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Abstract. We describe how 3D affine measurements may be computed from a single perspective view of a scene
given only minimal geometric information determined from the image. This minimal information is typically the
vanishing line of a reference plane, and a vanishing point for a direction not parallel to the plane. It is shown
that affine scene structure may then be determined from the image, without knowledge of the camera’s internal
calibration (e.g. focal length), nor of the explicit relation between camera and world (pose).

In particular, we show how to (i) compute the distance between planes parallel to the reference plane (up to
a common scale factor); (ii) compute area and length ratios on any plane parallel to the reference plane; (iii)
determine the camera’s location. Simple geometric derivations are given for these results. We also develop an
algebraic representation which unifies the three types of measurement and, amongst other advantages, permits a
first order error propagation analysis to be performed, associating an uncertainty with each measurement.

We demonstrate the technique for a variety of applications, including height measurements in forensic images
and 3D graphical modelling from single images.
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1. Introduction

In this paper we describe how aspects of the affine 3D
geometry of a scene may be measured from a single
perspective image. We will concentrate on scenes con-
taining planes and parallel lines, although the methods
are not so restricted. The methods we develop extend
and generalize previous results on single view metro-
logy (Reid and Zisserman, 1996; Horry et al., 1997;
Kim et al., 1998; Proesmans et al., 1998).

It is assumed that images are obtained by perspective
projection. In addition, we assume that the vanishing
line of areference planein the scene may be determined
from the image, together with a vanishing point for an-
otherreference direction(not parallel to the plane). We
are then concerned with three canonical types of mea-
surement: (i) measurements of the distancebetween

any of the planes which are parallel to the reference
plane; (ii) measurementson these planes (and compa-
rison of these measurements to those obtained on any
parallel plane); and (iii) determining the camera’s po-
sition in terms of the reference plane and direction. The
measurement methods developed here are independent
of the camera’s internal parameters: focal length, aspect
ratio, principal point, skew.

The camera is always assumed to be uncalibrated,
its internal parameters unknown. We analyse situations
where the camera (the projection matrix) can only be
partially determined from scene landmarks. This is an
intermediate situation between calibrated reconstruc-
tion (where metric entities like angles between rays
can be computed) and completely uncalibrated cam-
eras (where a reconstruction can be obtained only up
to a projective transformation).
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The ideas in this paper can be seen as reversing the
rules for drawing perspective images given by Alberti
(1980) in his treatise on perspective (1435). These are
the rules followed by the Italian Renaissance painters
of the 15th century, and indeed we demonstrate the
correctness of their mastery of perspective by analysing
a painting by Piero della Francesca.

This paper extends the work in Criminisi et al.
(1999b). Here particular attention is paid to: comput-
ing Maximum Likelihood estimates of measurements
when more than the minimum number of references are
available; transferring measurements from one refer-
ence plane to another by making use of planar homolo-
gies; analysing in detail the uncertainty of the computed
distances; validating the analytical uncertainty predic-
tions by using statistical tests. A number of worked
examples are presented to explain the algorithms step
by step and demonstrate their validity.

We begin in Section 2 by giving simple geomet-
ric derivations of how, in principle, three dimensional
affine information may be extracted from the image
(Fig. 1). In Section 3 we introduce an algebraic repre-
sentation of the problem and show that this represen-
tation unifies the three canonical measurement types,
leading to simple formulae in each case. In Section 4
we describe how errors in image measurements prop-
agate to errors in the 3D measurements, and hence we
are able to compute confidence intervals on the 3D
measurements, i.e. a quantitative assessment of accu-
racy. The work has a variety of applications, and we
demonstrate three important ones: forensic measure-
ment, virtual modelling and furniture measurements in
Section 5.

Figure 1. Measuring distances of points from a reference plane
(the ground) in a single image: (a) The four pillars have the same
height in the world, although their images clearly are not of the same
length due to perspective effects. (b) As shown, however, all pillars
are correctly measured to have the same height.

2. Geometry

The camera model employed here is central projec-
tion. We assume that the vanishing line of a reference
plane in the scene may be computed from image mea-
surements, together with a vanishing point for another
direction (not parallel to the plane). This information is
generally easily obtainable from images of structured
scenes (Collins and Weiss, 1990; McLean and Kotturi,
1995; Liebowitz and Zisserman, 1998; Shufelt, 1999).
Effects such as radial distortion (often arising in slightly
wide-angle lenses typically used in security cameras)
which corrupt the central projection model can gener-
ally be removed (Devernay and Faugeras, 1995), and
are therefore not detrimental to our methods. Imple-
mentation details for: computation of vanishing points
and lines, and line detection are given in Appendix A.

Although the schematic figures show the camera
centre at a finite location, the results we derive apply
also to the case of a camera centre at infinity, i.e. where
the images are obtained by parallel projection.

The basic geometry of the plane’s vanishing line and
the vanishing point are illustrated in Fig. 2. The van-
ishing linel of the reference plane is the projection of
the line at infinity of the reference plane into the image.
The vanishing pointv is the image of the point at in-
finity in the reference direction. Note that the reference
direction need not be vertical, although for clarity we
will often refer to the vanishing point as the “vertical”
vanishing point. The vanishing point is then the image
of the vertical “footprint” of the camera centre on the
reference plane. Likewise, the reference plane will of-
ten, but not necessarily, be the ground plane, in which
case the vanishing line is more commonly known as
the “horizon”.

It can be seen (for example, by inspection of Fig. 2)
that the vanishing line partitions all points in scene
space. Any scene point which projects onto the vanish-
ing line is at the same distance from the plane as the
camera centre; if it lies “above” the line it is farther
from the plane, and if “below” the vanishing line, then
it is closer to the plane than the camera centre.

2.1. Measurements Between Parallel Planes

We wish to measure the distance (in the reference di-
rection) between two parallel planes, specified by the
image pointsx andx′. Figure 3 shows the geometry,
with pointsx andx′ in correspondence. We use upper
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Figure 2. Basic geometry: The plane’s vanishing linel is the in-
tersection of the image plane with a plane parallel to the reference
plane and passing through the camera centreC. The vanishing point
v is the intersection of the image plane with a line parallel to the
reference direction through the camera centre.

case letters (X) to indicate quantities in space and lower
case letters (x) to indicate image quantities.

Definition 1. Two pointsX, X′ on separate planes
(parallel to the reference plane)correspondif the line
joining them is parallel to the reference direction.

Hence the images of corresponding points and the
vanishing point are collinear. For example, if the direc-
tion is vertical, then the top of an upright person’s head
and the sole of his/her foot correspond. If the world
distance between the two points is known, we term this
a reference distance.

We show that:

Theorem 1. Given the vanishing line of a reference
plane and the vanishing point for a reference direction,

then distances from the reference plane parallel to the
reference direction can be computed from their imaged
end points up to a common scale factor. The scale factor
can be determined from one known reference length.

Proof: The four pointsx, x′, c, v marked on Fig. 3(b)
define a cross-ratio (Springer, 1964). The vanishing
point is the image of a point at infinity in the scene
and the pointc, since it lies on the vanishing line, is
the image of a point at distanceZc from the planeπ,
where Zc is the distance of the camera centre from
π. In the world the value of the cross-ratio provides
an affine length ratio which determines the distanceZ
between the planes containingX′ andX (in Fig. 3(a))
relative to the camera’s distanceZc from the planeπ
(or π′ depending on the ordering of the cross-ratio).
Note that the distanceZ can alternatively be computed

Figure 3. Distance between two planes relative to the distance of
the camera centre from one of the two planes: (a) in the world; (b) in
the image. The pointx on the planeπ corresponds to the pointx′ on
the planeπ′. The four aligned pointsv, x, x′ and the intersectionc
of the line joining them with the vanishing line define a cross-ratio.
The value of the cross-ratio determines a ratio of distances between
planes in the world, see text.

using a line-to-line homography avoiding the ordering
ambiguity of the cross-ratio.

For the case in Fig. 3(b) we can write

d(x, c) d(x′, v)
d(x′, c) d(x, v)

= d(X,C) d(X′,V)
d(X′,C) d(X,V)

(1)

whered(x1, x2) is distance between two generic points
x1 andx2. Since the back projection of the pointv is a
point at infinity d(X′,V)

d(X,V) = 1 and therefore the right
hand side of (1) reduces toZc

Zc−Z . Simple algebraic
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manipulation on (1) yields

Z

Zc
= 1− d(x′, c) d(x, v)

d(x, c) d(x′, v)
(2)

The absolute distanceZ can be obtained from this dis-
tance ratio once the camera’s distanceZc is specified.

