mat h. h>

/= Evaluate the function for the Bratu nonlinear problemon the | ocal
mesh points */
i nt FornBratuFuncti on(SNES snes, Vec v, Vec f, void *ctx)

{
UserBratuCitx *bratu = (UserBratuCtx x)ctX;
DA da = brat u- >da;
doubl e | anbda = brat u- >l anbda;
doubl e h = brat u- >h;
Vec | v;
i nt A I
I nt I1i, Ilj, ni, nj; /~ lower left i,j and size for |ocal

part of nmesh =*/

Formingthe Function ||

const doubl e **xvarr;
doubl e *xfvarr:

/= Get the coordinates of our part of the global nmesh x/
DACet Corners(da, &li, &lj, O, &ni, &nj, 0);

DAGet Local Vector(da, &v);

[+ Scatter the ghost points to the other processes, using
the values in the input vector v =/

DAA obal ToLocal Begi n(da, v, | NSERT_VALUES, Iv);

DAd obal ToLocal End(da, v, |INSERT VALUES, |v);

DAVecGet Array(da, lv, (void *=*)&varr);
DAVecGet Array(da, f, (void **)& varr);

for (j=I1j ; j<llj+nj ; j++)
for (i=lli ; i<lli+ni ; i++) {

I Formingthe Function |11

it (i =01][]] =0]]|
| == bratu->n + 1 || j == bratu->n + 1) {
fvarr[j][i] = 0.0;
}
el se {
fvarr[j][i] = -(varr[j-1][i] + varr[j][i-1] +
varr[j+1][i] + varr[j][1+1] -
4 = varr[j][i]) / (hxh) -
| anbda * exp(varr[j][i]);
}

}
DAVecRest oreArray(da, f, (void x*)& varr);

DAVecRest oreArray(da, lv, (void **)&arr);
DARest or eLocal Vector(da, &v);

return O;

Understanding the Code

e One key feature of this routine is the use of the fourth argument,
“ct x”, to pass additional information to the Function. In this case,

we use a user-defined structure define in bratu.h:
[+ This typedef defines a struct that contains the
data that we need to have when eval uating the
function or the Jacobian for the Bratu problem =/
t ypedef struct {

DA da; [+ DA for grid */

doubl e h; [/ Mesh spacing */

doubl e | anbda; [+ paraneter in problem =/

| nt n; /[* interior gridis n x n */

} UserBratuCx;

e The rest of the code uses the DA to provide ghost values for the
the evaluation of the finite difference scheme

— Boundary conditions, as always, add complexity

Forming the Jacobian |

#i ncl ude "petscsnes. h"
#i ncl ude "petscda. h"
#i ncl ude "bratu. h"

#i ncl ude <mat h. h>

[+ Formthe matrix for the Jacobian of the Bratu problem where the
function uses a 5-point finite difference 2d Lapl acian on the
unit square. n is the nunber of interior points along a side */

Mat For nBr at uJacobi an(SNES snes, Vec u, Mat *A, Mat =*B,

Mat Structure *xflag, void *ctx)

{
Vat jac = *A;
UserBratuCtx *bratu = (UserBratuCtx x)ctX;
DA da = bratu->da;
I nt r, i, j, n = bratu->n;

doubl e h = bratu->h, | anbda = brat u->l anbda;
doubl e oneByh2 = 1.0 / (h*h), =**uvals, v[5];

Forming the Jacobian ||

I nt [1i, Ilj, ni, nj; [/~ lower left i,j and size for |ocal
part of nmesh =/
Mat Stencil row, col[5];

DAGet Corners(da, &li, &1lj, 0, &i, &nj, 0);
DAVecGet Array(da, u, (void **)&uvals);

[+ This is a sinple but inefficient way to set the matrix =/
for (j=I1j; j<tlj+nj; j++) {

for (i=lli; i<lli+ni; 1++) {
row.i =1i; rowj =j;

if (i =01[]) =0][|
I ==n+1]]] =n+1){
v[0] = 1.0;
Mat Set Val uesStencil (jac, 1, &ow, 1, & ow, v, |NSERT VALI

