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Abstract. We describe how 3D affine measurements may be computed from a single perspective view of a scene
given only minimal geometric information determined from the image. This minimal information is typically the
vanishing line of a reference plane, and a vanishing point for a direction not parallel to the plane. It is shown
that affine scene structure may then be determined from the image, without knowledge of the camera’s internal
calibration (e.g. focal length), nor of the explicit relation between camera and world (pose).

In particular, we show how to (i) compute the distance between planes parallel to the reference plane (up to
a common scale factor); (ii) compute area and length ratios on any plane parallel to the reference plane; (iii)
determine the camera’s location. Simple geometric derivations are given for these results. We also develop an
algebraic representation which unifies the three types of measurement and, amongst other advantages, permits a
first order error propagation analysis to be performed, associating an uncertainty with each measurement.

We demonstrate the technique for a variety of applications, including height measurements in forensic images
and 3D graphical modelling from single images.
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1. Introduction any of the planes which are parallel to the reference
plane; (ii) measurements these planes (and compa-
In this paper we describe how aspects of the affine 3D rison of these measurements to those obtained on any
geometry of a scene may be measured from a single parallel plane); and (iii) determining the camera’s po-
perspective image. We will concentrate on scenes con- sition in terms of the reference plane and direction. The
taining planes and parallel lines, although the methods measurement methods developed here are independent
are not so restricted. The methods we develop extendofthe camera’s internal parameters: focal length, aspect
and generalize previous results on single view metro- ratio, principal point, skew.
logy (Reid and Zisserman, 1996; Horry et al., 1997;  The camera is always assumed to be uncalibrated,
Kim et al., 1998; Proesmans et al., 1998). its internal parameters unknown. We analyse situations
Itis assumed thatimages are obtained by perspectivewhere the camera (the projection matrix) can only be
projection. In addition, we assume that the vanishing partially determined from scene landmarks. This is an
line of areference plan& the scene may be determined intermediate situation between calibrated reconstruc-
from the image, together with a vanishing point for an- tion (where metric entities like angles between rays
otherreference directioifnot parallel to the plane). We  can be computed) and completely uncalibrated cam-
are then concerned with three canonical types of mea- eras (where a reconstruction can be obtained only up
surement: (i) measurements of the distabetwveen to a projective transformation).
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The ideas in this paper can be seen as reversing the2. Geometry
rules for drawing perspective images given by Alberti
(1980) in his treatise on perspective (1435). These are The camera model employed here is central projec-
the rules followed by the Italian Renaissance painters tion. We assume that the vanishing line of a reference
of the 15th century, and indeed we demonstrate the plane in the scene may be computed from image mea-
correctness of their mastery of perspective by analysing surements, together with a vanishing point for another
a painting by Piero della Francesca. direction (not parallel to the plane). This information is

This paper extends the work in Criminisi et al. generally easily obtainable from images of structured
(1999b). Here particular attention is paid to: comput- scenes (Collins and Weiss, 1990; McLean and Kotturi,
ing Maximum Likelihood estimates of measurements 1995; Liebowitz and Zisserman, 1998; Shufelt, 1999).
when more than the minimum number of references are Effects such as radial distortion (often arising in slightly
available; transferring measurements from one refer- wide-angle lenses typically used in security cameras)
ence plane to another by making use of planar homolo- which corrupt the central projection model can gener-
gies; analysing in detail the uncertainty of the computed ally be removed (Devernay and Faugeras, 1995), and
distances; validating the analytical uncertainty predic- are therefore not detrimental to our methods. Imple-
tions by using statistical tests. A number of worked mentation details for: computation of vanishing points
examples are presented to explain the algorithms stepand lines, and line detection are given in Appendix A.

by step and demonstrate their validity.

We begin in Section 2 by giving simple geomet-
ric derivations of how, in principle, three dimensional
affine information may be extracted from the image
(Fig. 1). In Section 3 we introduce an algebraic repre-

Although the schematic figures show the camera
centre at a finite location, the results we derive apply
also to the case of a camera centre at infinity, i.e. where
the images are obtained by parallel projection.

The basic geometry of the plane’s vanishing line and

sentation of the problem and show that this represen- the vanishing point are illustrated in Fig. 2. The van-
tation unifies the three canonical measurement types,ishing linel of the reference plane is the projection of
leading to simple formulae in each case. In Section 4 the line at infinity of the reference plane into the image.
we describe how errors in image measurements prop- The vanishing point is the image of the point at in-
agate to errors in the 3D measurements, and hence weinity in the reference direction. Note that the reference
are able to compute confidence intervals on the 3D direction need not be vertical, although for clarity we
measurements, i.e. a quantitative assessment of accuwill often refer to the vanishing point as the “vertical”
racy. The work has a variety of applications, and we vanishing point. The vanishing point is then the image
demonstrate three important ones: forensic measure-of the vertical “footprint” of the camera centre on the
ment, virtual modelling and furniture measurements in reference plane. Likewise, the reference plane will of-
Section 5. ten, but not necessarily, be the ground plane, in which
case the vanishing line is more commonly known as
the “horizon”.

It can be seen (for example, by inspection of Fig. 2)
that the vanishing line partitions all points in scene
space. Any scene point which projects onto the vanish-
ing line is at the same distance from the plane as the
camera centre; if it lies “above” the line it is farther
from the plane, and if “below” the vanishing line, then
it is closer to the plane than the camera centre.

a b 2.1. Measurements Between Parallel Planes
Figure 1 Measuring distances of points from a reference plane
(the ground) in a single image: (a) The four pillars have the same
height in the world, although their images clearly are not of the same
length due to perspective effects. (b) As shown, however, all pillars
are correctly measured to have the same height.

We wish to measure the distance (in the reference di-
rection) between two parallel planes, specified by the
image pointsx andx’. Figure 3 shows the geometry,
with pointsx andx’ in correspondence. We use upper
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Figure 2 Basic geometry: The plane’s vanishing lihis the in-
tersection of the image plane with a plane parallel to the reference |
plane and passing through the camera cedtrEhe vanishing point :
v is the intersection of the image plane with a line parallel to the a
reference direction through the camera centre.
Y
i wvanishing point
case lettersX) to indicate quantities in space and lower

case letters¥) to indicate image quantities.

Definition 1. Two points X, X’ on separate planes '"'“-~-$i
“-~.~]__ vanishing line

(parallel to the reference planegrrespondf the line
joining them is parallel to the reference direction.

Hence the images of corresponding points and the
vanishing point are collinear. For example, if the direc-
tion is vertical, then the top of an upright person’s head
and the sole of his/her foot correspond. If the world
distance between the two points is known, we term this
a reference distance.

We show that: b

Theorem 1. Given the vanishing line of a reference Figure 3 Distance between two planes relative to the distance of
S . . . the camera centre from one of the two planes: (a) in the world; (b) in
plane "_’md the vanishing point for a reference direction the image. The point on the planer corresponds to the poirt on
then d|5tanf395 f_rom the reference plane para_lle_l to the e planer’. The four aligned points, x, X' and the intersection
reference direction can be computed from their imaged of the line joining them with the vanishing line define a cross-ratio.
end points up to acommon scale factor. The scale factor The value of the cross-ratio determines a ratio of distances between

can be determined from one known reference length. Planes in the world, see text.