However it is usually more practical to determine
the distanceZ via a second measurement in the image,
that of a known reference length. In fact, given a known
reference distanceZr , from (2) we can compute the
distance of the cameraZc and then apply (2) to a new
pair of end points and compute the distanceZ. 2

.
We now generalize Theorem 1 to the following.

Definition 2. A set of parallel planes arelinked if it
is possible to go from one plane to any other plane in
the set through a chain of pairs ofcorrespondingpoints
(see also Definition 1).

For example in Fig. 4(a) the planesπ′,π,πr andπ′r
are linked by the chain of correspondencesX′ ↔ X,
S1↔ S2, R1↔ R2.

Theorem 2. Given a set of linked parallel planes, the
distance betweenanypair of planes is sufficient to de-
termine the absolute distance between any other pair,

the link being provided by a chain of point correspon-
dences between the set of planes.

Proof: Figure 4 shows a diagram where four parallel
planes are imaged. Note that they all share the same
vanishing line which is the image of the axis of the
pencil. The distanceZr between two of them can be
used as reference to compute the distanceZ between
the other two as follows:

• From the cross-ratio defined by the four aligned
pointsv, cr , r2, r1 and the known distanceZr be-
tween the pointsR1 and R2 we can compute the
distance of the camera from the planeπr .
• That camera distance and the cross-ratio defined by

the four aligned pointsv, cs, s2, s1, determine the
distance between the planesπr andπ. The distance
Zc of the camera from the planeπ is, therefore,
determined too.
• The distanceZc can now be used in (2) to compute

the distanceZ between the two planesπ andπ′.
2

Figure 4. Distance between two planes relative to the distance be-
tween two other planes: (a) in the world; (b) in the image. The point
x on the planeπ corresponds to the pointx′ on the planeπ′. The
points1 corresponds to the points2. The pointr1 corresponds to the
point r2. The distanceZr in the world betweenR1 andR2 is known
and used as reference to compute the distanceZ, see text.

In Section 3.1 we give an algebraic derivation of
these results which avoids the need to compute the dis-
tance of the camera explicitly and simplifies the mea-
surement procedure.

Example. Figure 5 shows that a person’s height may
be computed from an image given a vertical reference
distance elsewhere in the scene. The ground plane is
reference. The height of the frame of the window has
been measured on site and used as the reference dis-
tance (it corresponds to the distance betweenR1 andR2

in the world in Fig. 4(a)). This situation corresponds
to the one in Fig. 4 where the two pointsS2 andR1

(and therefores2 and r1) coincide. The height of the
person is computed from the cross ratio defined by the
pointsx′, c, x and the vanishing point (c.f. Fig. 4(b)) as
described in the proof above. Since the pointsS2 and
R1 coincide the derivation is simpler.
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Figure 5. Measuring the height of a person from single view: (a)
original image; (b) the height of the person is computed from the
image as 178.8 cm; the true height is 180 cm, but note that the
person is leaning down a bit on his right foot. The vanishing line is
shown in white; the vertical vanishing point is not shown since it lies
well below the image. The reference distance is in white (the height
of the window frame on the right). Compare the marked points with
the ones in Fig. 4.

2.2. Measurements on Parallel Planes

If the reference planeπ is affine calibrated (we know
its vanishing line) then from image measurements we
can compute:

1. ratios of lengths of parallel line segments on the
plane;

2. ratios of areas on the plane.

Moreover the vanishing line is shared by the pencil of
planes parallel to the reference plane, hence affine mea-
surements may be obtained for any other plane in the
pencil. However, although affine measurements, such
as an area ratio, may be madeona particular plane, the
areas of regions lying on two parallel planes cannot be

compared directly. If the region is parallel projected in
the scene from one plane onto the other, affine mea-
surements can then be made from the image since both
regions are now on the same plane, and parallel pro-
jection between parallel planes does not alter affine
properties.

A map in the world between parallel planes induces
a projective map in the image between images of points
on the two planes. This image map is aplanar homology
(Springer, 1964), which is a plane projective transfor-
mation with five degrees of freedom, having a line of
fixed points called theaxis, and a distinct fixed point
not on the axis known as thevertex. Planar homologies
arise naturally in an image when two planes related by
a perspectivity in three-dimensional space are imaged
(Van Gool et al., 1998). The geometry is illustrated in
Fig. 6.

In our case the vanishing line of the plane, and the
vertical vanishing point, are, respectively, the axis and
vertex of the homology which relates a pair of planes
in the pencil.

The homology can then be parametrized as (Vi´eville
and Lingrand, 1999)

H̃ = I+ µv l>

v · l (3)

wherev is the vanishing point,l is the plane vanish-
ing line andµ is a scale factor. Thusv and l specify
four of the five degrees of freedom of the homology.
The remaining degree of freedom of the homology,µ,
is uniquely determined from any pair of image points
which correspond between the planes (pointsr andr ′

in Fig. 6).
Once the matrix̃H is computed each point on a plane

can be transferred into the corresponding point on a
parallel plane asx′ = H̃x. An example of thishomology
mappingis shown in Fig. 7.

Consequently we can compare measurements made
on two separate planes. In particular we may compute:

1. the ratio between two lengths measured along par-
allel lines, one length on each plane;

2. the ratio between two areas, one area on each
plane.

In fact we can simply transfer all points from one plane
to the reference plane using the homology and then,
since the reference plane’s vanishing line is known we
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Figure 6. Homology mapping between imaged parallel planes: (a)
A point X on planeπ is mapped into the pointX′ onπ′ by a parallel
projection. (b) In the image the mapping between the images of the
two planes is a homology, wherev is thevertexandl theaxis. The
correspondencer → r ′ fixes the remaining degree of freedom of the
homology from the cross-ratio of the four points:v, i, r ′ andr .

may make affine measurements in the plane, e.g. ratios
of lengths on parallel lines or ratios of areas.

Example. Figure 8 shows an example. The vanishing
line of the two front facing walls and the vanishing
point are known as is the point correspondencer , r ′ in
the reference direction. The ratio of lengths of parallel
line segments is computed by using formulae given in
Section 3.2.

Notice that errors in the selection of point positions
affect the computations; the veridical values of the ra-
tios in Fig. 8 are exact integers. A proper error analysis
is necessary to estimate the uncertainty of these affine
measurements.

2.3. Determining the Camera Position

In Section 2.1, we computed distances between planes
as a ratio relative to the camera’s distance from the ref-
erence plane. Conversely, we may compute the cam-
era’s distanceZc from a particular plane knowing a
single reference distanceZr .

Furthermore, by considering Fig. 2 it is seen that the
location of the camera relative to the reference plane
is the back-projection of the vertical vanishing point
onto the reference plane. This back-projection is ac-
complished by a homography which maps the image
to the reference plane (and vice-versa). Although the
choice of coordinate frame in the world is somewhat
arbitrary, fixing this frame immediately defines the
homography uniquely and hence the camera position.

3. Algebraic Representation

The measurements described in the previous section
are computed in terms of cross-ratios. In this sec-
tion we develop a uniform algebraic approach to the
problem which has a number of advantages over direct
geometric construction: first, it avoids potential prob-
lems with ordering for the cross-ratio; second, it en-
ables us to deal with both minimal or over-constrained
configurations uniformly; third, we unify the different
types of measurement within one representation; and
fourth, in Section 4 we use this algebraic representation
to develop an uncertainty analysis for measurements.

To begin we define an affine coordinate systemXYZ
in space (Koenderink and Van Doorn, 1991; Quan and
Mohr, 1992). Let the origin of the coordinate frame lie
on the reference plane, with theX andY-axes spanning
the plane. TheZ-axis is the reference direction, which
is thus any direction not parallel to the plane. The image
coordinate system is the usualxy affine image frame,
and a pointX in space is projected to the image point
x via a 3× 4 projection matrixP as:

x = PX = [p1 p2 p3 p4] X

wherex andX are homogeneous vectors in the form:
x = (x, y, w)>, X = (X,Y, Z,W)>, and “=” means
equality up to scale.