}

el se {

col[O].1 =1i; col[O].] =] - 1; v[O] = - oneByh2;

Forming the Jacobian |11

col[1].1 =1i; col[1].] =] + 1; v[1l]] = - oneByh2;
col[2].1 =1 - 1; col[2].) =7]; Vv[2] = - oneByh2;
col[3].1 =i + 1; col[3].] =]; Vv[3] = - oneByh2;
col[4].1 =1i; col[4].] =]j;

vi4] = 4.0 = oneByh2 - lanbda * exp(uvals[j][i]);

Mat Set Val uesStencil (jac, 1, & ow, 5, col, v, I NSERT VALU

Mat Assenbl yBegi n(j ac, MAT_FI NAL_ASSEMBLY) ;
DAVecRest oreArray(da, u, (void x*)&uvals);

flag = SAME_NONZERO PATTERN, /= preconditioner has sanme structure
Mat Assenbl yEnd(j ac, MAT_FI NAL_ASSEMBLY) ;

return O;

Bratu Examplel

#i ncl ude "petscsnes. h"
#i ncl ude "petscda. h"
#i ncl ude "bratu. h"

extern int FornBratuJdacobi an(SNES, Vec, Mat *, Mat *, Mat Structure *,void -
extern int FornBratuFunction(SNES, Vec, Vec, void *);

int main(int argc, char xargv[])

{
User Brat uCt x brat u;
SNES snes;
Vec X, I,
Mat J;
I nt I ts;

Petsclnitialize(&rgc, &argv, 0, 0);

Bratu Examplell

[+ Get the problem paraneters x/
brat u. | anbda = 6. 0;
Pet scOptionsCGet Real (0, "-lanbda", &bratu.lanbda, 0);
i f (bratu.lanbda >= 6.81 || bratu.lanbda < 0) {
SETERRQ(1, "Lanbda nust be between 0 and 6.81");
}
bratu.n = 10; /* Get the nmesh size. Use 10 by default =/
Pet scOptionsGetInt(PETSC NULL, "-n", &bratu.n, 0);
bratu.h = 1.0/ (bratu.n + 1);

SNESCr eat e(PETSC_COWM WORLD, &snes);

[+ Create the nesh and deconposition */

DACr eat e2d(PETSC COVWM WORLD, DA NONPERI CDI C, DA STENCI L_STAR,
bratu.n + 2, bratu.n + 2, PETSC DECI DE, PETSC DECI DE,
1, 1, 0, 0, &bratu.da);

DACr eat ed obal Vector (bratu.da, &x);

Bratu Examplelll

VecDuplicate(x, &); [* Use this as the vector to give SetFuncti
SNESSet Functi on(snes, r, FornBratuFunction, &bratu);

DAGet Matri x(bratu.da, MATMPI Al J, &J);
SNESSet Jacobi an(snes, J, J, FornBratuJdacobian, &bratu);

SNESSet FronOpt i ons(snes);

FormBratul niti al Guess(&bratu, x);
SNESSol ve(snes, X, &ts);

Pet scPrintf(PETSC_COVM WORLD,
"Nunber of Newton iterations = %\n", its);

VecDestroy(r); DADestroy(bratu.da);
SNESDest r oy(snes) ;

Pet scFi nalize();

return O;

| Understanding the Code

SNESCreate Creates the SNES context

SNESSetFunction Specify the function to be called to evaluate the
function F'(u)

SNESSetJacobian Specify the function to be called to create the
Jacobian matrix.

