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Tracking

Notes: link the detect, mean shift stuff to the kalman filter via data associ-
ation toward the end Notes: Example (s) for track by detect; less flow material,
with less detail; wierd data association needs fixing; be more explicit about dynamical
models and their usefulness

Tracking is the problem of generating an inference about the motion of an
object given a sequence of images. Generally, we will have some measurements
that appear at each tick of a (notional) clock. These measurements could be the
position of some image points, the position and moments of some image regions,
or pretty much anything else. They are not guaranteed to be relevant, in the sense
that some could come from the object of interest and some might come from other
objects or from noise. We will have an encoding of the object’s state, and some
model of how this state changes from tick to tick. We would like to infer the state
of the world from the measurements and the model of dynamics.

Tracking problems are of great practical importance. There are very good
reasons to want to, say, track aircraft using radar returns (good summary histories
include (Brown 2000, Buderi 1998, Jones 1998); comprehensive reviews of technique
in this context include (Bar-Shalom & Li 2001, Blackman & Popoli 1999, with
Staff of the Analytical Sciences Corporation 1974)). Other important applications
include:

• Motion Capture: If we can track the 3D configuration of a moving person
accurately, then we can make an accurate record of their motions. Once we
have this record, we can use it to drive a rendering process; for example,
we might control a cartoon character, thousands of virtual extras in a crowd
scene, or a virtual stunt avatar. Furthermore, we could modify the motion
record to obtain slightly different motions. This means that a single performer
can produce sequences they wouldn’t want to do in person.

• Recognition From Motion: the motion of objects is quite characteristic.
We may be able to determine the identity of the object from its motion; we
should be able to tell what it’s doing.

• Surveillance: Knowing what objects are doing can be very useful. For
example, different kinds of trucks should move in different, fixed patterns in
an airport; if they do not, then something is going wrong. Similarly, there
are combinations of places and patterns of motions that should never occur
(e.g., no truck should ever stop on an active runway). It could be helpful to
have a computer system that can monitor activities and give a warning if it
detects a problem case.

• Targeting: A significant fraction of the tracking literature is oriented to-
ward (a) deciding what to shoot, and (b) hitting it. Typically, this literature
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Section 1.1 Tracking by Detection 3

describes tracking using radar or infrared signals (rather than vision), but
the basic issues are the same — what do we infer about an object’s future
position from a sequence of measurements? Where should we aim?

Generally, we regard a moving object as having a state. This state — which
may not be observed directly — encodes all the properties of the object we care
to deal with, or need to encode its motion. For example, state might contain:
position; position and velocity; position, velocity and acceleration; position and
appearance; and so on. This state changes at each tick of time, and we then get new
measurements which depend on the new state. These measurements are referred to
as observations In many problems, the observations are measurements of state,
perhaps incorporating some noise. For example, the state might be the position
of the object, and we observe its position. In other problems, the observations
are functions of state. For example, the state might be position and velocity, but
we observe only position. In some tracking problems, we have a model of how the
state changes with time. The information in this model is referred to as the object’s
dynamics. Tracking involves exploiting both observations and dynamics to infer
state.

The most important property of visual tracking problems is that observations
are usually hidden in a great deal of irrelevant information. For example, if we
wish to track a face in a video frame, in most cases the face occupies fewer than
a third of the pixels in the video frame. In almost every case, the pixels that
do not lie on the face have nothing useful to offer about the state of the face.
This means that we face significant problems identifying which observations are
likely to be helpful. The main methods for doing so involve either building a
detector (section ??), or exploiting the tendency for objects to look the same over
time, and to move coherently (section ??). Dynamical information is more or
less helpful depending on the details of the application, but a significant number
of vision applications involve objects that are subject to large, poorly modelled
accelerations. In this case, dynamical information tends not to be helpful. However,
once we have identified useful observations, incorporating dynamical information is
relatively straightforward algorithmically (sections ?? and ??).

1.1 TRACKING BY DETECTION

Assume that we will only see one object in each frame of video, that the state we
wish to track is position in the image, and that we can build a reliable detector
for the object we wish to track. Then tracking is straightforward: we report the
location of the detector response in each frame of the video. This observation is a
good source of simple and effective tracking strategies, because we can build good
detectors for some objects. For example, consider tracking a red ball on a green
background, where the detector might just look for red pixels. In other cases, we
might need to use a more sophisticated detector: for example, we might wish to
track a frontal face looking at a camera (face detectors are discussed in detail in
section ??). There is a range of simple procedures that we can use to make this
strategy apply to cases where there are many objects in frame, where detections
are sometimes missed, and so on (section ??). An extremely important case is a
small image patch, and we can build strong tracking by detection strategies for such
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patches (section ??).

1.1.1 Tracking Multiple Objects with Unreliable Detectors

In most cases, we can’t assume only one object, or a reliable detector. If objects can
enter or leave the frame (or if the detector occasionally fails to detect something),
then it isn’t enough to just report the location of an object at each frame. We
must account for the fact that some frames have too many (or too few) objects in
them. To do this, we will have an abstraction called a track, which represents a
timeline for a single object. Assume that we have tracked for a while, and wish to
deal with a new frame. We copy the tracks from the previous frame to this frame,
and then allocate object detector responses to tracks. How we allocate depends on
the application (we give some examples below). Each track will get at most one
detector response and each detector response will get at most one track. However,
some tracks may not receive a detector response and some detector responses may
not be allocated a track. Finally, we deal with tracks that have no response and
with responses that have no track. For every detector response that is not allocated
to a track, we create a new track (because a new object may have appeared). For
every track that has not received a response for several frames, we prune that track
(because the object may have disappeared). Finally, we may postprocess the set
of tracks to insert links where justified by the application. Algorithm 1 breaks out
this approach.