If we denote the vanishing points for theX, Y and
Z directions as (respectively)vX, vY andv, then it is
clear by inspection (Faugeras, 1993) that the first three
columns ofP are the vanishing points:vX = p1, vY =
p2 andv = p3, and that the final column ofP is the
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Figure 7. Homology mapping of points from one plane to a parallel one: (a) original image, the floor and the top of the filing cabinet are parallel
planes. (b) Their common vanishing line (axis of the homology, shown in white) has been computed by intersecting two sets of horizontal edges.
The vertical vanishing point (vertex of the homology) has been computed by intersecting vertical edges. Two corresponding pointsr andr ′ are
selected and the homology computed. Three corners of the top plane of the cabinet have been selected and their corresponding points on the floor
computed by the homology. Note that occluded corners have been retrieved too. (c) The wire frame model shows the structure of the cabinet;
occluded sides are dashed.

Figure 8. Measuring ratio of lengths of parallel line segments lying
on two parallel scene planes: The pointsr andr ′ (together with the
plane vanishing line and the vanishing point) define the homology
between the two planes on the facade of the building.

projection of the origin of the world coordinate system,
o= p4. Since our choice of coordinate frame has theX
andY axes in the reference planep1 = vX andp2 = vY

are two distinct points on the vanishing line. Choosing
these fixes theX and Y affine coordinate axes. We
denote the vanishing line byl, and to emphasize that
the vanishing pointsvX andvY lie on it, we denote them
by l⊥1 , l⊥2 , with l⊥i · l = 0.

Columns 1, 2 and 4 of the projection matrix are the
three columns of the reference plane to image homogra-

phy. This homography must have rank three, otherwise
the reference plane to image map is degenerate. Conse-
quently, the final column (the origin of the coordinate
system) must not lie on the vanishing line, since if it
does then all three columns are points on the vanishing
line, and thus are not linearly independent. Hence we
set it to bep4 = l/‖ l ‖ = l̄.

Therefore the final parameterization of the projec-
tion matrixP is:

P = [l⊥1 l⊥2 αv l̄
]

(4)

whereα is a scale factor, which has an important rˆole
to play in the remainder of the paper.

Note that the vertical vanishing pointv imposes two
constraints on theP matrix, the vanishing linel im-
poses two and theα parameter only one for a total of
five independent constraints (at this stage the first two
columns of theP matrix are not completely known;
the only constraint is that they are orthogonal to the
plane vanishing linel, l>i · l = 0). In general however
thePmatrix has eleven d.o.f., which can be regarded as
comprising eight for the world-to-image homography
induced by the reference plane, two for the vanishing
point and one for the affine parameterα. In our case
the vanishing line determines two of the eight d.o.f. of
the homography.

In the following sections we show how to com-
pute various measurements from this projection matrix.
Measurements of distances between planes are inde-
pendent of the first two (in general under-determined)
columns ofP. If v andl are specified, the only unknown
quantity for these measurements isα. Coordinate
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measurements within the planes depend on the first
two and the fourth columns ofP. These columns de-
fine an affine coordinate frame within the plane. Affine
measurements (e.g. area ratios), though, are indepen-
dent of the actual coordinate frame and depend only on
the fourth column ofP. If any metric information on
the plane is known, we may impose constraints on the
choice of the frame.

3.1. Measurements Between Parallel Planes

3.1.1. Distance of a Plane from the Reference Plane
π. We wish to measure the distance between scene
planes specified by a pointX and a pointX′ in the
scene (see Fig. 3(a)). These points may be chosen as
respectivelyX = (X,Y, 0)> andX′ = (X,Y, Z)>, and
their images arex andx′ (Fig. 9). If P is the projection
matrix then the image coordinates are

x = P


X

Y

0

1

 , x′ = P


X

Y

Z

1


The equations above can be rewritten as

x = ρ(Xp1+ Yp2+ p4) (5)

x′ = ρ ′(Xp1+ Yp2+ Zp3+ p4) (6)

whereρ andρ ′ are unknown scale factors, andpi is the
i th column of theP matrix.

Figure 9. Measuring the distance of a planeπ′ from the parallel
reference planeπ, the geometry.

Sincep1 · l̄ = p2 · l̄ = 0 andp4 · l̄ = 1, taking the
scalar product of (5) with̄l yieldsρ = l̄ · x and there-
fore (6) can be rewritten as

x′ = ρ ′
(

x
ρ
+ αZv

)
(7)

By taking the vector product of both terms of (7)
with x′ we obtain

x× x′ = −αZρ(v× x′) (8)

and, finally, taking the norm of both sides of (8) yields

αZ = − ‖x× x′‖
(l̄ · x)‖v× x′‖ (9)

SinceαZ scales linearly withα, affine structure has
been obtained. Ifα is known, then a metric value forZ
can be immediately computed as:

Z = − ‖x× x′‖
(p4 · x)‖p3× x′‖ (10)

Conversely, ifZ is known (i.e. it is a reference dis-
tance) then (9) provides a means of computingα, and
hence removing the affine ambiguity.

Metric Calibration from Multiple References.If more
than one reference distance is known then an estimate
of α can be derived from an error minimization algo-
rithm. We here show a special case where all distances
are measured from the same reference plane and an al-
gebraic error is minimized. An optimal minimization
algorithm will be described in Section 4.2.1.

For the i th reference distanceZi with end
points r i and r ′i we define:βi =‖r i × r ′i ‖, ρi = l̄ · r i ,
γi = ‖v× r ′i ‖. Therefore, from (9) we obtain:

αZρi γi = −βi (11)

Note that all the pointsr i are images of world points
Ri on the reference planeπ.

We now define then×2 matrixA (reorganising (11))
as:

A =



Z1ρ1γ1 β1

...
...

Ziρi γi βi

...
...

Znρnγn βn


wheren is the number of reference distances.
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If there is no measurement error orn = 1 thenAs= 0
wheres= (s1 s2)

> is a homogeneous 2-vector and

α = s1

s2
(12)

In generaln> 1 and uncertainty is present in the
reference distances. In this case we find the solution
s which minimizes‖As‖. That is the eigenvector of
the 2× 2 matrixM = A>A corresponding to its mini-
mum eigenvalue. The parameterα is finally computed
from (12).

With more reference distancesZi , α is estimated
more accurately (see Section 4), but no more con-
straints are added on theP matrix.

Worked example. In Fig. 10 the distance of a horizontal
line from the ground is measured.

• The vertical vanishing pointv is computed by intersecting
vertical (scene) edges;

All images of lines parallel to the ground plane intersect in
points on the horizon, therefore:

• A point v1 on the horizon is computed by intersecting the
edges of the planks on the right side of the shed;

• a second pointv2 is computed by intersecting the edges of
the planks on the left side of the shed and the parallel edges
on the roof;

• the plane vanishing linel is computed by joining those two
points (l = v1 × v2);

• the distance of the top of the frame of the window on the
left from the ground has been measured on site and used as
reference to computeα as in (9).

• the linelx′ , the image of a horizontal line, is selected in the
image by choosing any two points on it;

• the associated vanishing pointvh is computed asvh =
lx′ × l;

• the line lx , which is the image of a line parallel tolx′ in
the scene is constrained to pass throughvh, thereforelx is
specified by choosing one additional point on it;

• a pointx′ is selected along the linelx′ and its corresponding
pointx on the linelx computed asx = (x′ × v)× lx ;

• Equation (10) is now applied to the pair of pointsx, x′ to
compute the distanceZ = 294.3 cm.

3.1.2. Distance Between any two Parallel Planes.
The projection matrixP from the world to the image is
defined in (4) with respect to a coordinate frame on the
reference plane (Fig. 9). In this section we determine
the projection matrixP′ referred to the parallel plane
π′ and we show how distances from the planeπ′ can
be computed.

Suppose the world coordinate system is translated
by Zr from the planeπ onto the planeπ′ along the

Figure 10. Measuring heights using parallel lines: The vertical van-
ishing point and the vanishing line for the ground plane have been
computed. The distance of the top of the window on the left wall
from the ground is known and used as reference. The distance of the
top of the window on the right wall from the ground is computed
from the distance between the two horizontal lines whose images are
lx′ andlx . The top linelx′ is defined by the top edge of the window,
and the linelx is the corresponding one on the ground plane. The
distance between them is computed to be 294.3 cm.