SNESSetFromOptions Set SNES parameters from the commandline
VecSet Set all elements of a vector to the same value

SNESSolve Solve the system of nonlinear equations. Return the
number of iterationsinits

SNESDestroy Free the SNES context and recover space

SETERRQ The counterpart to CHKERRQ), it sets the error and returns
a message

| Using the Command Line Interface

e Easy to control Newton features
— -snes_type Is

— -snes_type tr
— -snes_rtol num (relative convergence
tolerance)

e Complete control over solution of Jacobian
problem—just use the same commandline
parmeters

— -ksp_type cgs
— -pC_type asm

Convenience Functions

e PETSCc’s design makes it relatively easy to layer functionality

e One example is the support for function and Jacobian evaluation on DAs
DASetLocalFunction Attach a function to a DA
DASetLocalJacobian Attach a Jacobian to a DA

SNESDAFormFunction Tell SNES that the function evaluation should use the
function on a DA. to provide the function values

SNESDAComputeJacobian Tell SNES that the Jacobian evaluation should use the
Jacobian function on a DA

e The functions provide just the computation applied to the local vector (from the DA,
which includes the ghost points)

e Wrapper functions provided by DASetLocalFunction and Jacobian handle all of the
details of setting up the local vectors and arrays.

e The function passed to DASetLocalFunction has the calling sequence:

For mFuncti onLocal (DALocal | nfo =i nfo, PetscScal ar *=xXx,
Pet scScal ar *=xf, AppCt x *user)

Example L ocal Function |

I nt For nFuncti onLocal (DALocal I nfo i nfo, PetscScal ar *=*x,
Pet scScal ar *+f, AppCt x *user)

| nt lerr,i,j;
Pet scReal two = 2.0, Il anbda, hx, hy, hxdhy, hydhx, sc;
Pet scScal ar u, uxx, uyy;

Pet scFuncti onBegi n;

| anbda = user->par am

hx = 1.0/ (PetscReal) (i nfo->nx-1);
hy = 1.0/ (PetscReal) (i nfo->ny-1);
sc = hx*hy*| anbda,;

hxdhy = hx/ hy;
hydhx = hy/ hx;

Example L ocal Function ||

| *
Conmpute function over the locally owed part of the grid
* |
for (j=info->ys; j<info->ys+info->ym j++) {
for (i=info->xs; i<info->xs+info->xm i++) {

if (1 ==0]] jJ =0]] i =1info->x-1]| j == info->ny-1) {
PRIl = x[p1i]s

} else {
u = x[110r];
UX X = (two*xu - x[j][i-1] - x[j][i+1]) *hydhx;

uyy (twoxu - x[j-1][1] - x[J+1][i])~hxdhy;
f[jJ][1] = uxx + uyy - sc*PetscExpScal ar(u);

i err = PetscLogFl ops(11*i nfo->yminfo->xm ; CHKERRQ(i err);
Pet scFuncti onRet ur n(0);

| Conclusion

e PETSc provides a powerful framework for
— Developing applications
— Experimenting with different algorithms
— Using abstractions to simplify parallel programming

e PETSc continues to grow and develop
— New routines added as needed and understood

— PETSc 3 will provide a more powerful framework for
combining tools written in different programming
languages

| References

e Documentation ww. nts. anl . gov/ pet sc/ docs
— PETSc Users Manual
— Manual pages (the most up-to-date)
— Many hyperlinked examples
— FAQ, Troubleshooting info, installation info, etc.

e Publications ww. nts. anl . gov/ pet sc/ publ i cati ons
— Research and publications that make use of PETSc

e MPI information www. npi - f orum or g
e Using MPI (2"d Edition), by Gropp, Lusk, and Skjellum

e Domain Decomposition, by Smith, Bjorstad, and Gropp

www.mcs.anl.gov/petsc/docs
www.mcs.anl.gov/petsc/publications
www.mpi-forum.org

I Topics Not Covered

e PETSc contains many features, each
iIntroduced to provide a necessary feature for
an application or researcher

— Unstructured Meshes

— Matrix free methods

— Access to other packages

— Using different preconditioner matrices
— Others

Using PET Sc with Other Packages

e Linear solvers e Mesh and discretization tools

— AMG — Overture
www. ngnet . or g/ ngnet - codes- gnd. ht m www. | I nl . gov/ CASC/ Overture

— BlockSolve95 — SAMRAI
www. nts. anl . gov/ Bl ockSol ve95 www. | | nl . gov/ CASC/ SAMRAI