The main issue in allocation is the cost model, which will vary from appli-
cation to application. We need a charge for allocating detects to tracks. For slow
moving objects, this charge could be the image distance between the detect in the
current frame and the detect allocated to the track in the previous frame. For
objects with slowly changing appearance, the cost could be an appearance distance
(e.g. a χ-squared distance between color histograms). How we use the distance
again depends on the application. In cases where the detector is very reliable, the
objects are few, well spaced and slow-moving, then a greedy algorithm (allocate the
closest detect to each track) is sufficient. This algorithm might attach one detector
response to two tracks; whether this is a problem or not depends on the application.
The more general algorithm solves a bipartite matching problem. The tracks form
one side of a bipartite graph, and the detector responses are the other side. Each
side is augmented by NULL nodes, so that a track (or response) can go unmatched.
The edges are weighted by matching costs, and we must solve a maximum weighted
bipartite matching problem (Figure ??; see ()), which can be solved by the Hun-
garian algorithm (see, for example, ()). In some cases, we know where objects can
appear and disappear, so that tracks can only be created for detects that occur in
some region, and tracks can be reaped only if the last detect occurs in a disappear
region.

Background subtraction is often a good enough detector in applications where
the background is known and all trackable objects look different from the back-
ground. In such cases, it can be enough to apply background subtraction, and
regard the big blobs as detector responses. This strategy is simple, but can be
very effective. One useful case occurs for people seen on a fixed background, like a
corridor or a parking lot. If the application doesn’t require a detailed report of the
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FIGURE 1.1: In tracking by detection, we must associate detector responses in the
current frame with tracks carried over from the previous frame. We compute a
weight for associating a particular track with a particular detector response; this
weight could involve information about how fast objects are expected to move, and
about the appearance of the response. Large weights are good and small weights are
bad. We must choose the matching that has the largest sum of weights. This is a
maximum weighted bipartite matching problem, where the one side of the bipartite
graph is the tracks and the other is the responses. A new track is created for any
response not matched to a track. Tracks that are not matched to responses for
several frames are dropped. In some cases, it is useful to attach null tracks and null
responses with a fixed association weight, to encourage tracks to be unmatched.

body configuration, and if we expect people to be reasonably large in view, we can
reason that large blobs produced by background subtraction are individual people.
Although this method has weaknesses — for example, if people are still for a long
time they might disappear; it would require more work to split up the large blob
of foreground pixels that occurs when two people are close together; and so on —
many applications require only approximate reports of the traffic density, or alarms
if a person appears in a particular view. The method is well suited to these such
cases.

This basic recipe for tracking by detection is worth remembering. In many
situations, nothing more complex is required. The trick of creating tracks promis-
cuously and then pruning any track that has not received a measurement for some
time is a quite general and extremely effective trick.

1.1.2 Matching Small Image Patches

Assume we have a small image patch in the start image of a sequence. It has enough
structure that we could expect to find it in other images (we will be precise about
what this means later). At the same time, it is small enough that we do not expect
complex deformations — the most that can happen is an affine transformation.
We can build a tracker by finding that patch in the second frame. We use the
location in the second frame to find the patch in the third frame, and so on. In
each case, we assume that there has been no significant deformation from frame to
frame, that is, that the patch has not foreshortened or shrunk very significantly in
an interframe interval, or, equivalently, the rotational and translational velocity of
objects is limited. With this assumption, it is enough to use a translation model
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Algorithm 1.1: The simplest tracking by detection

Notation:

Write xk(i) for the k’th response of the detector in the i’th frame
Write t(k, i) for the k’th track in the i’th frame
Write ∗t(k, i) for the detector response attached to the k’th track in the i’th
frame
(Think C pointer notation)

Assumptions: We have a detector which is reasonably reliable.
We know some distance d such that d(∗t(k, i− 1), ∗t(k, i)) is always small.

First frame: Create a track for each detector response.

N’th frame:

Link tracks and detector responses by solving a bipartite matching problem.
Spawn a new track for each detector response not allocated to a track.
Reap any track that has not received a detector response for some number of
frames.

Cleanup: We now have trajectories in space time. Link any where this
is justified (perhaps by a more sophisticated dynamical or appearance model,
derived from the candidates for linking).

to find the patch in the next frame. To check the result, we will compare each
match with the original using a more sophisticated deformation model (an affine
transformation), and if the comparison is poor enough, we will end that track
(the patch may have become occluded, and so on). This is a form of tracking by
detection, using the patch as a model.

There are two important steps. The first is to find how a patch has moved
from frame t to frame t + 1. In the most usual form of this algorithm, the patch
is found by minimizing the sum of squared differences error, or SSD. Write Pt

for the indices of the patch in the t’th frame and I(x, t) for the t’th frame. Assume
that the patch is at xt in the t’th frame, and it translates to xt + h in the t+ 1’th
frame. Then we can determine h by minimizing

E(h) =
∑

u∈Pt

[I(u, t)− I(u+ h, t+ 1)]
2

as a function of h. The minimum of the error occurs when

∇hE(h) = 0.

Now if h is small, we can write I(u + h, t+ 1) ≈ I(u, t) + hT∇I where ∇I is the
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image gradient. Substituting, and rearranging, we get

[

∑

u∈Pt

(∇I)(∇I)T

]

h =
∑

u∈Pt

[I(u, t)− I(u, t+ 1)]∇I

which is a linear system we could solve directly for h. The solution of this system
will be unreliable if the smaller eigenvalue of the symmetric positive semidefinite
matrix

[
∑

u∈Pt
(∇I)(∇I)T

]

is too small. This occurs when the image gradients in
P are all small — so the patch is featureless — or all point in one direction — so
that we cannot localize the patch along that flow direction. If the estimate of h is
unreliable, we must end the track.