Figure 11. Measuring the distance between any two planesπ′ and
π′′ parallel to the reference planeπ.

reference direction (Fig. 11), then we can parametrize
the new projection matrixP′ as:

P′ = [p1 p2 p3 Zr p3+ p4] (13)

Note that ifZr = 0 thenP′ = P as expected.
The distanceZ′ of the planeπ′′ from the planeπ′ in

space can be computed as (c.f. (10)).

Z′ = − ‖x
′ × x′′‖

ρ ′‖p3× x′′‖ (14)
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Figure 12. Measuring heights of objects on separate planes: The
height of the desk is known and the height of the file on the desk is
computed.

with

ρ ′ = x′ · p4

1+ Zr p3 · p4

Worked example. In Fig. 12 the height of a file on a desk
is computed from the height of the desk itself

• The ground is the reference planeπ and the top of the desk
is the plane denoted asπ′ in Fig. 11;

• the plane vanishing line and vertical vanishing point are
computed as usual by intersecting parallel edges;

• the distanceZr between the pointsr andr ′ is known (the
height of the desk has been measured on site) and used to
compute theα parameter from (9);

• Equation (14) is now applied to the end points of the marked
segment to compute the heightZ′ = 32.0 cm.

3.2. Measurements on Parallel Planes

As described in Section 2.2, given the homology be-
tween two planesπ andπ′ in the pencil we can transfer
all points from one plane to the other and make affine
measurements in either plane.

The homology between the planes can be derived
directly from the two projection matrices (4) and (13).
The plane-to-image homographies are extracted from
the projection matrices ignoring the third column, to
give:

H = [p1 p2 p4], H′ = [p1 p2 Zr p3+ p4]

ThenH̃ = H′H−1 maps image points on the planeπ
onto points on the planeπ′ and so defines the homology.

By inspection, sincep1 · p4 = 0 andp2 · p4 = 0 then
(I+ Zr p3p>4 )H = H′, hence the homology matrix̃H is:

H̃ = I+ Zr p3p>4 (15)

Alternatively from the (4) the homology matrix can
be written as:

H̃ = I+ ψvl̄
>

(16)

with v the vertical vanishing point,̄l the normalized
plane vanishing line andψ = αZr (c.f. (3)).

If the distanceZr and the last two columns of the
matrix P are known then the homology between the
two planesπ andπ′ is computed as in (15). Other-
wise, if onlyv andl are known and two corresponding
pointsr andr ′ are viewed, then the homology param-
eterψ in (16) can be computed from (9) (remember
thatαZr = ψ) without knowing either the distanceZr

between the two planes or theα parameter.
Examples of homology transfer and affine measure-

ments are shown in Figs. 8 and 13.

Worked example. In Fig. 13 we compute the ratio between
the areas of two windowsA1

A2
in the world.

• The orthogonal vanishing pointv is computed by intersect-
ing the edges of the small windows linking the two front
planes;

• the plane vanishing linel (common to both front planes) is
computed by intersecting two sets of parallel edges on the
two planes;

• the only remaining parameterψ of the homologỹH in (16)
is computed from (9) as

ψ = − ‖r × r ′‖
(l̄ · r)‖v× r ′‖

• each of the four corners of the window on the left is trans-
ferred by the homologỹH onto the corresponding points on
the plane of the other window (Fig. 13(b));

Now we have two quadrilaterals on the same plane

• the image is affine-warped pulling the plane vanishing line
to infinity (Liebowitz and Zisserman, 1998);

• the ratio between the two areas in the world is computed as
the ratio between the areas in the affine-warped image. We
obtain A1

A2
= 1.45.

3.3. Determining Camera Position

Suppose the camera centre isC = (Xc,Yc, Zc,Wc)
>

(see Fig. 2). Then sincePC = 0 we have

PC = p1Xc + p2Yc + p3Zc + p4Wc = 0 (17)
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Figure 13. Measuring ratios of areas on separate planes: (a) original
image with two windows hilighted; (b) the left window is transferred
onto the plane identified byr ′ by the homology mapping (16). The
two areas now lie on the same plane and can, therefore, be compared.
The ratio between the areas of the two windows is then computed as:
A1
A2
= 1.45.

The solution to this set of equations is given (using
Cramer’s rule) by

Xc = −det [p2 p3 p4],

Yc = det [p1 p3 p4],

Zc = −det [p1 p2 p4],

Wc = det [p1 p2 p3]

(18)

and the location of the camera centre is defined.

If α is unknown we can write:

Xc = −det [p2 v p4],

Yc = det [p1 v p4],

αZc = −det [p1 p2 p4],

Wc = det [p1 p2 v]

(19)

and we obtain the distanceZc of the camera centre from
the plane up to the affine scale factorα. As before, we
may upgrade the distanceZc to metric with knowledge
ofα, or use knowledge of the camera height to compute
α and upgrade the affine structure.

Note that affine viewing conditions (where the cam-
era centre is at infinity) present no problem in ex-
pressions (18) and (19), since in this case we have
l̄= [0 0∗]> andv= [∗ ∗ 0]>. HenceWc= 0 so we ob-
tain a camera centre on the plane at infinity, as expected.
This point onπ∞ represents the viewing direction for
the parallel projection.

If the viewpoint is finite (i.e. not affine viewing con-
ditions) then the formula forαZc may be developed
further by taking the scalar product of both sides of
(17) with the vanishing linēl. The result is

αZc = − 1

l̄ · v (20)

Worked example. In Fig. 14 the position of the camera
centre with respect to the chosen Cartesian coordinates system
is determined.
Note that in this case we have chosenp4 to be the pointo in
the figure instead of̄l.

• The ground plane (X,Y plane) is the reference;
• the vertical vanishing point is computed by intersecting

vertical edges;
• the two sides of the rectangular base of the porch have

been measured thus providing the position of four points
on the reference plane. The world-to- image homography
is computed from those points (Criminisi et al., 1999a);

• the distance of the top of the frame of the window on the
left from the ground has been measured on site and used as
reference to computeα as in (9).

• the 3D position of the camera centre is then computed sim-
ply by applying equations (18). We obtain

Xc = −381.0 cm Yc = −653.7 cm Zc = 162.8 cm

In Fig. 22(c), the camera has been superimposed into a virtual
view of the reconstructed scene.

4. Uncertainty Analysis

Feature detection and extraction—whether manual or
automatic (e.g. using an edge detector)—can only be
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Figure 14. Computing the location of the camera: Equations (18)
are used to obtain:Xc = −381.0 cm, Yc = −653.7 cm, Zc =
162.8 cm.

achieved to a finite accuracy. Any features extracted
from an image, therefore, are subject to measurements
errors. In this section we consider how these errors
propagate through the measurement formulae in order
to quantify the uncertainty on the final measurements
(Faugeras, 1993). This is achieved by using a first order
error analysis.

We first analyse the uncertainty on the projec-
tion matrix and then the uncertainty on distance
measurements.

4.1. Uncertainty on theP Matrix

The uncertainty inP depends on the location of the
vanishing line, the location of the vanishing point, and
on α, the affine scale factor. Since only the final two
columns contribute, we model the uncertainty inP as a
6× 6 homogeneous covariance matrix,ΛP. Since the
two columns have only five degrees of freedom (two
for v, two for l and one forα), the covariance matrix is
singular, with rank five.

Assuming statistical independence between the two
column vectorsp3 andp4 the 6×6 rank five covariance
matrixΛP can be written as:

ΛP =
(

Λp3 0

0 Λp4

)
(21)

Furthermore, assuming statistical independence be-
tweenα andv, sincep3 = αv, we have:

Λp3 =α2Λv + σ 2
αvv> (22)

with Λv the homogeneous 3× 3 covariance of the
vanishing pointv and the varianceσ 2

α computed as in
Appendix D.

Sincep4 = l̄ = l
‖ l ‖ its covariance is:

Λp4 =
∂p4

∂ l
Λl
∂p4

∂ l

>
(23)

where the 3× 3 Jacobian∂p4

∂ l is

∂p4

∂ l
= l · lI− ll>

(l · l) 3
2

4.2. Uncertainty on Measurements Between Planes

When making measurements between planes (10), un-
certainty arises from the uncertain image locations of
the pointsx andx′ and from the uncertainty inP.

The uncertainty in the end pointsx, x′ of the length to
be measured (resulting largely from the finite accuracy
with which these features may be located in the image)
is modeled by covariance matricesΛx andΛx′ .