Proof: The four point, X/, ¢, v marked on Fig. 3(b)  using a line-to-line homography avoiding the ordering
define a cross-ratio (Springer, 1964). The vanishing ambiguity of the cross-ratio.

point is the image of a point at infinity in the scene For the case in Fig. 3(b) we can write
and the point, since it lies on the vanishing line, is

the image of a point at distané from the planer, / /
where Z. is the distance of the camera centre from d(x/, 0 dx, v) = d(X/’ © dX, V)
7. In the world the value of the cross-ratio provides dx,0dx.v) dX’,C)dX,V)
an affine length ratio which determines the distadce
between the planes containiXg andX (in Fig. 3(a)) whered(x1, X2) is distance between two generic points
relative to the camera’s distan&g from the planer X1 andxz. Since the; back projection of the points a
(or 7' depending on the ordering of the cross-ratio). point at infinity 57 = 1 and therefore the right
Note that the distanc can alternatively be computed hand side of (1) reduces tg%. Simple algebraic

1)
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manipulation on (1) yields

Z dx’,c)dx,v)

Z. T d(x,0dX,V) )

The absolute distance can be obtained from this dis-
tance ratio once the camera’s distaizgds specified.
However it is usually more practical to determine

the distanc& via a second measurement in the image,

that of a known reference length. In fact, given a known
reference distancé,, from (2) we can compute the
distance of the camerd; and then apply (2) to a new
pair of end points and compute the distazce O

We now generalize Theorem 1 to the following.

Definition 2. A set of parallel planes adeked if it

is possible to go from one plane to any other plane in

the set through a chain of pairsadrrespondingpoints
(see also Definition 1).

For example in Fig. 4(a) the planes, =, 7, andr,
are linked by the chain of correspondene€s« X,
Sg_ <> Sz, Rl <> Rz.

Theorem 2. Given a set of linked parallel plangthe
distance betweeany pair of planes is sufficient to de-
termine the absolute distance between any other, pair
the link being provided by a chain of point correspon-
dences between the set of planes.

Proof: Figure 4 shows a diagram where four parallel

planes are imaged. Note that they all share the same

vanishing line which is the image of the axis of the
pencil. The distanc&, between two of them can be
used as reference to compute the distafdzetween
the other two as follows:

e From the cross-ratio defined by the four aligned
pointsv, ¢, ro, r; and the known distancg, be-
tween the pointR; and R, we can compute the
distance of the camera from the plamng

point r
at
infinity} e

Figure 4 Distance between two planes relative to the distance be-
tween two other planes: (a) in the world; (b) in the image. The point
x on the planer corresponds to the poit on the planer’. The
points; corresponds to the poist. The pointr; corresponds to the
pointr,. The distanc&; in the world betweeR1; andR; is known

and used as reference to compute the distaheee text.

In Section 3.1 we give an algebraic derivation of
these results which avoids the need to compute the dis-
tance of the camera explicitly and simplifies the mea-
surement procedure.

Example. Figure 5 shows that a person’s height may
be computed from an image given a vertical reference
distance elsewhere in the scene. The ground plane is
reference. The height of the frame of the window has
been measured on site and used as the reference dis-

e That camera distance and the cross-ratio defined bytance (it corresponds to the distance betwReandR;

the four aligned pointy, ¢, 2, 1, determine the
distance between the planesand=. The distance
Z. of the camera from the plane is, therefore,
determined too.
e The distanceéZ; can now be used in (2) to compute
the distanceZ between the two planes and#«’.
O

in the world in Fig. 4(a)). This situation corresponds
to the one in Fig. 4 where the two poins andR;
(and therefores, andr;) coincide. The height of the
person is computed from the cross ratio defined by the
pointsx’, ¢, x and the vanishing point (c.f. Fig. 4(b)) as
described in the proof above. Since the pogiand

R; coincide the derivation is simpler.



Figure 5 Measuring the height of a person from single view: (a)
original image; (b) the height of the person is computed from the
image as 178.8 cm; the true height is 180 cm, but note that the
person is leaning down a bit on his right foot. The vanishing line is
shown in white; the vertical vanishing point is not shown since it lies
well below the image. The reference distance is in white (the height
of the window frame on the right). Compare the marked points with
the ones in Fig. 4.

2.2. Measurements on Parallel Planes

If the reference plane is affine calibrated (we know
its vanishing line) then from image measurements we
can compute:

1. ratios of lengths of parallel line segments on the
plane;
2. ratios of areas on the plane.

Moreover the vanishing line is shared by the pencil of
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compared directly. If the region is parallel projected in
the scene from one plane onto the other, affine mea-
surements can then be made from the image since both
regions are now on the same plane, and parallel pro-
jection between parallel planes does not alter affine
properties.

A map in the world between parallel planes induces
a projective map in the image between images of points
onthetwo planes. Thisimage map {ganar homology
(Springer, 1964), which is a plane projective transfor-
mation with five degrees of freedom, having a line of
fixed points called thaxis, and a distinct fixed point
not on the axis known as thertex Planar homologies
arise naturally in an image when two planes related by
a perspectivity in three-dimensional space are imaged
(Van Gool et al., 1998). The geometry is illustrated in
Fig. 6.

In our case the vanishing line of the plane, and the
vertical vanishing point, are, respectively, the axis and
vertex of the homology which relates a pair of planes
in the pencil.

The homology can then be parametrized agyilié
and Lingrand, 1999)

®3)

wherev is the vanishing point, is the plane vanish-
ing line andu is a scale factor. Thus and| specify
four of the five degrees of freedom of the homology.
The remaining degree of freedom of the homolqgy,

is uniquely determined from any pair of image points
which correspond between the planes (poingsdr’

in Fig. 6).

Once the matrif is computed each point on a plane
can be transferred into the corresponding point on a
parallel plane a8’ = Hx. An example of thislomology
mappingis shown in Fig. 7.

Consequently we can compare measurements made
on two separate planes. In particular we may compute:

1. the ratio between two lengths measured along par-
allel lines, one length on each plane;

2. the ratio between two areas, one area on each
plane.

planes parallel to the reference plane, hence affine mea-
surements may be obtained for any other plane in the
pencil. However, although affine measurements, such In fact we can simply transfer all points from one plane
as an area ratio, may be maatea particular plane, the  to the reference plane using the homology and then,
areas of regions lying on two parallel planes cannot be since the reference plane’s vanishing line is known we
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Figure 6 Homology mapping between imaged parallel planes: (a)
A point X on planer is mapped into the poirX’ on=’ by a parallel
projection. (b) In the image the mapping between the images of the
two planes is a homology, whereis thevertexandl| the axis The
correspondence— r’ fixes the remaining degree of freedom of the
homology from the cross-ratio of the four pointsi, r’ andr.

may make affine measurements in the plane, e.g. ratios

of lengths on parallel lines or ratios of areas.

Example. Figure 8 shows an example. The vanishing
line of the two front facing walls and the vanishing
point are known as is the point correspondenagin
the reference direction. The ratio of lengths of parallel
line segments is computed by using formulae given in
Section 3.2.

Notice that errors in the selection of point positions
affect the computations; the veridical values of the ra-
tios in Fig. 8 are exact integers. A proper error analysis

2.3. Determining the Camera Position

In Section 2.1, we computed distances between planes
as aratio relative to the camera’s distance from the ref-
erence plane. Conversely, we may compute the cam-
era’s distanceZ. from a particular plane knowing a
single reference distancg .

Furthermore, by considering Fig. 2 it is seen that the
location of the camera relative to the reference plane
is the back-projection of the vertical vanishing point
onto the reference plane. This back-projection is ac-
complished by a homography which maps the image
to the reference plane (and vice-versa). Although the
choice of coordinate frame in the world is somewhat
arbitrary, fixing this frame immediately defines the
homography uniquely and hence the camera position.

3. Algebraic Representation

The measurements described in the previous section
are computed in terms of cross-ratios. In this sec-
tion we develop a uniform algebraic approach to the
problem which has a number of advantages over direct
geometric construction: first, it avoids potential prob-
lems with ordering for the cross-ratio; second, it en-
ables us to deal with both minimal or over-constrained
configurations uniformly; third, we unify the different
types of measurement within one representation; and
fourth, in Section 4 we use this algebraic representation
to develop an uncertainty analysis for measurements.
To begin we define an affine coordinate sysiwy
in space (Koenderink and Van Doorn, 1991; Quan and
Mohr, 1992). Let the origin of the coordinate frame lie
on the reference plane, with tieandY -axes spanning
the plane. Th&-axis is the reference direction, which
is thus any direction not parallel to the plane. Theimage
coordinate system is the usuay affine image frame,
and a poinX in space is projected to the image point
X via a 3x 4 projection matrixp as:

X =PX = [p1 P2 pP3 p4] X

wherex andX are homogeneous vectors in the form:
X=Xy, w, X=(XY,Z WT, and="means
equality up to scale.