The second important step is comparing the patch at the new location to the
original patch in the start frame. For small time changes, it is reasonable to model
an image patch as just translating. However, over a long time interval the surface
on which the patch lies might rotate in 3D, and so the image patch will deform.
This means that, if we simply translate the original patch to the current location,
we may see a poor match even if the location is right. To get a better estimate
of the match, we must assume a more complex deformation model. Because the
image patch is small, an affine model is appropriate. The affine model means that
the point x in frame one will become the point Mx+ c in frame t. To estimate M
and c, we will minimize

E(M, c) =
∑

u∈P1

[I(u, 1)− I(Mu+ c, t)]
2
.

Notice that, because we are comparing the original patch in frame 1 with that in
the current frame, the sum is over u ∈ P1. The expression for maxM and c, given
below, is developed using the same analysis as for the translation. Expression for

M, c

Once we have M and c, we can evaluate the SSD between the current patch and
its original, and if this is below a threshold the match is acceptable.

picture; algorithm

These two steps lead to a quite flexible mechanism. We can start tracks using
an interest point operator, perhaps a corner detector. To build a tracker that can
create and reap tracks as necessary, we find all interest points in frame one. We
then find the location of each of these in the next frame, and check whether the
patch matches the original one. If so, it belongs to a track. If not, the track has
ended. We now look for interest points or corners that don’t belong to tracks and
create new tracks there. Again, we advance tracks to the next frame, check each
against their original patch, reap tracks whose patch doesn’t match well enough
and create tracks at new interest points. In section ??, we show how to link this
procedure with a dynamical model.

1.2 TRACKING USING MATCHING

The most complex practical model for the deformation of a small image patch is an
affine transformation. While perspective effects occur, on small spatial scales they
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are hard to observe or to estimate. For a large patch, however, much more compli-
cated motion models can occur. This means that it is harder to build detectors for
large patches; for example, we have quite reliable frontal face detectors, but body
segment detectors don’t work terribly well. But if we know an appropriate motion
model, we can exploit the tendency of objects to have coherent appearance over
time. For example, if we are sure that body segments will only translate in the
image, we can use the arguments that a segment is rectangular, and that the seg-
ment in one frame will look like the same segment in the previous frame to estimate
that translation. As another example, imagine tracking a face in a webcam, which
is useful for those building user interfaces where the camera on top of a display
views the computer user. The face is not necessarily frontal, because computer
users occasionally look away from their monitors, and so a detector will not work.
But a face tends to be tends to be blobby, tends to have coherent appearance, and
tends only to translate and rotate.

As with the strategy of section ??, we have a domain of interest in the n’th
image, Dn, and we must search for a matching domain Dn+1 in the n+1’st image.
Now our motion model is more complex. There are two types of match we can work
with. In summary matching, we match summary representations of the whole
domain. We will represent a domain with a set of parameters; for example, we
could work with circular domains of fixed radius, and represent the domain by the
location of the center. We then compute a summary of the appearance within the
circle Dn and find the best-matching circle Dn+1 (section 1.2.1). In flow-based

matching, we search for a transformation of the pixels in the old domain that
produces set of pixels that match well, and so a good new domain. This allows us
to exploit strong motion models (section 1.2.2).

1.2.1 Matching Summary Representations

Look at the football player’s uniform in figure 1.2.1. From frame to frame, we see
the player’s back at different viewing angles. Individual pixels in one domain may
have no corresponding pixels in the next. For example, the cloth may have folded
slightly; as another example, there is motion blur in some frames. Nonetheless, the
domain is largely white, with some yellow patches. This suggests that a summary
representation of the domain may not change from frame to frame, even though
the fine details do.

There is a quite general idea here. Write the domain of interest in frame n as
Dn. If we are tracking a deforming object, pixels in Dn may have no corresponding
pixels in Dn+1 or the motion of the pixels might be extremely complex, and so we
should represent Dn with a well-behaved summary. If the patches deform, small
scale structures should be preserved, but the spatial layout of these structures may
not be. Example small scale structures include the colors of pixels, or the responses
of oriented filters. A histogram representation of these structures is attractive,
because two histograms will be similar only if the two patches have similar numbers
of similar structures in them, but the similarity is not disrupted by deformation.

We assume that we have a parametric domain, with parameters y, so that yn

represents Dn. For our treatment we assume the domain is a circle of fixed radius
whose center is at the pixel location y, but the method can be reworked to apply
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to other kinds of domain. The mean shift procedure yields one way to find the
Dn+1 whose histogram is most like that of Dn.

Measuring the distance between histograms

We assume that the features we are working with can be quantized so that
the histogram can be represented as a vector of bin counts, and we write this vector
as p(y) and its u’th component representing the count in the u’th bin is pu(y). We
wish to find the y whose histogram is closest to that at yn. We are comparing two
probability distributions which we can do with the Bhattacharyya coefficient

which is
ρ(p(y),p(yn)) =

∑

u

√

pu(y)pu(yn)

which will be one if the two are the same and near zero if they are very different.
To obtain a distance function, we can work with

d(p(y),p(yn)) =
√

1− ρ(p(y),p(yn)).

We will obtain yn+1 by minimizing this distance. We will start this search at y
(0)
n+1.