4.2.1. Maximum Likelihood Estimation of the End
Points and Uncertainties. In this section we assume
a noise-freePmatrix. This assumption will be removed
in Section 4.2.2.

Since in the error-free case,x andx′ must be aligned
with the vertical vanishing point we can determine the
maximum likelihood estimates (x̂ andx̂′) of their true
locations by minimizing the sum of the Mahalanobis
distances between the input pointsx andx′ and their
MLE estimateŝx andx̂′

min
x̂2,x̂′2,

[
(x2− x̂2)

>Λ−1
x2
(x2− x̂2)

+ (x′2− x̂′2)
>Λ−1

x′2
(x′2− x̂′2)

]
(24)

subject to thealignment constraint

v · (x̂× x̂′) = 0 (25)

(the subscript 2 indicates inhomogeneous 2-vectors).
This is a constrained minimization problem. A

closed-form solution can be found (by the Lagrange
multiplier method) in the special case that

Λx′2 = γ 2Λx2
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Figure 15. Maximum likelihood estimation of the end points: (a)
Original image (closeup of Fig. 16(b)). (b) The uncertainty ellipses
of the end points,Λx andΛx′ , are shown. These ellipses are defined
manually, and indicate a confidence region for localizing the points.
(c) MLE end pointŝx andx̂′ are aligned with the vertical vanishing
point (outside the image).

with γ a scalar, but, unfortunately, in the general
case there is no closed-form solution to the problem.
Nevertheless, in the general case, an initial solution
can be computed by using the approximation given in
Appendix B and then refining it by running a numerical
algorithm such as Levenberg-Marquardt.

Once the MLE end points have been estimated, we
use standard techniques (Faugeras, 1993; Clarke, 1998)
to obtain a first order approximation to the 4× 4, rank-
three covariance of the MLE 4-vectorζ̂

> = (x̂′>2 x̂>2 ).
Figure 15 illustrates the idea (see Appendix C for
details).

4.2.2. Uncertainty on Distance Measurements.As-
suming noise in both end points and in the projection
matrix, and statistical independence betweenζ̂ andP
we obtain a first order approximation for the variance
of the distanceZ of a point from a plane:

σ 2
Z =∇Z

(
Λζ̂ 0

0 ΛP

)
∇>Z (26)

where∇Z is the 1× 10 Jacobian matrix of the func-
tion (10) which maps the projection matrix and the end
pointsx, x′ to their world distanceZ. The computation
of∇Z is explained in detail in Appendix C.

4.3. Uncertainty on Camera Position

The distance of the camera centre from the reference
plane is computed according to (20) which can be

rewritten as:

Zc = −(p4 · p3)
−1 (27)

If we assume an exactP matrix, then the camera
distance is exact too, in fact it depends only on the
matrix elements ofP. Likewise, the accuracy ofZc

depends only on the accuracy of theP matrix.
Equation (27) mapsR6 into R, and the associated

1× 6 Jacobian matrix∇Zc is readily derived to be

∇Zc = Z2
c

(
p>4 p>3

)
and, from a first order analysis the variance ofZc is

σ 2
Zc
=∇ZcΛP∇Zc

> (28)

whereΛP is computed in Section 4.1.
The variancesσ 2

Xc
andσ 2

Yc
of theX,Y location of the

camera can be comupted in a similar way (Criminisi
et al., 1999a).

4.4. Example—Uncertainty on Measurements
Between Planes

In this section we show the effects of the number of
reference distances and image localization error on the
predicted uncertainty in measurements.

An image obtained from a security camera with a
poor quality lens is shown in Fig. 16(a). It has been cor-
rected for radial distortion using the method described
by Devernay and Faugeras (1995), and the floor taken
as the reference plane.

The scene is calibrated by identifying two points
v1, v2 on the reference plane’s vanishing line (shown
in white at the top of each image) and the vertical van-
ishing pointv. These points are computed by intersect-
ing sets of parallel lines. The uncertainty on each point
is assumed to be Gaussian and isotropic with standard
deviation 0.1 pixels. The uncertainty of the vanishing
line is derived from a first order propagation through
the vector product operationl = v1 × v2. The projec-
tion matrixP is therefore uncertain with its covariance
given by (21).

In addition the end points of the height to be mea-
sured are assumed to be uncertain and their covari-
ances estimated as in Section 4. The uncertainties in
the height measurements shown are computed as 3-
standard deviation intervals.
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Figure 16. Measuring heights and estimating their uncertainty: (a) Original image; (b) Image corrected for radial distortion and measurements
superimposed. With onlyonesupplied reference height the man’s height has been measured to be Z= 190.4± 3.94 cm, (c.f. ground truth value
190 cm). The uncertainty has been estimated by using (26) (the uncertainty bound is at±3 std.dev.). (c) Withtwo reference heights Z= 190.4
± 3.47 cm. (d) Withthreereference heights Z= 190.4± 3.27 cm. Note that in the limitΛP= 0 (error-freeP matrix) the height uncertainty
reduces to 2.16 cm for all (b, c, d); the residual error, in this case, is due only to the error on the two end points.

In Fig. 16(b) one reference height is used to compute
the affine scale factorα from (9) (i.e. the minimum
number of references). Uncertainty has been assumed
in the reference heights, vertical vanishing point and
plane vanishing line. Onceα is computed other mea-
surements in the same direction are metric. The height
of the man has been computed and shown in the figure.
It differs by 4 mm from the known true value.

The uncertainty associated with the height of the
man is computed from (26) and displayed in Fig. 16(b).
Note that the true height value falls always within the
computed 3-standard deviation range as expected.

As the number of reference distances is increased
(see Figs. 16(c) and (d)), so the uncertainty onP (in fact
just onα) decreases, resulting in a decrease in uncer-
tainty of the measured height, as theoretically expected
(see Appendix D). Equation (12) has been employed,
here, to metric calibrate the distance from the floor.

Figure 17 shows images of the same scene with
the same people, but acquired from a different point
of view. As before the uncertainty on the measure-

ments decreases as the number of references increases
(Figs. 17(b) and (c)). The measurement is the same as
in the previous view (Fig. 16) thus demostrating invari-
ance to camera location.

Figure 18 shows an example, where the height of the
woman and the related uncertainty are computed for
two different orientations of the uncertainty ellipses of
the end points. In Fig. 18(b) the two input ellipses of
Fig. 18(a) have been rotated by an angle of approx-
imately 40◦, maintaining the size and position of the
centres. The angle between the direction defined by
the major axes (direction of maximum uncertainty) of
each ellipse and the measuring direction is smaller than
in Fig. 18(a) and the uncertainty in the measurements
greater as expected.

4.5. Monte Carlo Test

In this section we validate the first order error analysis
described above by computing the uncertainty of the
height of the man in Fig. 16(d) using our first order
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Figure 17. Measuring heights and estimating their uncertainty, second point of view: (a) Original image; (b) the image has been corrected for
radial distortion and height measurements computed and superimposed. Withonesupplied reference height Z= 190.2± 5.01 cm (c.f. ground
truth value 190 cm). (c) Withtwo reference heights Z= 190.4± 3.34 cm. See Fig. 16 for details.

Figure 18. Estimating the uncertainty in height measurements for different orientations of the input 3-standard deviation uncertainty ellipses:
(a) Cropped version of image 16(b) with measurements superimposed: Z= 169.8± 2.5 cm (at 3-standard deviations). The ground truth is
Z= 170 cm, it lies within the computed range. (b) the input ellipses have been rotated keeping their size and position fixed: Z= 169.8± 3.1 cm
(at 3-standard deviations). The height measurement is less accurate.

analytical method and comparing it to the uncertainty
derived from Monte Carlo simulations as described in
Table 1.

Specifically, we compute the statistical standard de-
viation of the man’s height from a reference plane and
compare it with the standard deviation obtained from
the first order error analysis.

Uncertainty is modeled as Gaussian noise and de-
scribed by covariance matrices. We assume noise on
the end points of the three reference distances. Uncer-
tainty is assumed also on the vertical vanishing point,
the plane vanishing line and on the end points of the
height to be measured.

Figure 19 shows the results of the test. The base point
is randomly distributed according to a 2D non-isotropic
Gaussian about the mean locationx (on the feet of the
man in Fig. 16) with covariance matrixΛx (Fig. 19(a)).
Similarly the top point is randomly distributed accord-
ing to a 2D non-isotropic Gaussian about the mean
locationx′ (on the head of the man in Fig. 16), with
covarianceΛx′ (Fig. 19(b)).