If we denote the vanishing points for the¢ Y and
Z directions as (respectively), vy andv, then it is
clear by inspection (Faugeras, 1993) that the first three

is necessary to estimate the uncertainty of these affinecolumns ofP are the vanishing pointsx = p1, vy =

measurements.

p. andv = ps, and that the final column df is the



Single View Metrology 129

Figure 7. Homology mapping of points from one plane to a parallel one: (a) original image, the floor and the top of the filing cabinet are parallel
planes. (b) Their common vanishing line (axis of the homology, shown in white) has been computed by intersecting two sets of horizontal edges.
The vertical vanishing point (vertex of the homology) has been computed by intersecting vertical edges. Two correspondingnuioirdase

selected and the homology computed. Three corners of the top plane of the cabinet have been selected and their corresponding points on the floor
computed by the homology. Note that occluded corners have been retrieved too. (c) The wire frame model shows the structure of the cabinet;
occluded sides are dashed.

phy. This homography must have rank three, otherwise
the reference plane toimage map is degenerate. Conse-
quently, the final column (the origin of the coordinate
system) must not lie on the vanishing line, since if it
does then all three columns are points on the vanishing
line, and thus are not linearly independent. Hence we
setitto beps = I/| 1] =1.

Therefore the final parameterization of the projec-
tion matrixP is:

P=[1f1}avT] (4)

whereq is a scale factor, which has an importaoler™
to play in the remainder of the paper.

Note that the vertical vanishing poimimposes two
constraints on th@ matrix, the vanishing liné im-
poses two and the parameter only one for a total of
Figure8 Measuring ratio of lengths of parallel line segments lying ~ five independent constraints (at this stage the first two
on two parallel scene planes: The poin@sndr’ (together with the columns of theP matrix are not completely known;
plane vanishing line and the vanishing point) d_efi_ne the homology the only constraint is that they are orthogonal to the
between the two planes on the facade of the building. plane Vanishing ling, IiT = O). In general however

theP matrix has eleven d.o.f., which can be regarded as

comprising eight for the world-to-image homography
projection of the origin of the world coordinate system, induced by the reference plane, two for the vanishing
0 = ps. Since our choice of coordinate frame has¥he  point and one for the affine parameterin our case

andY axes in the reference plape = vx andp,; = vy the vanishing line determines two of the eight d.o.f. of
are two distinct points on the vanishing line. Choosing the homography.
these fixes theX and Y affine coordinate axes. We In the following sections we show how to com-

denote the vanishing line Hy and to emphasize that pute various measurements from this projection matrix.
the vanishing pointey andvy lie onit, we denotethem  Measurements of distances between planes are inde-
byl I3, with - -1 = 0. pendent of the first two (in general under-determined)
Columns 1, 2 and 4 of the projection matrix are the columns of. If vandl are specified, the only unknown
three columns of the reference plane toimage homogra-quantity for these measurements ds Coordinate
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measurements within the planes depend on the first  Sincep,-T = p,-1 = 0 andp,-1 = 1, taking the
two and the fourth columns af. These columns de-  scalar product of (5) with yields p = - x and there-
fine an affine coordinate frame within the plane. Affine  fore (6) can be rewritten as

measurements (e.g. area ratios), though, are indepen-

dent of the actual coordinate frame and depend only on X = p/ (f + az\,) (7)

the fourth column of. If any metric information on p

the plane is known, we may impose constraints on the By taking the vector product of both terms of (7)
choice of the frame. with X’ we obtain

Xx X =—aZp(VxX) (8)

3.1. Measurements Between Parallel Planes
and, finally, taking the norm of both sides of (8) yields

3.1.1. Distance of a Plane from the Reference Plane 1X % X
7. We wish to measure the distance between scene ol=———""— (9)
planes specified by a poii and a pointX’ in the (-3 fv > x|
scene (see Fig. 3(a)). These points may be chosen as Sincex Z scales linearly withy, affine structure has
respectivelyX = (X,Y,0 " andX’ = (X, Y, 2)T, and been obtained. i is known, then a metric value fat
their images ar& andx’ (Fig. 9). If P is the projection can be immediately computed as:

matrix then the image coordinates are X x X
X

= (10)
X X (P4 - X)[Ip3 x X||
Y ) Y Conversely, ifZ is known (i.e. it is a reference dis-
X=P ol X =P 7 tance) then (9) provides a means of computingnd
1 1 hence removing the affine ambiguity.
) . Metric Calibration from Multiple References.If more
The equations above can be rewritten as than one reference distance is known then an estimate
of @ can be derived from an error minimization algo-
X = p(Xp1+ YpP2 + pa) (5) rithm. We here show a special case where all distances
X = p'(Xp1+ YpPa2 + Zps + pa) (6) are measured from the same reference plane and an al-

gebraic error is minimized. An optimal minimization
algorithm will be described in Section 4.2.1.

wherep andp’ are unknown scale factors, apdis the For the ith reference distanceZ; with end

i th column of theP matrix.

pointsr; andr; we define:g = [[ri x r{|l, pi =l-r;,
vi = v x r{|l. Therefore, from (9) we obtain:
v
aZpiyy = —pi (11)
Note that all the points; are images of world points
_ R; on the reference plane.
— 1 ) We now define the x 2 matrixA (reorganising (11))

T —— as:

Zipiyr B

A=\ Zipyi B

Znpa¥n  Bn
Figure 9 Measuring the distance of a plamé from the parallel
reference plane, the geometry. wheren is the number of reference distances.
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Ifthere isno measurementerronos= 1thenAs = 0
wheres = (s; )T is a homogeneous 2-vector and

o=—= (12)

In generaln > 1 and uncertainty is present in the
reference distances. In this case we find the solution
s which minimizes||As||. That is the eigenvector of
the 2x 2 matrixM = AT A corresponding to its mini-
mum eigenvalue. The parameters finally computed . T '
from (12). ' Wiy 4LgN

With more reference distances, « is estimated
more accurately (see Section 4), but no more con-

Figure 10 Measuring heights using parallel lines: The vertical van-
ishing point and the vanishing line for the ground plane have been

straints are added on tiematrix. computed. The distance of the top of the window on the left wall
from the ground is known and used as reference. The distance of the

Worked example. In Fig. 10 the distance of a horizontal top of the window on the right wall from the ground is computed
line from the ground is measured. from the distance between the two horizontal lines whose images are

Ix andly. The top linely is defined by the top edge of the window,
and the linely is the corresponding one on the ground plane. The
distance between them is computed to be 294.3 cm.

e The vertical vanishing point is computed by intersecting
vertical (scene) edges;

All images of lines parallel to the ground plane intersect in
points on the horizon, therefore:

e A pointvj on the horizon is computed by intersecting the
edges of the planks on the right side of the shed;

e asecond poing, is computed by intersecting the edges of
the planks on the left side of the shed and the parallel edges
on the roof;

o the plane vanishing lineis computed by joining those two
points { = v1 x v2);

e the distance of the top of the frame of the window on the
left from the ground has been measured on site and used as
reference to compute as in (9).

e thelinely, the image of a horizontal line, is selected in the
image by choosing any two points on it;

e the associated vanishing point is computed avy =
Iy x 1

e the linely, which is the image of a line parallel tg in
the scene is constrained to pass throughtherefordy is
specified by choosing one additional point on it; Figure 11 Measuring the distance between any two plareand

e apointX’ is selected along the ling and its corresponding 7" parallel to the reference plame
pointx on the linely computed ag = (X' x v) x ly;

e Equation (10) is now applied to the pair of poinsx’ to
compute the distancg = 294.3 cm.