We assume that yn+1 is close to y
(0)
n+1, and that as a result p(yn+1) is similar to

p(y
(0)
n+1). In this case, a Taylor expansion of ρ(p(y),p(yn)) about p(y

(0)
n+1) gives

ρ(p(y),p(yn)) ≈
∑

u

√

pu(y
(0)
n+1)pu(yn) +

∑

u

(pu(y)− pu(y
(0)
n+1))

(

1

2

√

pu(yn)

pu(y
(0)
n+1)

)

=
1

2

∑

u

√

pu(y
(0)
n+1)pu(yn) +

1

2

∑

u

pu(y)

√

pu(yn)

pu(y
(0)
n+1)

and this means that, to minimize the distance, we must maximize

1

2

∑

u

pu(y)

√

pu(yn)

pu(y
(0)
n+1)

. (1.1)

Building a Histogram Now we need a method to construct a histogram
vector for the circle with center y. We expect we are tracking a deforming object, so
that pixels far away from the center of two matching circles may be quite different.
To deal with this, we should allow pixels far away from the center to have a much
smaller effect on the histogram than those close to the center. We can do this with
a kernel smoother. Write the feature vector (for example, the color) for the pixel

at location xi in the circle as f
(n)
i . This feature vector is d-dimensional. Write

the histogram bin corresponding to f
(n)
i as b(f

(n)
i ). Each pixel votes into its bin

in the histogram with a weight that decreases with ||xi − y ||according to a kernel

profile k. Two common choices are the Epanechnikov profile, which is

ke(r) =

{

1
2cd

(d+ 2)(1− r) if r < 1

0 otherwise
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(here cd is the volume of the d-dimensional sphere) or the normal profile, given
by

kn(r) = 2π
−d
2 exp

(

−r

2

)

.

The weight of the vote in bin u produced by f
(n)
i is given by k(||f

(n)
i − u ||

2
), where k

is a kernel profile. Using this approach, the fraction of total votes in bin u produced
by all features is

pu(y) = Ch

∑

i∈Dn

k(||
xi − y

h
||
2

)δ [b(f i − u)] (1.2)

where h is a scale, chosen by experiment, and Ch is a normalizing constant to ensure
that the sum of histogram components is one. This constant is given by

Ch =
∑

u

∑

i∈Dn

k(||
xi − y

h
||
2

)δ [b(f i − u)]

Substituting equation 1.2 into equation 1.1, we must maximize

f(y) =
Ch

2

∑

i

wik(||
xi − y

h
||
2

) (1.3)

where

wi =
∑

u

δ [b(f i − u)]

√

pu(yn)

pu(y
(0)
n+1)

.

Locating a Domain with Mean Shift

The mean-shift procedure maximizes expressions of the form of equation 1.3.
Write g for the derivative of the kernel profile k. We are seeking y such that

∇f = 0

=
Ch

2

∑

i

wi∇k(||
xi − y

h
||
2

)

=
Ch

h

∑

i

wi [xi − y]

[

g(||
xi − y

h
||
2

)

]

=
Ch

h

[

∑

iwixig(||
xi−y

h
||
2
)

∑

iwig(||
xi−y

h
||
2
)

− y

]

×

[

∑

i

wig(||
xi − y

h
||
2

)

]

.

We expect that
∑

i wig(||
xi−y

h
||
2
) is non-zero, so that the maximum occurs when

[

∑

iwixig(||
xi−y

h
||
2
)

∑

iwig(||
xi−y

h
||
2
)

− y

]

= 0
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30 75 140 150

FIGURE 1.2: Four frames from a sequence depicting football players, with superim-
posed domains. The object to be tracked is the blob on top of player 78 (at the center
right in frame 30). We have masked off these blobs (below) to emphasize just how
strongly the pixels move around in the domain. Notice the motion blur in the final
frame. These blobs can be matched to one another, and this is done by comparing
histograms (in this case, color histograms), which are less affected by deformation
than individual pixel values. Figure from “Kernel-Based Object Tracking” Dorin
Comaniciu, Visvanathan Ramesh, and Peter Meer, IEEE TPAMI 2003, c© IEEE
2003Shown in draft in the fervent hope of receiving permission for final version

or equivalently, when

y =

∑

iwixig(||
xi−y

h
||
2
)

∑

iwig(||
xi−y

h
||
2
)

The mean shift procedure involves producing a series of estimates y(j) where

y(j+1) =

∑

iwixig(||
xi−y(j)

h
||
2

)
∑

iwig(||
xi−y(j)

h
||
2
)

.

The procedure gets its name from the fact that we are shifting to a point which has
the form of a weighted mean. The complete algorithm appears in algorithm ??.

Notes: link to sift feature ideas; and perhaps to naive bayes

1.2.2 Matching and Flow

Assume we have a television view of a soccer field with players running around.
Each player might occupy a box about 10-30 pixels high, so it would be hard to
determine where arms and legs are (Figure ??). The frame rate is 30Hz, and body
parts don’t move all that much (compared to the resolution) from frame to frame. In
a case like this, we can assume that the domain translates. We can model a player’s
motion with two components. The first is the absolute motion of a box fixed around
the player and the second is the player’s movement relative to that box. To do so,
we need to track the box, a process known as image stabilization. As another
example of how useful image stabilization is, one might stabilize a box around an
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FIGURE 1.3: A useful application of tracking by matching is to stabilize an image box
around a more interesting structure, in this case a football player in a television-
resolution video. A frame from the video is shown on the left. Inset is a box around
a player, zoomed to a higher resolution. Notice that the limbs of the player span a
few pixels, are blurry and are hard to resolve. A natural feature to use to infer what
the player is doing can be obtained by stabilizing the box around the player, then
measuring the motion of the limbs with respect to the box. Players move relatively
short distances between frames, and their body changes configuration a relatively
small amount. This means the new box can be found by searching all nearby boxes
of the same size to get the box whose pixels best match those of the original. On
the right, a set of stabilized boxes; the strategy is enough to center the player in
a box. Figure from “Recognizing Action at a Distance”, Efros et al. , IEEE Int.
Conf. Computer Vision 2003, c© 2003 IEEE. Shown in draft in the fervent hope of
receiving permission for final version

aerial view of a moving vehicle; now the box contains all visual information about
the vehicle’s identity.