The two covariance matrices are respectively:

Λx =
(

10.18 0.59

0.59 6.52

)
Λx′ =

(
4.01 0.22

0.22 1.36

)
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Figure 19. Monte Carlo simulation of the example in Fig. 16(d): (a) distribution of the input base pointx and the corresponding 3-standard
deviation ellipse. (b) distribution of the input top pointx′ and the corresponding 3-standard deviation ellipse. Note that figures (a) and (b)
are drawn at the same scale. (c) the analytical and simulated distributions of the computed distanceZ. The two curves are almost perfectly
overlapping.

Table 1. Monte Carlo simulation.

• for j = 1 to S (withS= number of samples)

– For each reference: given the measured reference end
pointsr (on the reference plane) andr ′, generate a ran-
dom base pointr j , a random top pointr ′j and a random
reference distanceZr j according to the associated co-
variances.

– Generate a random vanishing point according to its
covarianceΛv.

– Generate a random plane vanishing line according to
its covarianceΛl .

– Compute theα parameter by applying (12) to the ref-
erences, and the currentP matrix (4).

– Generate a random base pointx j and a random top
point x′j for the distance to be computed according to
their respective covariancesΛx andΛx′ .

– Project the pointsx j andx′j onto the best fitting line
through the vanishing point (see Section 4.2.1).

– Compute the current distanceZ j by applying (10).

• The statistical standard deviation of the population of sim-
ulatedZ j values is computed as

σ ′2Z =
∑S

j=1(Z j − Z̄)2

S

and compared to the analytical one (26).

Suitable values for the covariances of the three ref-
erences, the vanishing point and the vanishing line
have been used. The simulation has been run with
S= 10000 samples.

Analytical and simulated distributions ofZ are plot-
ted in Fig. 19(c); the two curves are almost overlapping.
Slight differences are due to the assumptions of statisti-
cal independence (21, 22, 26) and first order truncation
introduced by the error analysis.

A comparison between statistical and analytical
standard deviations is reported in the table below with
the corresponding relative error:

First Order Monte Carlo relative error

σZ σ ′Z
|σZ−σ ′Z |
σ ′Z

1.091 cm 1.087 cm 0.37%

Note thatZ = 190.45 cm and the associated first order
uncertainty 3∗ σZ = 3.27 cm is shown in Fig. 16(d).

In the limit ΛP = 0 (error-freeP matrix) the simu-
lated and analytical results are even closer.

This result shows the validity of the first order ap-
proximation in this case and numerous other examples
have followed the same pattern. However some care
must be exercised since as the input uncertainty in-
creases, not only does the output uncertainty increases,
but the relative error between statistical and analytical
output standard deviations also increases. For large co-
variances, the assumption of linearity and therefore the
first order analysis no longer holds.

This is illustrated in the table below where the rel-
ative error is shown for various increasing values of
the input uncertainties. The uncertainties of references
distances and end points are multiplied by the increas-
ing factorγ ; for instance, ifΛx is the covariance of the
image pointx thenΛx(γ ) = γ 2Λx.

γ 1 5 10 20 30

|σZ−σ ′Z |
σ ′Z

(%) 0.37 1.68 3.15 8.71 16.95
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Figure 20. The height of a person standing by a phonebox is computed: (a) Original image. (b) The ground plane is the reference plane, and
its vanishing line is computed from the paving stones on the floor. The vertical vanishing point is computed from the edges of the phonebox,
whose height is known and used as reference. Vanishing line and reference height are shown. (c) The computed height of the person and the
estimated uncertainty are shown. The veridical height is 187 cm. Note that the person is leaning slightly on his right foot.

In theaffine case(when the vertical vanishing point
and the plane vanishing line are at infinity) the first
order error propagation is exact (no longer just an ap-
proximation as in the general projective case), and the
analytic and Monte Carlo simulation results coincide.

5. Applications

5.1. Forensic Science

A common requirement in surveillance images is to
obtain measurements from the scene, such as the height
of a felon. Although, the felon has usually departed the
scene, reference lengths can be measured from fixtures
such as tables and windows.

In Fig. 20 we compute the height of the suspicious
person standing next to the phonebox. The ground is the
reference plane and the vertical is the reference direc-
tion. The edges of the paving stones are used to compute
the plane vanishing line, the edges of the phonebox to
compute the vertical vanishing point; and the height of
the phonebox provides the metric calibration in the ver-
tical direction (Fig. 20(b)). The height of the person is
then computed using (10) and shown in Fig. 20(c). The
ground truth is 187 cm, note that the person is leaning
slightly down on his right foot.

The associated uncertainty has also been estimated;
two uncertainty ellipses have been defined, one on
the head of the person and one on the feet and then
propagated through the chain of computations as

described in Section 4 to give the 2.2 cm 3-standard
deviation uncertainty range shown in Fig. 20(c).

5.2. Furniture Measurements

In this section another application is described. Heights
of furniture like shelves, tables or windows in an indoor
environment are measured.

Figure 21(a) shows a desk in The Queen’s College
upper library in Oxford. The floor is the reference plane
and its vanishing line has been computed by intersect-
ing edges of the floorboards. The vertical vanishing
point has been computed by intersecting the vertical
edges of the bookshelf. The vanishing line is shown
in Fig. 21(b) with the reference height used. Only one
reference height (minimal set) has been used in this
example.

The computed heights and associated uncertainties
are shown in Fig. 21(c). The uncertainty bound is±3
standard deviations. Note that the ground truth always
falls within the computed uncertainty range. The height
of the camera is computed as 1.71 m from the floor.

5.3. Virtual Modelling

In Fig. 22 we show an example of complete 3D recon-
struction of a real scene from a single image. Two sets
of horizontal edges are used to compute the vanishing
line for the ground plane, and vertical edges used to
compute the vertical vanishing point.
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Figure 21. Measuring height of furniture in The Queen’s College Upper Library, Oxford: (a) Original image. (b) The plane vanishing line
(white horizontal line) and reference height (white vertical line) are superimposed on the original image; the marked shelf is 156 cm high. (c)
Computed heights and related uncertainties; the uncertainty bound is at±3 std.dev. The ground truth is: 115 cm for the right hand shelf, 97 cm
for the chair and 149 cm for the shelf at the left. Note that the ground truth always falls within the computed uncertainty range.

The distance of the top of the window to the ground,
and the height of one of the pillars are used as refer-
ence heights. Furthermore the two sides of the base of
the porch have been measured thus defining the metric
calibration of the ground plane.

Figure 22(b) shows a view of the reconstructed
model. Notice that the person is represented simply
as a flat silhouette since we have made no attempt to
recover his volume. The position of the camera centre
is also estimated and superimposed on a different view
of the 3D model in Fig. 22(c).

5.4. Modelling Paintings

Figure 23 shows a masterpiece of Italian Renaissance
painting, “La Flagellazione di Cristo” by Piero della
Francesca (1416–1492). The painting faithfully fol-
lows the geometric rules of perspective, and therefore
the methods developed here can be applied to obtain a
3D reconstruction of the scene.

Unlike other techniques (Horry et al., 1997) whose
main aim is to create convincing new views of the paint-
ing regardless of the correctness of the 3D geometry,
here we reconstruct a geometrically correct 3D model
of the viewed scene (see Fig. 23(c) and (d)).

In the painting analysed here, the ground plane is
chosen as reference and its vanishing line computed
from the several parallel lines on it. The vertical van-
ishing point follows from the vertical lines and con-
sequently the relative heights of people and columns
can be computed. Figure 23(b) shows the painting with
height measurements superimposed. Christ’s height is
taken as reference and the heights of the other peo-
ple are expressed as relative percentage differences.
Note the consistency between the height of the people

in the foreground with the height of the people in the
background.

By assuming a square floor pattern the ground plane
has been rectified and the position of each object esti-
mated (Liebowitz et al., 1999; Criminisi et al., 1999a,
Sturm and Maybank, 1999). The scale of floor relative
to heights is set from the ratio between height and base
of the frontoparallel archway. The measurements, up
to an overall scale factor are used to compute a three
dimensional VRML model of the scene.

Figure 23(c) shows a view of the reconstructed
model. Note that the people are represented as flat sil-
houettes and the columns have been approximated with
cylinders. The partially seen ceiling has been recon-
structed correctly. Figure 23(d) shows a different view
of the reconstructed model, where the roof has been
removed to show the relative position of the people in
the scene.