reference direction (Fig. 11), then we can parametrize
the new projection matrig’ as:

3.1.2. Distance Between any two Parallel Planes.
The projection matrie from the world to the image is
defined in (4) with respect to a coordinate frame on the
reference plane (Fig. 9). In this section we determine
the projection matrixp’ referred to the parallel plane
7" and we show how distances from the platiecan
be computed. L

Suppose the world coordinate system is translated 7 = _ XX (14)
by Z, from the planer onto the planer’ along the P'lIps x X”||

P’ = [p1 P2 P3 Z: P3 + Pa4] (13)

Note that ifZ, = 0 thenP’ = P as expected.
The distanc&’ of the planer” from the planer’ in
space can be computed as (c.f. (10)).
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Figure 12 Measuring heights of objects on separate planes: The
height of the desk is known and the height of the file on the desk is
computed.

with

’ X/'p4

P 1% Zps  pa

By inspection, since; - p; = 0 andp, - p4 = Othen

(I+ Z,pspj)H = H, hence the homology matrikis:
H=1I+ Zpsp,; (15)
Alternatively from the (4) the homology matrix can
be written as:
~ =T
H=TI+ yvl (16)
with v the vertical vanishing point, the normalized
plane vanishing line an¢t = «Z; (c.f. (3)).

If the distanceZ, and the last two columns of the
matrix P are known then the homology between the
two planeswt and«’ is computed as in (15). Other-
wise, if onlyv and| are known and two corresponding
pointsr andr’ are viewed, then the homology param-
eteryr in (16) can be computed from (9) (remember
thata Z, = ) without knowing either the distancg
between the two planes or theparameter.

Examples of homology transfer and affine measure-
ments are shown in Figs. 8 and 13.

Worked example. In Fig. 12 the height of a file on a desk
is computed from the height of the desk itself

e The ground is the reference planend the top of the desk
is the plane denoted as in Fig. 11;

e the plane vanishing line and vertical vanishing point are
computed as usual by intersecting parallel edges;

o the distanceZ; between the points andr’ is known (the
height of the desk has been measured on site) and use
compute thex parameter from (9);

e Equation (14)is now applied to the end points of the marke
segment to compute the height=32.0 cm.

J to

d

3.2. Measurements on Parallel Planes

As described in Section 2.2, given the homology be-
tween two planeg andr’ in the pencil we can transfer
all points from one plane to the other and make affine
measurements in either plane.

The homology between the planes can be derived
directly from the two projection matrices (4) and (13).
The plane-to-image homographies are extracted from
the projection matrices ignoring the third column, to
give:

H=[p1p2ps]l, H =[p1p2Zps+ psl

ThenH = HH~! maps image points on the plane
onto points on the plane’ and so defines the homology.

Worked example. In Fig. 13 we compute the ratio betweer|
the areas of two WindOW% in the world.

e The orthogonal vanishing poixtis computed by intersect-
ing the edges of the small windows linking the two fron
planes;

o the plane vanishing link(common to both front planes) is
computed by intersecting two sets of parallel edges on the
two planes;

e the only remaining parameteyr of the homologyd in (16)

is computed from (9) as
lIr > ']l
ad-nlvxr

v=—

e each of the four corners of the window on the left is trang
ferred by the homolog# onto the corresponding points on|
the plane of the other window (Fig. 13(b));

Now we have two quadrilaterals on the same plane

e the image is affine-warped pulling the plane vanishing line
to infinity (Liebowitz and Zisserman, 1998);

e theratio between the two areas in the world is computed
the ratio between the areas in the affine-warped image.

as

obtain % = 1.45.
2

3.3. Determining Camera Position
Suppose the camera centreds= (X¢, Ye, Zc, We) "
(see Fig. 2). Then sindaC = 0 we have

PC = plxc + p2Yc + pSZc + p4Wc =0 (17)



Figure 13 Measuring ratios of areas on separate planes: (a) original
image with two windows hilighted; (b) the left window is transferred
onto the plane identified by by the homology mapping (16). The
two areas now lie on the same plane and can, therefore, be compared
The ratio between the areas of the two windows is then computed as:

A
A—; = 1.45.

The solution to this set of equations is given (using
Cramer’s rule) by

Xe = —det [p2 p3 pa],
Y. = det ,
f [P1 P3 P4l 19)
Z; = —det [p1 p2 p4],
W, = det [p1 p2 pa]

and the location of the camera centre is defined.
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If @ is unknown we can write:
Xc = —det[p2 v p4,
Yc = det [p1 Vv pg],
19
aZc = —det [p1 p2 4, (19)
W, = det [p1 p2 V]

and we obtain the distan@g of the camera centre from
the plane up to the affine scale factorAs before, we
may upgrade the distan@g to metric with knowledge

of «, or use knowledge of the camera height to compute
« and upgrade the affine structure.

Note that affine viewing conditions (where the cam-
era centre is at infinity) present no problem in ex-
pressions (18) and (19), since in this case we have
1=[00%]" andv=[* * 0]". HenceW, = 0 so we ob-
tain a camera centre on the plane atinfinity, as expected.
This point onr ., represents the viewing direction for
the parallel projection.

If the viewpoint is finite (i.e. not affine viewing con-
ditions) then the formula fowZ. may be developed
further by taking the scalar product of both sides of
(17) with the vanishing liné. The result is

1

ale=———

(20)
l-v

Worked example. In Fig. 14 the position of the cameral
centre with respect to the chosen Cartesian coordinates sys
is determined.

Note that in this case we have chogerto be the poinbin
the figure instead df

e The ground planeX, Y plane) is the reference;

the vertical vanishing point is computed by intersectin
vertical edges;

the two sides of the rectangular base of the porch haj
been measured thus providing the position of four poin
on the reference plane. The world-to- image homograp
is computed from those points (Criminisi et al., 1999a);
the distance of the top of the frame of the window on th
left from the ground has been measured on site and used
reference to compute as in (9).
the 3D position of the camera centre is then computed sim-
ply by applying equations (18). We obtain

o

ve
S

ny

e
as

Xec=-381L0cm Y, = —6537cm Z. = 1628 cm

In Fig. 22(c), the camera has been superimposed into a virtpal

view of the reconstructed scene.

4. Uncertainty Analysis

Feature detection and extraction—whether manual or
automatic (e.g. using an edge detector)—can only be
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Figure 14 Computing the location of the camera: Equations (18)
are used to obtainX, = —3810 cm, Y, = —6537 cm, Z. =
1628 cm.

with A, the homogeneous 8 3 covariance of the
vanishing point and the variance? computed as in
Appendix D.

Sincepy =1 = |

T its covariance is:

9P  0Pa’

A =
Ps = 1 Mol

(23)

where the 3« 3 Jacobiarfb* is

ops 1T —IIT
A q.ni

4.2. Uncertainty on Measurements Between Planes

achieved to a finite accuracy. Any features extracted When making measurements between planes (10), un-
from an image, therefore, are subject to measurementscertainty arises from the uncertain image locations of
errors. In this section we consider how these errors the pointsx andx’ and from the uncertainty ip.
propagate through the measurement formulae in order ~ The uncertainty in the end pointsx’ of the length to

to quantify the uncertainty on the final measurements be measured (resulting largely from the finite accuracy
(Faugeras, 1993). This is achieved by using a first order with which these features may be located in the image)

error analysis.

We first analyse the uncertainty on the projec-
tion matrix and then the uncertainty on distance
measurements.