In each example, the box translates. If we have a rectangle in frame n, we
can search for the rectangle of the same size in frame n + 1 that is most like the
original. We can take the approach of section 1.1.2, and use the sum-of-squared

differences of pixel values as a test for similarity. If we write R
(n)
ij for the i, j’th

pixel in the rectangle in the n’th image, we choose R(n+1) to minimize

∑

i,j

(R
(n)
ij −R

(n+1)
ij )2.

We could use the approximation of section 1.1.2 to minimize this expression. Alter-
natively, in some applications the distance the rectangle can move in an inter-frame
interval is bounded because there are velocity constraints. If this distance is small
enough, we could simply evaluate the sum of squared differences to every rectangle
of the appropriate shape within that bound, or we might consider a search across
scale for the matching rectangle (see section ?? for more information). Notes:

good example for scale pyramid search.
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In the image stabilization example, we compared two domains by placing pix-
els within the domain in correspondence then comparing the corresponding pixels.
The correspondence is given by translating the pixels. More general correspondence
models are possible, and the most natural form is a flow model. Here the correspon-
dence is produced by a small motion, so that almost every pixel in frame n has a
corresponding pixel in frame n+1 and vice versa. For a small movement, we will see
relatively few new points, and lose relatively few points, so we can join each point
in the first frame to its corresponding point on the second frame (which is overlaid)
with an arrow. The head is at the point in the second frame, and, if the elapsed
time is short, the field of arrows can be thought of as the instantaneous movement
in the image. The arrows are known as the optical flow, a notion originally due
to Gibson (Gibson 1950).

Optical Flow and Motion

Flow is particularly informative about relations between the viewer’s motion,
usually called egomotion, and the 3D scene. For example, when viewed from a
moving car, distant objects have much slower apparent motion than close objects,
so the rate of apparent motion can tell us something about distance. As another
example, assume the egomotion is pure translation in some direction. Then the
image point in that direction, which is known as the focus of expansion will not
move, and all the optic flow will be away from that point (Figure ??). This means
that simply observing such a flow field tells us something about how we are moving.
Further simple observations tell us how quickly we will hit something. Assume the
camera points at the focus of expansion, and make the world move to the camera.
A sphere of radius R whose center lies along the direction of motion and is at depth
Z will produce a circular image region of radius r = fR/Z. If it moves down the Z
axis with speed V = dZ/dt, the rate of growth of this region in the image will be
dr/dt = −fRV/Z2. This means that

time to contact = −
Z

V
=

r

(dr
dt
)
.

The minus sign is because the sphere is moving down the Z-axis, so Z is getting
smaller and V is negative.

The object doesn’t need to be a sphere for this argument to work, and if the
camera is spherical we don’t need to be looking in the direction we are travelling
either. This means that an animal that is translating fast can get an estimate of
how long until it hits something very quickly and very easily.

Flow Models

We can work with flow either by searching parametric flow fields for a good
pixel correspondence, or by estimating an entire flow field. Generally, the latter is
difficult to do accurately, because it involves estimating a large number of parame-
ters (two per pixel). We will focus on parametric flow fields. The simplest method
to build flow models is to take a pool of examples of the types of flow one would
like to track, and try to find a set of basis flows that explains most of the variation
(for examples, see (Ju, Black & Yacoob 1996)). In this case, writing θi for the i’th
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FIGURE 1.4: A sphere of radius R approaches a camera along the Z-axis, at velocity
V . The image is a circle, which grows as the sphere gets closer. The flow is radial,
about a focus of expansion, and provides an estimate of the time to contact. This
estimate works for other objects, too, and is used by gannets and flies (at least!).

component of the parameter vector and F i for the i’th flow basis vector field, one
has

v(x) =
∑

i

θiF i

We can apply a singular value decomposition to reduce the number of parameters
(section ??). A second strategy is to assume that flows involve what are essentially
2D effects — this is particularly appropriate for lateral views of human limbs — so
that a set of basis flows that encodes translation, rotation and some affine effects
is probably sufficient. Write (x, y) for the components of x. One can obtain such
flows using the simple model

v(x) =

(

1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

)

























θ1
θ2
θ3
θ4
θ5
θ6
θ7
θ8

























.

This model is linear in θ, and provides a reasonable encoding of flows resulting from
3D motions of a 2D rectangle (see figure 1.5).

1.2.3 Tracking using Flow

Tracking using flow is straightforward once we have a family of flow models. We
write the image as a function of space and time as I(x, y, t), and scale and translate
time so that each frame appears at an integer value of t. We have a domain in the
n’th image, Dn. We must find the domain in the n+1’th image that matches best
under the flow model. We write ρ(u, v) for a cost function that compares two pixel
values u and v; this should be small when they match and large when they do not.
We write w(x) for a weighting of the cost function that depends on the location of
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FIGURE 1.5: Attribution: Figure 2 from Ju, Black and Yacoob, “Cardboard
People”, no permission yet Typical flows generated by the model (u(x), v(x)T =
(θ1 + θ2x + θ3y + θ7x

2 + θ8xy, θ4 + θ5x + θ6y + θyxy + θ8y
2). Different values

of the θi give different flows, and the model can generate flows typical of a 2D
figure moving in 3D. Divergence occurs when the image is scaled; for example,
θ = (0, 1, 0, 0, 0, 1, 0, 0). Deformation occurs when one direction shrinks and an-
other grows (for example, rotation about an axis parallel to the view plane in an
orthographic camera); for example, θ = (0, 1, 0, 0, 0,−1, 0, 0). Curl can result from
in plane rotation; for example, θ = (0, 0,−1, 0, 1, 0, 0, 0). Yaw models rotation
about a vertical axis in a perspective camera; for example θ = (0, 0, 0, 0, 0, 1, 0).
Finally, pitch models rotation about a horizontal axis in a perspective camera; for
example θ = (0, 0, 0, 0, 0, 0, 1).

the pixel. To find the new domain, we will find the best flow, and then allow our
domain to follow that flow model. Finding the best flow involves minimizing

∑

x∈Dn

w(x)ρ(I(x, n), I(x+ v(x; θ), n+ 1))

as a function of the flow parameters θ.