—_ Hypre — SUMAA3d
www. | | nl . gov/ casc/ hypre www. nts. anl . gov/ sunmaa3d

— ILUTP ww. cs. umm. edu/ ~saad e Optimization software

— LUSOL — TAO ww. nts. anl . gov/t ao
www. sbsi - sol - optim ze. com _ Veltisto

— SPAI | | B | 7 WWW. CS. nyu. edu/ ~biros/veltisto
www. sam mat h. et hz. ch/ ~gr ot e/ spai o Others

— SuperLU — Matlab www. nat hwor ks. com

WWW. ner sc. gov/ ~xi aoye/ Super LU
— ParMETIS

e ODE solvers WWw. cs. urm. edu/ ~kar ypi s/ meti s/ par
— PVODE _ SLEPC

ww. | | nl. gOV/ CASC/ PVODE WWW. gr ycap. upv. es/ sl epc

www.mgnet.org/mgnet-codes-gmd.html
www.mcs.anl.gov/BlockSolve95
www.llnl.gov/casc/hypre
www.cs.umn.edu/~saad
www.sbsi-sol-optimize.com
www.sam.math.ethz.ch/~grote/spai
www.nersc.gov/~xiaoye/SuperLU
www.llnl.gov/CASC/PVODE
www.llnl.gov/CASC/Overture
www.llnl.gov/CASC/SAMRAI
www.mcs.anl.gov/sumaa3d
www.mcs.anl.gov/tao
www.cs.nyu.edu/~biros/veltisto
www.mathworks.com
www.cs.umn.edu/~karypis/metis/parmetis
www.grycap.upv.es/slepc

	Introduction
	Overview
	A Few Comments Before We Start
	A First PETSc Program
	Hello World
	Understanding the Code
	Hello World in Fortran
	Understanding the Code
	A Parallel Program
	Hello World Revisited
	Understanding the Program
	PETSc and PDEs
	Poisson Problem
	Schematic for Example
	Creating the Matrix
	Creating the Matrix II
	Understanding the Code I
	Understanding the Code II
	Data Structure Neutral Design
	Data Decomposition in PETSc
	small Why Are PETSc Matrices The Way They Are?
	Vectors In PETSc
	Creating the Vectors I
	Creating the Vectors II
	Understanding the Code
	Solving a Poisson Problem I
	Solving a Poisson Problem II
	Understanding the Code
	Objects in PETSc
	Operations in PETSc
	Context Variables in PETSc
	KSP Structure
	Available Methods
	Using the Command Line Interface
	Monitoring Convergence
	Accessing the Solution
	PETSc Viewers
	Working With Vectors
	Example: Computing $|x-y|$
	Computing $|x-y|$ I
	Computing $|x-y|$ II
	Computing $|x-y|$ III
	Computing $|x-y|$ IV
	Distributed Arrays in PETSc
	Layout Of Distributed Arrays
	Distributed Arrays
	Setting the Vector Values I
	Setting the Vector Values II
	Understanding the Code
	Setting the Matrix Elements I
	Setting the Matrix Elements II
	Setting the Matrix Elements III
	Understanding the Code
	Poisson Solver Revisited
	Poisson Solver Revisited II
	Poisson Solver Revisited III
	More Preconditioners
	PETSc's Automatic ASM
	Solving Nonlinear Equations
	Newton-based Methods
	PDE Jacobian
	A Simple Nonlinear PDE
	Evaluating the Function
	Stencils
	Stencils

	Global and Local Representations
	Using Ghost Points with DAs
	small Moving Data Between the Global and Local Representations
	Parallel Evaluation of the Function
	small Providing the Function and Jacobian
	Specifying Callbacks
	Forming the Function I
	Forming the Function II
	Forming the Function III
	Understanding the Code
	Forming the Jacobian I
	Forming the Jacobian II
	Forming the Jacobian III
	Bratu Example I
	Bratu Example II
	Bratu Example III
	Understanding the Code
	Using the Command Line Interface
	Convenience Functions
	Example Local Function I
	Example Local Function II
	Conclusion
	References
	Topics Not Covered
	Using PETSc with Other Packages