4.1. Uncertainty on th@ Matrix

The uncertainty irP depends on the location of the
vanishing line, the location of the vanishing point, and
on «, the affine scale factor. Since only the final two
columns contribute, we model the uncertaintpias a

6 x 6 homogeneous covariance matmig. Since the
two columns have only five degrees of freedom (two
for v, two forl and one fok), the covariance matrix is
singular, with rank five.

Assuming statistical independence between the two

column vectorps andp, the 6x 6 rank five covariance
matrix Ap can be written as:

A 0
Ap=|"P (21)
0 Apa

is modeled by covariance matricAg and Ay .

4.2.1. Maximum Likelihood Estimation of the End
Points and Uncertainties. In this section we assume
a noise-fre® matrix. This assumption will be removed
in Section 4.2.2.

Since in the error-free caseandx’ must be aligned
with the vertical vanishing point we can determine the
maximum likelihood estimates @ndX’) of their true
locations by minimizing the sum of the Mahalanobis
distances between the input poit&ndx’ and their
MLE estimatet and&’

min[(x2 — %2) A (X2 — %2)
X2,X5,
+0o— %) AS G- %] (24)
subject to thelignment constraint
V- XxX)=0 (25)

(the subscript 2 indicates inhomogeneous 2-vectors).
This is a constrained minimization problem. A

Furthermore, assuming statistical independence be-closed-form solution can be found (by the Lagrange

tweena andv, sinceps = av, we have:

Ap, =a?Ay + 2w (22)

multiplier method) in the special case that

AX'Z = J/ 2AX2



Figure 15 Maximum likelihood estimation of the end points: (a)
Original image (closeup of Fig. 16(b)). (b) The uncertainty ellipses
of the end pointsAx andA,/, are shown. These ellipses are defined
manually, and indicate a confidence region for localizing the points.
(c) MLE end pointsk andX’ are aligned with the vertical vanishing
point (outside the image).

with y a scalar, but, unfortunately, in the general
case there is no closed-form solution to the problem.
Nevertheless, in the general case, an initial solution
can be computed by using the approximation given in
Appendix B and then refining it by running a numerical
algorithm such as Levenberg-Marquardt.

Once the MLE end points have been estimated, we
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rewritten as:

Zo=—(pa-p3) " (27)

If we assume an exadt matrix, then the camera
distance is exact too, in fact it depends only on the
matrix elements oP. Likewise, the accuracy oE.
depends only on the accuracy of thenatrix.

Equation (27) map®°® into R, and the associated
1 x 6 Jacobian matri¥ Z. is readily derived to be

VZe=2%(p; P3)
and, from a first order analysis the varianceZgfis
2 _ T
07, = VZApVZ, (28)

whereAp is computed in Section 4.1.
The variances_ando{ oftheX, Y location of the

camera can be comupted in a similar way (Criminisi
et al., 1999a).

4.4. Example—Uncertainty on Measurements
Between Planes

use standard techniques (Faugeras, 1993; Clarke, 1998), {hjs section we show the effects of the number of

to obtain a first order approximation toTthe<44, rank-
three covariance of the MLE 4-vectdr = (X, %3).
Figure 15 illustrates the idea (see Appendix C for
details).

4.2.2. Uncertainty on Distance MeasurementsAs-
suming noise in both end points and in the projection
matrix, and statistical independence betweesndP
we obtain a first order approximation for the variance
of the distance&Z of a point from a plane:

A-

0
2 ¢ T
=
oz Z(o Ap) z

whereVz is the 1x 10 Jacobian matrix of the func-
tion (10) which maps the projection matrix and the end
pointsx, X’ to their world distanc&. The computation
of Vz is explained in detail in Appendix C.

(26)

4.3. Uncertainty on Camera Position

reference distances and image localization error on the
predicted uncertainty in measurements.

An image obtained from a security camera with a
poor quality lens is shown in Fig. 16(a). It has been cor-
rected for radial distortion using the method described
by Devernay and Faugeras (1995), and the floor taken
as the reference plane.

The scene is calibrated by identifying two points
V1, V2 on the reference plane’s vanishing line (shown
in white at the top of each image) and the vertical van-
ishing pointv. These points are computed by intersect-
ing sets of parallel lines. The uncertainty on each point
is assumed to be Gaussian and isotropic with standard
deviation 0.1 pixels. The uncertainty of the vanishing
line is derived from a first order propagation through
the vector product operatidn= v; x vo. The projec-
tion matrixP is therefore uncertain with its covariance
given by (21).

In addition the end points of the height to be mea-
sured are assumed to be uncertain and their covari-
ances estimated as in Section 4. The uncertainties in

The distance of the camera centre from the referencethe height measurements shown are computed as 3-

plane is computed according to (20) which can be

standard deviation intervals.
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Figure 16 Measuring heights and estimating their uncertainty: (a) Original image; (b) Image corrected for radial distortion and measurements
superimposed. With onlgnesupplied reference height the man’s height has been measured te b8@4+ 3.94 cm, (c.f. ground truth value

190 cm). The uncertainty has been estimated by using (26) (the uncertainty boug€Bistatdev.). (c) Withwo reference heights Z 190.4

+ 3.47 cm. (d) Withthreereference heights Z 190.4+ 3.27 cm. Note that in the limif\p =0 (error-freeP matrix) the height uncertainty
reduces to 2.16 cm for all (b, c, d); the residual error, in this case, is due only to the error on the two end points.

In Fig. 16(b) one reference height is used to compute ments decreases as the number of references increases
the affine scale factaw from (9) (i.e. the minimum (Figs. 17(b) and (c)). The measurement is the same as
number of references). Uncertainty has been assumedn the previous view (Fig. 16) thus demostrating invari-
in the reference heights, vertical vanishing point and ance to camera location.
plane vanishing line. Once is computed other mea- Figure 18 shows an example, where the height of the
surements in the same direction are metric. The height woman and the related uncertainty are computed for
of the man has been computed and shown in the figure.two different orientations of the uncertainty ellipses of
It differs by 4 mm from the known true value. the end points. In Fig. 18(b) the two input ellipses of

The uncertainty associated with the height of the Fig. 18(a) have been rotated by an angle of approx-
man is computed from (26) and displayed in Fig. 16(b). imately 40, maintaining the size and position of the
Note that the true height value falls always within the centres. The angle between the direction defined by
computed 3-standard deviation range as expected.  the major axes (direction of maximum uncertainty) of

As the number of reference distances is increased each ellipse and the measuring direction is smaller than
(see Figs. 16(c) and (d)), so the uncertaintydim fact in Fig. 18(a) and the uncertainty in the measurements
just ona) decreases, resulting in a decrease in uncer- greater as expected.
tainty of the measured height, as theoretically expected
(see Appendix D). Equation (12) has been employed, 4.5. Monte Carlo Test
here, to metric calibrate the distance from the floor.

Figure 17 shows images of the same scene with In this section we validate the first order error analysis
the same people, but acquired from a different point described above by computing the uncertainty of the
of view. As before the uncertainty on the measure- height of the man in Fig. 16(d) using our first order
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Figure 17 Measuring heights and estimating their uncertainty, second point of view: (a) Original image; (b) the image has been corrected for
radial distortion and height measurements computed and superimposecnéfthpplied reference height-2190.2+5.01 cm (c.f. ground
truth value 190 cm). (c) Withwo reference heights Z 190.4+ 3.34 cm. See Fig. 16 for details.