6. Summary and Conclusions

We have explored how the affine structure of three-
dimensional space may be partially recovered from
perspective images in terms of a set of planes paral-
lel to a reference plane and a reference direction not
parallel to the reference plane.

Algorithms have been described to obtain different
kinds of measurements: measuring the distance be-
tween planes parallel to a reference plane; computing
area and length ratios on two parallel planes; comput-
ing the camera’s location.

A first order error propagation analysis has been per-
formed to estimate uncertainties on the projection ma-
trix and on measurements of point or camera location
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Figure 22. Complete 3D reconstruction of a real scene: (a) original image; (b) a view of the reconstructed 3D model; (c) A view of the
reconstructed 3D model which shows the position of the camera centre (plane location X, Y and height) with respect to the scene.

in the space. The error analysis has been validated by
using Monte Carlo statistical tests.

Examples have been provided to show the computed
measurements and uncertainties on real images.

More generally, affine three-dimensional space may
be represented entirely by sets of parallel planes and di-
rections (Berger, 1987). We are currently investigating
how this full geometry is best represented and com-
puted from a single perspective image.

6.1. Missing Base Point

A restriction of the measurement method we have pre-
sented is the need to identify corresponding points be-

tween planes. One case where the method does not
apply therefore is that of measuring the distance of a
general 3D point to a reference plane (the correspond-
ing point on the reference plane is undefined). Here the
homology is under-determined.

One case of interest is when only one view is pro-
vided and a light-source casts shadows onto the ref-
erence plane. The light-source provides restrictions
analogous to a second viewpoint (Robert and Faugeras,
1993; Reid and Zisserman, 1996; Reid and North,
1998; Van Gool et al., 1998), so the projection (in the
reference direction) of the 3D point onto the reference
plane may be determined by making use of the homol-
ogy defined by the 3D points and their shadows.
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Figure 23. Complete 3D reconstruction of a Renaissance painting: (a)La Flagellazione di Cristo, (1460, Urbino, Galleria Nazionale delle
Marche). (b) Height measurements are superimposed on the original image. Christ’s height is taken as reference and the heights of all the other
people are expressed as percent differences. The vanishing line is dashed. (c) A view of the reconstructed 3D model. The patterned floor has
been reconstructed in areas where it is occluded by taking advantage of the symmetry of its pattern. (d) Another view of the model with the roof
removed to show the relative positions of people and architectural elements in the scene. Note the repeated geometric pattern on the floor in
the area delimited by the columns (barely visible in the painting). Note that the people are represented simply as flat silhouettes since it is not
possible to recover their volume from one image, they have been cut out manually from the original image. The columns have been approximated
with cylinders.

Appendix A: Implementation Details

Edge Detection

Straight line segments are detected by Canny edge de-
tection at subpixel accuracy (Canny, 1986); edge link-
ing; segmentation of the edgel chain at high curvature
points; and finally straight line fitting by orthogonal re-
gression to the resulting chain segments (Fig. 24(b)).
Lines which are projection of a physical edge in the
world often appear broken in the image because of
occlusions. A simple merging algorithm based on or-

thogonal regression has been implemented to merge
manually selected edges together. Merging aligned
edges to create longer ones increases the accuracy of
their location and orientation. An example is shown in
Fig. 24(c).

Scene Calibration

Vanishing line and vanishing points can be estimated
directly from the image andno explicit knowledge
of the relative geometry between camera and viewed
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Figure 24. Computing and merging straight edges: (a) original im-
age; (b) computed edges: some of the edges detected by the Canny
edge detector; straight lines have been fitted to them. (c) edges after
merging: different pieces of broken lines, belonging to the same edge
in space, have been merged together.

scene is required. Vanishing lines and vanishing points
may lie outside the physical image (see Fig. 5), but this
does not affect the computations.

Computing the Vanishing Point.All world lines par-
allel to the reference directionare imaged as lines

which intersect in the same vanishing point (see Fig. 2)
(Barnard, 1983; Caprile and Torre, 1990). Therefore
two such lines are sufficient to define it. However, if
more than two lines are available a Maximum Like-
lihood Estimate algorithm (Liebowitz and Zisserman,
1998) is employed to estimate the point.

Computing the Vanishing Line.Images of lines par-
allel to each other and to a plane intersect in points on
the plane vanishing line. Therefore two sets of those
lines with different directions are sufficient to define
the plane vanishing line (Fig. 25).

If more than two orientations are available then the
computation of the vanishing line is performed by em-
ploying a Maximum Likelihood algorithm.

Appendix B: Maximum Likelihood Estimation
of End Points for Isotropic Uncertainties

Given two pointsx andx′ with distributionsΛx and
Λx′ isotropic but not necessarily equal, we estimate
the pointsx̂ and x̂′ such that the cost function (24) is
minimized and the alignment constraint (25) satisfied.
It is a constrained minimization problem; a closed form
solution esists in this case.

The 2× 2 covariance matricesΛx andΛx′ for the
two inhomogeneous end pointsx and x′ define two
circles with radiusr = σx = σy andr ′ = σx′ = σy′

respectively.
The linel through the vanishing pointv that best fits

the pointsx andx′ can be computed as:

l =

 1+
√

1+ ξ2

ξ

−(1+
√

1+ ξ2)vx − ξvy


with

ξ = 2
r ′dxdy + rd ′xd′y

r ′
(
d2

x − d2
y

)+ r
(
d′2x − d′2y

)
whered andd′ are the following 2-vectors:

d = x− v d′ = x′ − v

Note that this formulation is valid ifv is finite.
The orthogonal projections of the pointsx and x′

onto the linel are the two estimated homogeneous



144 Criminisi, Reid and Zisserman

Figure 25. Computing the plane vanishing line: The vanishing line for the reference plane (ground) is shown in solid black. The planks on
both sides of the shed define two sets of lines parallel to the ground (dashed); they intersect in points on the vanishing line.

pointsx̂ andx̂′:

x̂ =

 l y(x · Fl)− l xlw
−l x(x · Fl)− l ylw

l 2
x + l 2

y


(29)

x̂′ =

 l y(x′ · Fl)− l xlw
−l x(x′ · Fl)− l ylw

l 2
x + l 2

y


with F = [ 0 1 0−1 0 0].

The pointsx̂ andx̂′ obtained above are used to pro-
vide an initial solution in the general non-isotropic co-
variance case, for which closed form solution does not
exist. In the general case the non-isotropic covariance
matricesΛx andΛx′ are approximated with isotropic
ones with radius

r = |det(Λx)|1/4 r ′ = |det(Λx′)|1/4

then (29) is applied and the solution end points are
refined by using a Levenberg-Marquardt numerical
algorithm to minimize the (24) while satisfying the
alignment constraint (25).

Appendix C: Variance of Distance
Between Planes

Covariance of MLE End Points

In Appendix B we have shown how to estimate the
MLE points x̂ and x̂′. We here demonstrate how to
compute the 4× 4 covariance matrix of the MLE 4-
vectorζ̂ = (x̂>x̂

′>)> from the covariances of the input
points x and x′ and the covariance of the projection
matrix.

In order to simplify the following development we
define the points:b = x on the planeπ; andt = x′ on
the planeπ ′ corresponding tox.

It can be shown that the 4× 4 covariance matrixΛζ̂

of the vectorζ̂ = ( b̂x b̂y t̂x t̂y )
> (MLE top and base

points, see Section (4.2.1)) can be computed by using
the implicit function theorem(Clarke, 1998; Faugeras,
1993) as:

Λζ̂ = A−1BΛζB
>A−> (30)

whereζ = (bx, by, tx, ty, p13, p23, p33)
> and

Λζ =

Λb 0 0

0 Λt 0

0 0 Λp3

 (31)

Λb and Λt are the 2× 2 covariance matrices of the
pointsb andt respectively andΛp3 is the 3× 3 covari-
ance matrix of the vectorp3 = αv defined in (4). Note
that the assumption of statistical independence in (31)
is a valid one.