The cost function should not necessarily be the squared difference in pixel
values. We might wish to compute a more complex description of each location (for
example, a smoothed vector of filter outputs to encode local texture). Some pixels
in the domain might be more reliable than others; for example, we might expect
pixels near the boundary of the window to have more variation, and so we would
weight them down compared to pixels near the center of the window. Robustness is
another important issue. Outlier pixels, which are dramatically different from those
predicted by the right transformation, could be caused by dead pixels in the camera,
specularities, minor deformations on the object, and a variety of other effects. If
we use a squared error metric, then such outlier pixels can have a disproportionate
effect on the results. The usual solution is to adopt an M-estimator. A good choice
of ρ is

ρ(u, v) =
(u− v)2

(u − v)2 + σ2

where σ is a parameter (there is greater detail on M-estimators in section ??).
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We now have the best value of θ, given by θ̂. The new domain is given by

Dn+1 =
{

u | u = x+ v(x; θ̂), ∀x ∈ Dn

}

We can build domain models that simplify estimating Dn+1; for example, if the
domain is always a circle, then the flow must represent a translation, rotation and
scale, and we would allow the flow to act on the center, radius and orientation of
the circle.

Tracking can be started in a variety of ways. For a while, it was popular
to start such trackers by hand, but this is now rightly frowned on in most cases.
In some cases, objects always appear in a known region of the image, and in that
case one can use a detector to tell whether an object has appeared. Once it has
appeared, the flow model takes over.

The most important pragmatic difficulty with flow based trackers is their
tendency to drift. A detection based tracker has a single appearance model for an
object, encoded into the detector. This is applied to all frames. The danger is that
this model might not properly account for changes in illumination, aspect and so
on, and as a result will fail to detect the object in some frames. In contrast, a flow
based tracker’s model of the appearance of an object is based on what it looked like
in the previous frame. This means that small errors in localization can accumulate.
If the transformation estimated is slightly incorrect, then the new domain will be
incorrect; but this means the new appearance model is incorrect, and might get
worse. Correcting this drift requires a fixed, global model of appearance, like those
of section ??.

Another important pragmatic difficulty is that objects often don’t have ap-
pearance as fixed as one would like. Loose clothing is a particularly important
problem here, because it forms folds in different ways depending on the body con-
figuration. These folds are very minor geometric phenomena, but can cause signif-
icant changes in image brightness, because they shadow patches of surface. This
means that there can be a strong, time-varying texture signal that appears on the
body segments (Figure ??). While this signal almost certainly contains some cues
to configuration, they appear to be very difficult to exploit.

1.3 TRACKING WITH PROBABILITY

Notes: assume we are in a more difficult case and so on

In section ??, we described methods to match patches or object detector re-
sponses with tracks. This matching process is straightforward if we can be confident
that the thing we are matching hasn’t moved much — we search around the old
location for the best match. To know where to search, we don’t really need the
object to be slow-moving. Instead, if it moves in a predictable way, the motion
model can predict a search domain that might be far from the original location,
but still reliable. Exploiting dynamical information effectively requires us to fuse
information from observations with dynamical predictions. This is most easily done
by building a probabilistic framework around the problem. The algorithmic goal
is to maintain an accurate representation of the posterior on object state given
observations and a dynamical model.
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FIGURE 1.6: An important pragmatic difficulty with flow-based tracking is that ap-
pearance is not always fixed. The folds in loose clothing depend on body config-
uration, as these images of trousers indicated. The trousers were tracked using a
flow-based tracker, but enforcing equality between pixel values will be difficult, as the
patches indicated by the arrows suggest. The folds are geometrically small, but, be-
cause they produce cast shadows, have a disproportionate effect on image brightness.

We model the object as having some internal state; the state of the object
at the ith frame is typically written as Xi. The capital letters indicate that this
is a random variable — when we want to talk about a particular value that this
variable takes, we use small letters. The measurements obtained in the ith frame are
values of a random variable Y i; we write yi for the value of a measurement, and, on
occasion, we write Y i = yi for emphasis. In tracking, (sometimes called filtering or
state estimation) we wish to determine some representation of P (Xk|Y0, ..., Yk). In
smoothing, (sometimes called filtering) we wish to determine some representation
of P (Xk|Y0, ..., YN ) (i.e. we get to use ”future” measurements to infer the state).
These problems are massively simplified by two important assumptions.

• We assume measurements depend only the hidden state, that is, that P (Yk|X0, ..., XN , Y0, ..., YN ) =
P (Yk|Xk).

• We assume that the probability density for a new state is a function only of the
previous state; that is, P (Xk|X0, ..., Xk−1) = P (Xk|Xk−1), or, equivalently,
that Xi form a Markov chain.

We will use these assumptions to build a recursive formulation for tracking
around three steps:

• Prediction: We have seen y0, . . . ,yk−1 — what state does this set of mea-
surements predict for the ith frame? To solve this problem, we need to obtain
a representation of P (Xi|Y 0 = y0, . . . ,Y k−1 = yk−1). Straightforward ma-
nipulation of probability combined with the assumptions above yields that
the prior or predictive density is

P (Xk|Y 0 = y0, . . . ,Y k−1 = yk−1)) =

∫

P (Xk|Xk−1)P (Xk−1|Y0, ..., Yk−1)dXk−1

• Data association: Some of the measurements obtained from the i-th frame
may tell us about the object’s state. Typically, we use P (Xi|Y 0 = y0, . . . ,Y i−1 =
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yi−1) to identify these measurements. For example, we might use this pre-
dictive density to build a search location for the methods of section ??.