Figure 18 Estimating the uncertainty in height measurements for different orientations of the input 3-standard deviation uncertainty ellipses:
(a) Cropped version of image 16(b) with measurements superimposed62.8+ 2.5 cm (at 3-standard deviations). The ground truth is

Z =170 cm, it lies within the computed range. (b) the input ellipses have been rotated keeping their size and positioa-fb6H8Z 3.1 cm

(at 3-standard deviations). The height measurement is less accurate.

analytical method and comparing it to the uncertainty  Figure 19 shows the results of the test. The base point

derived from Monte Carlo simulations as described in israndomly distributed according to a 2D non-isotropic

Table 1. Gaussian about the mean locatio(on the feet of the
Specifically, we compute the statistical standard de- man in Fig. 16) with covariance matrix (Fig. 19(a)).

viation of the man’s height from a reference plane and Similarly the top point is randomly distributed accord-

compare it with the standard deviation obtained from ing to a 2D non-isotropic Gaussian about the mean

the first order error analysis. locationx’ (on the head of the man in Fig. 16), with
Uncertainty is modeled as Gaussian noise and de- covarianceAy (Fig. 19(b)).

scribed by covariance matrices. We assume noise on The two covariance matrices are respectively:

the end points of the three reference distances. Uncer-

tainty is assumed also on the vertical vanishing point, (10.18 059> (4.01 022

the plane vanishing line and on the end points of the x = x =

height to be measured. 059 652 0.22 l36>
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<———~— Monte Carlo

———— First Order
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X“Epixel)

a

Figure 12 Monte Carlo simulation of the example in Fig. 16(d): (a)

I
X (pixel)

b

183 190 191

distance {cm)

¢

T 168 192

distribution of the input base yaind the corresponding 3-standard

deviation ellipse. (b) distribution of the input top poixitand the corresponding 3-standard deviation ellipse. Note that figures (a) and (b)
are drawn at the same scale. (c) the analytical and simulated distributions of the computed distBinegwo curves are almost perfectly

overlapping.

Table 1 Monte Carlo simulation.

e for j =1to S (withS= number of samples)

nd

For each reference: given the measured reference 6
pointsr (on the reference plane) andgenerate a ran-
dom base point;, a random top point; and a random
reference distancérJ according to the associated co
variances.

Generate a random vanishing point according to i
covarianceA,.

Generate a random plane vanishing line according
its covariance\,.

Compute thex parameter by applying (12) to the ref-
erences, and the currehimatrix (4).

Generate a random base poijtand a random top
pointx’j for the distance to be computed according tp
their respective covariancesy and Ay .

Project the points; andx’j onto the best fitting line
through the vanishing point (see Section 4.2.1).
Compute the current distan@g by applying (10).

n

to

The statistical standard deviation of the population of sin]
ulatedZ; values is computed as

Y2 - 2)?
S
and compared to the analytical one (26).

2
oS =

Suitable values for the covariances of the three ref-
erences, the vanishing point and the vanishing line
have been used. The simulation has been run with
S = 10000 samples.

Analytical and simulated distributions @fare plot-
tedin Fig. 19(c); the two curves are almost overlapping.
Slight differences are due to the assumptions of statisti-
cal independence (21, 22, 26) and first order truncation
introduced by the error analysis.

A comparison between statistical and analytical
standard deviations is reported in the table below with
the corresponding relative error:

First Order Monte Carlo  relative error
’ loz—o%|

oz 7z G

1.091cm 1.087 cm 0.37%

Note thatZ = 19045 cm and the associated first order
uncertainty 3« oz = 3.27 cm is shown in Fig. 16(d).

In the limit Ap = 0 (error-freeP matrix) the simu-
lated and analytical results are even closer.

This result shows the validity of the first order ap-
proximation in this case and numerous other examples
have followed the same pattern. However some care
must be exercised since as the input uncertainty in-
creases, not only does the output uncertainty increases,
but the relative error between statistical and analytical
output standard deviations also increases. For large co-
variances, the assumption of linearity and therefore the
first order analysis no longer holds.

This is illustrated in the table below where the rel-
ative error is shown for various increasing values of
the input uncertainties. The uncertainties of references
distances and end points are multiplied by the increas-
ing factory ; for instance, ifA4 is the covariance of the
image pointx thenAy(y) = y2A,.

1 5 10 20 30

loz-o7l 6 037 168 3.15 871 16.95
oz
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Figure 20 The height of a person standing by a phonebox is computed: (a) Original image. (b) The ground plane is the reference plane, and
its vanishing line is computed from the paving stones on the floor. The vertical vanishing point is computed from the edges of the phonebox,
whose height is known and used as reference. Vanishing line and reference height are shown. (c) The computed height of the person and the
estimated uncertainty are shown. The veridical height is 187 cm. Note that the person is leaning slightly on his right foot.

In theaffine caséwhen the vertical vanishing point  described in Section 4 to give the 2.2 cm 3-standard
and the plane vanishing line are at infinity) the first deviation uncertainty range shown in Fig. 20(c).
order error propagation is exact (no longer just an ap-
proximation as in the general projective case), and the 5.2 Eurniture Measurements
analytic and Monte Carlo simulation results coincide.

In this section another application is described. Heights
of furniture like shelves, tables or windows in an indoor
environment are measured.

Figure 21(a) shows a desk in The Queen’s College
upper library in Oxford. The floor is the reference plane
A common requirement in surveillance images is to and its vanishing line has been computed by intersect-

obtain measurements from the scene, such as the heigth_ edges of the roorboards._The verf[ical vanishi_ng
of a felon. Although, the felon has usually departed the POINt has been computed by intersecting the vertical

scene, reference lengths can be measured from fixtureseedg-:’_es of the k_)ookshelf. The vani;hing line is shown
such as tables and windows. in Fig. 21(b) with the reference height used. Only one

In Fig. 20 we compute the height of the suspicious reference height (minimal set) has been used in this

person standing next to the phonebox. The ground istheex_?anle' d heigh q iated .
reference plane and the vertical is the reference direc- '€ Computed heights and assoclated uncertainties

tion. The edges of the paving stones are used to compute?® SNoWn in Fig. 21(c). The uncertainty bound-8

the plane vanishing line, the edges of the phonebox to standqrd_ deviations. Note that th_e ground truth aIV\_/ays
compute the vertical vanishing point; and the height of falls within the computed uncertainty range. The height

the phonebox provides the metric calibration in the ver- °f the camera is computed as 1.71 m from the floor.

tical direction (Fig. 20(b)). The height of the person is

then computed using (10) and shown in Fig. 20(c). The 5.3. Virtual Modelling

ground truth is 187 cm, note that the person is leaning

slightly down on his right foot. In Fig. 22 we show an example of complete 3D recon-
The associated uncertainty has also been estimatedstruction of a real scene from a single image. Two sets

two uncertainty ellipses have been defined, one on of horizontal edges are used to compute the vanishing

the head of the person and one on the feet and thenline for the ground plane, and vertical edges used to

propagated through the chain of computations as compute the vertical vanishing point.

5. Applications

5.1. Forensic Science
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Figure 21 Measuring height of furniture in The Queen’s College Upper Library, Oxford: (a) Original image. (b) The plane vanishing line
(white horizontal line) and reference height (white vertical line) are superimposed on the original image; the marked shelf is 156 cm high. (c)
Computed heights and related uncertainties; the uncertainty boungt&sitl.dev. The ground truth is: 115 cm for the right hand shelf, 97 cm

for the chair and 149 cm for the shelf at the left. Note that the ground truth always falls within the computed uncertainty range.

The distance of the top of the window to the ground, in the foreground with the height of the people in the
and the height of one of the pillars are used as refer- background.
ence heights. Furthermore the two sides of the base of By assuming a square floor pattern the ground plane
the porch have been measured thus defining the metrichas been rectified and the position of each object esti-
calibration of the ground plane. mated (Liebowitz et al., 1999; Criminisi et al., 1999a,

Figure 22(b) shows a view of the reconstructed Sturm and Maybank, 1999). The scale of floor relative
model. Notice that the person is represented simply to heights is set from the ratio between height and base
as a flat silhouette since we have made no attempt toof the frontoparallel archway. The measurements, up
recover his volume. The position of the camera centre to an overall scale factor are used to compute a three
is also estimated and superimposed on a different view dimensional VRML model of the scene.

of the 3D model in Fig. 22(c). Figure 23(c) shows a view of the reconstructed
model. Note that the people are represented as flat sil-
5.4. Modelling Paintings houettes and the columns have been approximated with

cylinders. The partially seen ceiling has been recon-

Figure 23 shows a masterpiece of Italian Renaissancestructed correctly. Figure 23(d) shows a different view
painting, “La Flagellazione di Cristo” by Piero della  Of the reconstructed model, where the roof has been
Francesca (1416-1492). The painting faithfully fol- removed to show the relative position of the people in
lows the geometric rules of perspective, and therefore the scene.
the methods developed here can be applied to obtain a
3D reconstruction of the scene.