The matrixA in (30) is the the following 4×4 matrix

A = [A1
... A2]

A1 =


−eb

1 · δt −eb
2 · δt

δexδby δeyδby − τλp33

τλp33− δexδbx −δeyδbx

−τδty τδtx



A2 =


−λp33δty λp33δtx

−τet
11− λp33δby −τet

12− λp33δby

−τet
12+ λp33δbx −τet

22+ λp33δbx

τδby −τδbx


where we have defined:
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• Et = Λ−1
t andet

ij its ij th element;
• Eb = Λ−1

b andeb
1 andeb

2 respectively its first and
second row;
• p = (p13, p23)

>, δt = p33t̂ − p,
δb = p33b̂− p, δe = eb

2 − eb
1;

• τ = (p3× t̂)y − (p3× t̂)x, λ = δe·(b−ˆb)
τ

;

The matrixB in (30) is the following 4× 7 matrix:

B = [B1
... B2]

B1 =


eb

1 · δt eb
2 · δt 0 0

−δexδby −δeyδby τet
11 τet

12

δexδbx δeyδbx τet
12 τet

22

0 0 0 0



B2 =


λδty −λδtx −λν1

−λδby −λ(τ + δby) λν2

λ(τ + δbx ) λδbx −λν3

τ(t̂y − b̂y) τ (b̂x − t̂x) τν4


where we have defined

ν1 = t̂y(p23t̂x − p13t̂y)

ν2 = b̂y(p13+ p23)− p23(t̂x + t̂y)

ν3 = b̂x(p13+ p23)− p13(t̂x + t̂y)

ν4 = t̂xb̂y − t̂yb̂x

Note that if the vanishing point is noise-free then
Λζ̂ has rank 3 as expected because of the alignment
constraint.

Variance of the Distance Measurement,σ 2
Z

As seen in Section 4.2.1 and 4.2.2 the components
of the ζ̂ vector are used to compute the distanceZ
according to Eq. (9) rewritten here as:

Z = − ‖b̂× t̂‖
(p4 · b̂)‖p3× t̂‖

with the MLE pointsb̂, t̂ homogeneous with unit third
coordinate.

Let us define

β = ‖b̂× t̂‖, γ = ‖p3× t̂‖, ρ = p4 · b̂

The varianceσ 2
Z of the measurementZ depends on

the covariance of thêζ vector and the covariance of
the 6-vectorp = (p>3 p>4 )

> computed in Section 4.1.
If ζ̂ andp are statistically independent, then from first
order error analysis

σ 2
Z =∇Z

(
Λζ̂ 0

0 Λp

)
∇Z
> (32)

the 1× 10 Jacobian∇Z is:

∇Z = Z



F
(
(t̂×b̂)×t̂
β2 − p4

ρ

)
F
(
(b̂×t̂)×b̂
β2 − (p3×t̂)×p3

γ 2

)
(p3×t̂)×t̂

γ 2

− b̂
ρ



>

whereF = [ 1 0 0
0 1 0].

Note that the assumption of statistical independence
in (32) is an approximation.

Appendix D: Variance of the Affine Parameterα

In Section 8 the affine parameterα is obtained by com-
puting the eigenvectors with smallest eigenvalue of
the matrixA>A (9). If the measured reference points
are noise-free, orn = 1, thens = Null(A) and in
general we can assume that fors the residual error
s>A>As= λ ≈ 0.

We now use matrix perturbation theory (Golub and
Van Loan, 1989; Stewart and Sun, 1990; Wilkinson,
1965) to compute the covarianceΛs of the solution
vectors based on this zero approximation.

Note that thei th row of the matrixA depends on the
normalized vanishing linel, on the vanishing pointv,
on the reference end pointsbi , t i and on reference dis-
tancesZi . Uncertainty in any of those elements induces
an uncertainty in the matrixA and therefore uncertainty
in the final solutions.

We now define the input vector

η = (l x l y lw vx vy vw Z1 t1x t1y b1x b1y · · ·
Zn tnx tny bnx bny

)>
which contains the plane vanishing line, the vanish-
ing point and the 5n components of then references.
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Because of noise we have:

η = η̃ + δη
= (l̃ x l̃ y l̃w ṽx ṽy ṽw Z̃1 t̃1x t̃1y b̃1x b̃1y · · ·

Z̃n t̃nx t̃ny b̃nx b̃ny

)>
+ (δl x δl y δlw δvx δvy δvw δZ1 δt1x δt1y · · ·
δZn δtnx δtny δbnx δbny

)>
where the ‘̃ ’ indicates noiseless quantities.

We assume that the noise is gaussian with zero mean
and also that different reference distances are uncorre-
lated. However, the rows of theA matrix are correlated
by the presence ofv andl in each of them.

The 1× 2 row-vector of the design matrixA is

ai = (Ziρi γiβi )

with i = 1 · · ·n.
Because of the noiseai = ãi + δai and

δai = (ρi γi δZi + Zi γi δρi + Ziρi δγi δβi )

It can be shown thatδρi , δγi andδβi can be com-
puted as functions ofδη and therefore, taking account
of the statistical dependence of the rows of theA ma-
trix, the 2× 2 matricesE(δa>i δa j ) ∀i, j = 1 · · ·n can
be computed.

Furthermore if we define the matrixM = A>A then

M = (Ã+ δA)>(Ã+ δA)
= Ã

>
Ã+ δA>Ã+ Ã

>
δA+ δA>δA

ThusM= M̃+δM and for the first order approximation
we getδM = δA>Ã+ Ã

>
δA.

As noted the vectors is the eigenvector correspond-
ing to the null eigenvalue of the matrix̃M; the other
eigensolution is:̃Mũ2 = λ̃2ũ2 with ũ2 the second eigen-
vector of theA>A matrix and λ̃2 the corresponding
eigenvalue.

It is proved in (Golub and Van Loan, 1989; Shapiro
and Brady, 1995) that the variation of the solutions is
related to the noise of the matrixM as:

δs= − ũ2ũ>2
λ̃2

δMs̃

but sinceδMs̃= δA>Ãs̃+ Ã
>
δAs̃ andÃs̃= 0 then

δMs̃= Ã
>
δAs̃

and thusδs= J̃Ã
>
δAs̃ whereJ̃ is simply

J̃ = − ũ2ũ>2
λ̃2

Therefore:

Λs= E[δsδs>]

= J̃E[Ã
>
δAs̃̃s>δA>Ã]J̃

>

= J̃E

[
n∑

i=1

ã>i (δãi · s̃)
n∑

j=1

ã j (δã j · s̃)
]
J̃
>

= J̃E

[
n∑

i=1

ã>i

(
n∑

j=1

ã j s̃>(δã>i δã j )s̃

)]
J̃
>

= J̃

[
n∑

i=1

ã>i

(
n∑

j=1

ã j s̃>E(δã>i δã j )s̃

)]
J̃
>

(33)

having used that

(δãi · s̃)(δã j · s̃) = s̃>(δã>i δã j )s̃

Now considering thatJ̃ is a symmetric matrix
(J̃
> = J̃) Eq. (33) can be written as

Λs = J̃S̃J̃

whereS̃ is the following 2× 2 matrix:

S̃ =
n∑

i=1

ã>i

(
n∑

j=1

ã j s̃>Ei j s̃

)

with Ei j = E(δã>i δã j ).
Note that many of the above equations require the

true noise-free quantities, which in general are not
available. Weng et al. (1989) pointed out that if one
writes, for instance,̃A = A − δA and substitutes this
in the relevant equations, the term inδA disappears
in the first order expression, allowing̃A to be simply
interchanged withA, and so on. Therefore the 2× 2
covariance matrixΛs is simply

Λs = JSJ (34)

whereJ = − u2u>2
λ2

. The 2× 2 matrixS is:

S =
n∑

i=1

a>i

(
n∑

j=1

ã j s̃>Ei j s̃

)
(35)
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with ai thei th 1×2 row-vector of the design matrix
A andn the number of references.

The 2× 2 covariance matrixΛs of the vectors is
therefore computed.

Noise-Freev and l

In the caseΛl = 0 andΛv= 0 then (35) simply be-
comes:

S =
n∑

i=1

a>i ais>Eii s (36)

in fact the rows of theA matrix are all statistically
independent.

Variance ofα

It is easy to convert the 2×2 homogeneous covariance
matrix Λs in (34) into inhomogeneous coordinates. In
fact, sinces= (s(1)s(2))> andα = s(1)

s(2) for a first order
error analysis the variance of the affine parameterα is

σ 2
α =∇αΛs∇α> (37)

with the 1× 2 Jacobian

∇α = 1

s(2)2
(s(2)− s(1))
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