• Correction: Now that we have yi — the relevant measurements — we need
to compute a representation of P (Xi|Y 0 = y0, . . . ,Y i = yi). Straightfor-
ward manipulation of probability combined with the assumptions above yields
that the posterior is

P (Xk|Y 0 = y0, . . . ,Y k = yk) =
P (Yk = yk|Xk)P (Xk|Y 0 = y0, . . . ,Y k = yk)

∫

P (Yk = yk|Xk)P (Xk|Y 0 = y0, . . . ,Y k = yk)dXk

Representing these probability distributions can be very difficult if the dis-
tributions have an arbitrary form. However, if the measurement models and the
dynamical models are linear (in a sense to be described below), then all probabil-
ity distributions will turn out to be Gaussian. In turn, this means that tracking
and smoothing involve maintaining the values of the mean and covariance of the
relevant densities (section 1.3.2)

1.3.1 Linear Measurements and Linear Dynamics

We will use the simplest possible measurement model, where the measurement is
obtained from the state by multipying by some known matrix (which may depend
on the frame), and then adding a normal random variable of zero mean and known
covariance (which again may depend on the frame). We use the notation

x ∼ N(µ,Σ)

to mean that x is the value of a random variable with a normal probability distri-
bution with mean µ and covariance Σ. We write xk for the state at step k. Our
model is that P (Yk|Xk = xk) is a gaussian with mean Bkxk and covariance Σ.
Using the notation above, we can write our model as

yk ∼ N(Bkxk,Σk).

This model may seem limited, but is very powerful (it is the cornerstone of a huge
control industry). We do not need to observe the whole of the state vector at
any given time to infer it. For example, if we have enough measurements of the
position of a moving point we can deduce its velocity and its acceleration. This
means that the matrix Bk does not need to have full rank (and in most practical
cases it doesn’t).

In the simplest possible dynamic model, the state is advanced by multiplying it
by some known matrix (which may depend on the frame) and then adding a normal
random variable of zero mean and known covariance. Similarly, the measurement is
obtained by multiplying the state by some matrix (which may depend on the frame)
and then adding a normal random variable of zero mean and known covariance. We
can write our dynamic model as

xi ∼ N(Dixi−1; Σdi
);

yi ∼ N(Mixi; Σmi
).
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Notice that the covariances could be different from frame to frame as could the
matrices. Although this model appears limited, it is in fact extremely powerful; we
show how to model some common situations next.

Drifting Points Let us assume that x encodes the position of a point.
If Di = Id, then the point is moving under random walk — its new position
is its old position plus some Gaussian noise term. This form of dynamics isn’t
obviously useful because it appears that we are tracking stationary objects. It is
quite commonly used for objects for which no better dynamic model is known —
we assume that the random component is quite large and hope we can get away
with it.

This model also illustrates aspects of the measurement matrix M. The
most important thing to keep in mind is that we don’t need to measure every aspect
of the state of the point at every step. For example, assume that the point is in
3D: Now if M3k = (0, 0, 1), M3k+1 = (0, 1, 0), and M3k+2 = (1, 0, 0), then at
every third frame we measure, respectively, the z, y, or x position of the point.
Notice that we can still expect to track the point, even though we measure only
one component of its position at a given frame. If we have sufficient measurements,
we can reconstruct the state — the state is observable. We explore observability
in the exercises.

Constant Velocity Assume that the vector p gives the position and v the
velocity of a point moving with constant velocity. In this case, pi = pi−1+(∆t)vi−1

and vi = vi−1. This means that we can stack the position and velocity into a single
state vector, and our model applies (Figure 1.7). In particular,

x =

{

p

v

}

and

Di =

{

Id (∆t)Id
0 Id

}

.

Notice that, again, we don’t have to observe the whole state vector to make a useful
measurement. For example, in many cases, we would expect that

Mi =
{

Id 0
}

(i.e., that we see only the position of the point). Because we know that it’s moving
with constant velocity — that’s the model — we expect that we could use these
measurements to estimate the whole state vector rather well.

Constant Acceleration Assume that the vector p gives the position, vec-
tor v the velocity, and vector a the acceleration of a point moving with constant
acceleration. In this case, pi = pi−1 + (∆t)vi−1, vi = vi−1 + (∆t)ai−1, and
ai = ai−1. Again, we can stack the position, velocity and acceleration into a single
state vector, and our model applies (Figure 1.8). In particular,

x =







p

v

a
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FIGURE 1.7: A constant velocity dynamic model for a point on the line. In this case, the
state space is two dimensional — one coordinate for position, one for velocity. The figure
on the top left shows a plot of the state; each asterisk is a different state. Notice that the
vertical axis (velocity) shows some small change compared with the horizontal axis. This
small change is generated only by the random component of the model, so the velocity is
constant up to a random change. The figure on the top right shows the first component
of state (which is position) plotted against the time axis. Notice we have something
that is moving with roughly constant velocity. The figure on the bottom overlays the
measurements (the circles) on this plot. We are assuming that the measurements are of
position only, and are quite poor; as we see, this doesn’t significantly affect our ability to
track.

and

Di =







Id (∆t)Id 0
0 Id (∆t)Id
0 0 Id







.

Notice that, again, we don’t have to observe the whole state vector to make a useful
measurement. For example, in many cases, we would expect that

Mi =
{

Id 0 0
}

(i.e., that we see only the position of the point). Because we know that it’s moving
with constant acceleration — that’s the model — we expect that we could use these
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measurements to estimate the whole state vector rather well.
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FIGURE 1.8: This figure illustrates a constant acceleration model for a point moving on
the line. On the left, we show a plot of the first two components of state — the position
on the x-axis and the velocity on the y-axis. In this case, we expect the plot to look like
(t2, t), which it does. On the right, we show a plot of the position against time — note
that the point is moving away from its start position increasingly quickly.