Unlike other techniques (Horry et al., 1997) whose 6. Summary and Conclusions
main aimis to create convincing new views of the paint-
ing regardless of the correctness of the 3D geometry, We have explored how the affine structure of three-
here we reconstruct a geometrically correct 3D model dimensional space may be partially recovered from
of the viewed scene (see Fig. 23(c) and (d)). perspective images in terms of a set of planes paral-

In the painting analysed here, the ground plane is lel to a reference plane and a reference direction not
chosen as reference and its vanishing line computed parallel to the reference plane.
from the several parallel lines on it. The vertical van-  Algorithms have been described to obtain different
ishing point follows from the vertical lines and con- kinds of measurements: measuring the distance be-
sequently the relative heights of people and columns tween planes parallel to a reference plane; computing
can be computed. Figure 23(b) shows the painting with area and length ratios on two parallel planes; comput-
height measurements superimposed. Christ’s height ising the camera’s location.
taken as reference and the heights of the other peo- Afirstorder error propagation analysis has been per-
ple are expressed as relative percentage differencesformed to estimate uncertainties on the projection ma-
Note the consistency between the height of the people trix and on measurements of point or camera location
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Figure 22 Complete 3D reconstruction of a real scene: (a) original image; (b) a view of the reconstructed 3D model; (c) A view of the
reconstructed 3D model which shows the position of the camera centre (plane location X, Y and height) with respect to the scene.

in the space. The error analysis has been validated bytween planes. One case where the method does not

using Monte Carlo statistical tests. apply therefore is that of measuring the distance of a
Examples have been provided to show the computed general 3D point to a reference plane (the correspond-
measurements and uncertainties on real images. ing point on the reference plane is undefined). Here the

More generally, affine three-dimensional space may homology is under-determined.
be represented entirely by sets of parallel planesand di- One case of interest is when only one view is pro-
rections (Berger, 1987). We are currently investigating vided and a light-source casts shadows onto the ref-
how this full geometry is best represented and com- erence plane. The light-source provides restrictions

puted from a single perspective image. analogous to a second viewpoint (Robert and Faugeras,
1993; Reid and Zisserman, 1996; Reid and North,
6.1. Missing Base Point 1998; Van Gool et al., 1998), so the projection (in the

reference direction) of the 3D point onto the reference
A restriction of the measurement method we have pre- plane may be determined by making use of the homol-
sented is the need to identify corresponding points be- ogy defined by the 3D points and their shadows.
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Figure 23 Complete 3D reconstruction of a Renaissance painting-d&jlagellazione di Cristp(1460, Urbino, Galleria Nazionale delle

Marche). (b) Height measurements are superimposed on the original image. Christ's height is taken as reference and the heights of all the other
people are expressed as percent differences. The vanishing line is dashed. (c) A view of the reconstructed 3D model. The patterned floor has
been reconstructed in areas where it is occluded by taking advantage of the symmetry of its pattern. (d) Another view of the model with the roof
removed to show the relative positions of people and architectural elements in the scene. Note the repeated geometric pattern on the floor in
the area delimited by the columns (barely visible in the painting). Note that the people are represented simply as flat silhouettes since it is not
possible to recover their volume from one image, they have been cut out manually from the original image. The columns have been approximated
with cylinders.

Appendix A:  Implementation Details thogonal regression has been implemented to merge
manually selected edges together. Merging aligned
Edge Detection edges to create longer ones increases the accuracy of

their location and orientation. An example is shown in
Straight line segments are detected by Canny edge de-ig. 24(c).
tection at subpixel accuracy (Canny, 1986); edge link-
ing; segmentation of the edgel chain at high curvature
points; and finally straight line fitting by orthogonal re- Scene Calibration
gression to the resulting chain segments (Fig. 24(b)).
Lines which are projection of a physical edge in the Vanishing line and vanishing points can be estimated
world often appear broken in the image because of directly from the image andho explicit knowledge
occlusions. A simple merging algorithm based on or- of the relative geometry between camera and viewed
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which intersect in the same vanishing point (see Fig. 2)
(Barnard, 1983; Caprile and Torre, 1990). Therefore
two such lines are sufficient to define it. However, if

more than two lines are available a Maximum Like-

lihood Estimate algorithm (Liebowitz and Zisserman,

1998) is employed to estimate the point.

Computing the Vanishing Line.Images of lines par-
allel to each other and to a plane intersect in points on
the plane vanishing line. Therefore two sets of those
lines with different directions are sufficient to define
the plane vanishing line (Fig. 25).

If more than two orientations are available then the
computation of the vanishing line is performed by em-
ploying a Maximum Likelihood algorithm.

Appendix B: Maximum Likelihood Estimation
of End Points for Isotropic Uncertainties

Given two pointsx andx’ with distributionsAy and
Ay isotropic but not necessarily equal, we estimate
the pointsk andX’ such that the cost function (24) is
minimized and the alignment constraint (25) satisfied.
Itis a constrained minimization problem; a closed form
solution esists in this case.

The 2x 2 covariance matriceA, and Ay for the
two inhomogeneous end pointsand X' define two
circles with radiug = oy = oy andr’ = oy = oy
respectively.

The linel through the vanishing pointthat best fits
the pointsx andx’ can be computed as:

14 /1+&2
3
—(1+V1+E)v— vy

C .
with
Figure 24 Computing and merging straight edges: (a) original im-
age; (b) computed edges: some of the edges detected by the Canny r'dydy + rd;d;
. K . _ y
edge detector; straight lines have been fitted to them. (c) edges after E=2 (42 — o2 a2 — dz
merging: different pieces of broken lines, belonging to the same edge r ( x y) + r( X y)

in space, have been merged together.
whered andd’ are the following 2-vectors:

scene is required. Vanishing lines and vanishing points
may lie outside the physical image (see Fig. 5), but this d=x-v d=x-v
does not affect the computations.
Note that this formulation is valid ¥ is finite.
Computing the Vanishing Point.All world lines par- The orthogonal projections of the pointsand X’

allel to thereference directionare imaged as lines onto the linel are the two estimated homogeneous
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Figure 25 Computing the plane vanishing line: The vanishing line for the reference plane (ground) is shown in solid black. The planks on

both sides of the shed define two sets of lines parallel to the ground (dashed); they intersect in points on the vanishing line.

pointsX andX’:

Ly(x - Fl) = Iyl,,
—l (X Fl) — Iyl
1Z+13
(29)
ly(X - Fl) = Iy,
K = | =X -Fly =1,
1Z+12

with F = [_O1 é 8].
The pointsk andX’ obtained above are used to pro-
vide an initial solution in the general non-isotropic co-

variance case, for which closed form solution does not
exist. In the general case the non-isotropic covariance

matricesAx and A, are approximated with isotropic
ones with radius

r=|detAIY* 1 = |detAy)|M*

In order to simplify the following development we
define the pointsh = x on the planer; andt = x’' on
the planer’ corresponding ta.

It can be shown that the»4 4 covariance matri\.;
of the vector¢ = (by by f, f,)" (MLE top and base
points, see Section (4.2.1)) can be computed by using
theimplicit function theoren{Clarke, 1998; Faugeras,
1993) as:

A; =A""BABTATT (30)
Wherec = (bX7 byv tX’ ty» p13’ p233 p33)T and
A, 0 O
Ac=|0 A 0 (31)
0 0 Ap

Ap and A; are the 2« 2 covariance matrices of the
pointsb andt respectively and\p, is the 3x 3 covari-
ance matrix of the vectqy; = av defined in (4). Note
that the assumption of statistical independence in (31)

then (29) is applied and the solution end points are js g valid one.

refined by using a Levenberg-Marquardt numerical
algorithm to minimize the (24) while satisfying the
alignment constraint (25).

Appendix C: Variance of Distance
Between Planes

Covariance of MLE End Points

In Appendix B we have shown how to estimate the
MLE points X and X. We here demonstrate how to
compute the 4x 4 covariance matrix of the MLE 4-
vector¢ = (XTXT)T from the covariances of the input
pointsx and x’ and the covariance of the projection
matrix.

The matrixa in (30) is the the following 4 4 matrix

A= .¥)
r —elf - 6 _ezb . 6
A = Je,Sb, 3e,0b, — TAP33
TAP33 — 8¢, Sh, _(Sey(sbx
L —Td, 76,
[ —Apssdy, AP33dt,
Ay — _Tezll — APasdp, —TE€}, — AP3adh,
—7€}, + APasdh, —T€, + AP3adh,
T5by —‘L’(Sb><

where we have defined:



o B =A[" andal itsijth element;

e E, = A,! ande® andé) respectively its first and
second row;,

o P = (P P23) ', 6t = past — p,
6b=p33b—p,6e=%—ebi; 6 )

o 7= (psx D)y — (p3 x D)y, 2 = 20,

The matrixB in (30) is the following 4x 7 matrix:

B=[B1 : By

re-6 &6 0 0
B, = _Sex5by _Seyfsby re‘ll retlz
e, O, 8ey8bx ‘L'etlz ‘L’G‘/tzz
L O 0 0 0
[ Ay —A8t, —Av1
B, — —Adp, =Mt +38p,) Az
AT + db,) Adb, —Avs3
L t(fy — By) I(BX -t TVs

where we have defined

v1 = fy(pastc — pusfy)

vy = By(p13 + P23) — Pa(tx + )
v3 = by(p1a+ Paa) — pua(fx + fy)
va = 4B, — £,
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The variancer? of the measuremer# depends on
the covariance of thé‘ vector and the covariance of
the 6-vectorp = (p§ p;)" computed in Section 4.1.
If ﬁ’ andp are statistically independent, then from first
order error analysis

A: O
2 ¢ T
=V v 32
0z z( 0 ‘p> z (32)

the 1x 10 JacobiarV z is:

F (f><6)><f _ pa T
B2 P
= ((Bxf)xﬁ _ (P3><f)><p3)
7 B? 2
(p3><f)xf
72
_b

o

Vv, =

whereF = [} 990
Note that the assumption of statistical independence
in (32) is an approximation.

Appendix D: Variance of the Affine Parameter o

In Section 8 the affine parameters obtained by com-
puting the eigenvectos with smallest eigenvalue of
the matrixATA (9). If the measured reference points
are noise-free, on = 1, thens = Null(A) and in

Note that if the vanishing point is noise-free then general we can assume that #®the residual error
A; has rank 3 as expected because of the alignments’ATAs= A ~ 0.

constramt

Variance of the Distance Measuremer,

We now use matrix perturbation theory (Golub and
Van Loan, 1989; Stewart and Sun, 1990; Wilkinson,
1965) to compute the covariandg; of the solution
vectors based on this zero approximation.

Note that theth row of the matrixA depends on the

As seen in Section 4.2.1 and 4.2.2 the components normalized vanishing ling on the vanishing point,

of the ¢ vector are used to compute the distarte
according to Eqg. (9) rewritten here as:

_ b x{
(pa - b)llps x i

with the MLE pointsf), t homogeneous with unit third
coordinate.
Let us define

B=Ibxtl, y=Ilpsxil, po=psa-b

on the reference end poirttg, tj and on reference dis-
tance<Z;. Uncertainty in any of those elements induces
an uncertainty in the matrikxand therefore uncertainty
in the final solutiors.

We now define the input vector

n= (Ix |y |w Ux Vy Uy Zl tj_x tj_y blx b]_y
T
Zn tn, tn, b, by))

which contains the plane vanishing line, the vanish-
ing point and the B components of tha references.
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Because of noise we have:
=n+dn
= (IxTy Ty Ox Dy By Z1 T, Ty, By, By, -
5 & & o AT
Zy th, tny bnX bny)
+ (8l 81y 81, Sy vy v, 8Z7 8ty Sty - - -
5Zp 8tn, 8tn, Sbn, Sbn,) "

where the ™’ indicates noiseless quantities.

We assume that the noise is gaussian with zero mean
and also that different reference distances are uncorre-

lated. However, the rows of thematrix are correlated
by the presence af andl in each of them.
The 1x 2 row-vector of the design matrixis

a = (ZipiviB)

withi =1...n
Because of the nois® = & + da; and

88 = (piyidZi + Ziyidpi + Zipidyidpi)

It can be shown thalp;, 31 andé§g; can be com-
puted as functions dfr and therefore, taking account
of the statistical dependence of the rows of th@a-
trix, the 2x 2 matricesE(sa" 8a;) Vi, j = 1---ncan
be computed.

Furthermore if we define the matrik= AT A then

M= (A+88)T (R +58)
—R'A+6ATE+ A SA+S5ATSA

ThusM = M+ 8M and for the first order approximation
we getsM = SATA + A 8A.

As noted the vectasis the eigenvector correspond-
ing to the null eigenvalue of the matrik the other
eigensolution isti, = X0, with T, the second eigen-
vector of theATA matrix andX, the corresponding
eigenvalue.

Itis proved in (Golub and Van Loan, 1989; Shapiro
and Brady, 1995) that the variation of the solutions is
related to the noise of the matnixas:

0,0]
A2

SMS

but sincesM3 = sATAS + &' 5ASandA% = O then

SME =4 ' 5A%

and thusss = Ji' sA3whereJ is simply

5 ey
A2
Therefore:
As=E[6s8S']
— JE[L sASsATA]T'

JE |:Zé1-T CEREDPENCE -§):| i
i=1 =1
JE [Z 5 (Z ajéT(aaTaaj)é)} i
—3 [Z (Z a3  E(sa Taa,)s)} 7T (33)

having used that

(83 -9 (53 -9 =3'(5a'68))3

Now considering that is a symmetric matrix
(3" = 3) Eq. (33) can be written as

As =383

wheres is the following 2x 2 matrix:
n n
S = Zé;r (ZangEij§>
i=1 =1

with Ejj = E(Sél-TSQj).

Note that many of the above equations require the
true noise-free quantities, which in general are not
available. Weng et al. (1989) pointed out that if one
writes, for instancel = A — §A and substitutes this
in the relevant equations, the term dn disappears
in the first order expression, allowingto be simply
interchanged withi, and so on. Therefore the2 2
covariance matrixg is simply

As= JSJ (34)
whereJ = —“ilf. The 2x 2 matrixs is:
n n
s=>a (Z a;5" Eij§> (35)
i1 =1



with g theith 1 x 2 row-vector of the design matrix
A andn the number of references.

The 2 x 2 covariance matrixAs of the vectors is
therefore computed.

Noise-Freev and|

In the caseA; =0 and A, =0 then (35) simply be-
comes:

S = Z a'as'Ejs (36)
i=1

in fact the rows of theA matrix are all statistically
independent.

Variance ofx

Itis easy to convert the 2 2 homogeneous covariance
matrix Ag in (34) into inhomogeneous coordinates. In
s(

fact, sinces = (s(1)s(2)) " ando = ?;) for afirstorder

error analysis the variance of the aizfine parametsr
02 =VaAVa' (37)
with the 1x 2 Jacobian

1
s(2)?

(s(2) = s(1))

Va =
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