Periodic Motion Assume we have a point moving on a line with a periodic
movement. Typically, its position p satisfies a differential equation like

d2p

dt2
= −p.

This can be turned into a first order linear differential equation by writing the
velocity as v and stacking position and velocity into a vector u = (p, v); we then
have

du

dt
=

(

0 1
−1 0

)

u = Su.

Now assume we are integrating this equation with a forward Euler method, where
the steplength is ∆t; we have

ui = ui−1 +∆t
du

dt
= ui−1 +∆tSui−1

=

(

1 ∆t
−∆t 1

)

ui−1.

We can either use this as a state equation, or we can use a different integrator. If
we used a different integrator, we might have some expression in ui−1, . . . ,ui−n —
we would need to stack ui−1, . . . ,ui−n into a state vector and arrange the matrix
appropriately (see Exercises). This method works for points on the plane, in 3D,
and so on, as well (again, see Exercises).
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1.3.2 The Kalman Filter

An important feature of linear dynamic models is that all the conditional proba-
bility distributions we need to deal with are normal distributions. In particular,
P (Xi|y1, . . . ,yi−1) is normal, as is P (Xi|y1, . . . ,yi). This means that they are
relatively easy to represent — all we need to do is maintain representations of the
mean and the covariance for the prediction and correction phase.

All this is much simplified in the case that the emission model is linear, the
dynamic model is linear, and all noise is Gaussian. In this case, all densities are
normal and the mean and covariance are sufficient to represent them. Both tracking
and filtering boil down to maintenance of these parameters. There is a simple set
of update rules (given in algorithm 2; notation below), the Kalman filter.

Notation: We write X ∼ N(µ; Σ) to mean that X is a normal random
variable with mean µ and covariance Σ. Both dynamics and emission are linear, so
we can write

Xk ∼ N(AkXk−1; Σ
(d)
k )

and

Yk ∼ N(BkXk; Σ
(m)
k )

We will represent the mean of P (Xi|y0, . . . , yi−1) asX
−

i and the mean of P (Xi|y0, . . . , yi)

as X
+

i — the superscripts suggest that they represent our belief about Xi immedi-
ately before and immediately after the i’th measurement arrives. Similarly, we will
represent the standard deviation of P (Xi|y0, . . . , yi−1) as Σ

−

i and of P (Xi|y0, . . . , yi)
as Σ+

i . In each case, we will assume that we know P (Xi−1|y0, . . . , yi−1), meaning

that we know X
+

i−1 and Σ+
i−1.

1.3.3 Forward–Backward Smoothing

It is important to notice that P (Xi|y0, . . . ,yi) is not the best available represen-
tation of Xi; this is because it doesn’t take into account the future behavior of
the point. In particular, all the measurements after yi could affect our represen-
tation of Xi. This is because these future measurements might contradict the
estimates obtained to date — perhaps the future movements of the point are more
in agreement with a slightly different estimate of the position of the point. However,
P (Xi|y0, . . . ,yi) is the best estimate available at step i.

What we do with this observation depends on the circumstances. If our ap-
plication requires an immediate estimate of position — perhaps we are tracking a
car in the opposite lane — there isn’t much we can do. If we are tracking off-line
— perhaps for forensic purposes, we need the best estimate of what an object was
doing given a videotape — then we can use all data points, and so we want to rep-
resent P (Xi|y0, . . . ,yN ). A common alternative is that we need a rough estimate
immediately, and can use an improved estimate that has been time-delayed by a
number of steps. This means we want to represent P (Xi|y0, . . . ,yi+k) — we have
to wait until time i+ k for this representation, but it should be an improvement on
P (Xi|y0, . . . ,yi).

We can incorporate future measurements with a clever trick. We must com-
bine P (Xi|y0, . . . ,yi) — which we know how to obtain— with P (X i|yi+1, . . . ,yN ).
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Algorithm 1.2: The Kalman filter updates estimates of the mean and covariance of

the various distributions encountered while tracking a state variable of some fixed

dimension using the given dynamic model.

Dynamic Model:

xi ∼ N(Dixi−1,Σdi
)

yi ∼ N(Mixi,Σmi
)

Start Assumptions: x−

0 and Σ−

0 are known
Update Equations: Prediction

x−

i = Dix
+
i−1

Σ−

i = Σdi
+Diσ

+
i−1Di

Update Equations: Correction

Ki = Σ−

i M
T
i

[

MiΣ
−

i M
T
i +Σmi

]−1

x+
i = x−

i +Ki

[

yi −Mix
−

i

]

Σ+
i = [Id−KiMi] Σ

−

i

We actually know how to obtain a representation of P (Xi|yi+1, . . . ,yN ), too. We
could simply run the Kalman filter backward in time, using backward dynamics
and take the predicted representation of Xi (we leave the details of relabeling the
sequence, etc., to the exercises).

Now we have two representations of Xi: one obtained by running a forward
filter and incorporating all measurements up to yi; and one obtained by running a
backward filter and incorporating all measurements after yi. We need to combine
these representations. We can get the answer by noting that this is like having
another measurement. In particular, we have a new measurement generated by Xi

— that is, the result of the backward filter — to combine with our estimate from
the forward filter. We know how to combine estimates with measurements because
that’s what the Kalman filter equations are for.

All we need is a little notation. We attach the superscript f to the esti-
mate from the forward filter and the superscript b to the estimate from the back-
ward filter. We write the mean of P (Xi|y0, . . . ,yN ) as X

∗

i and the covariance of
P (Xi|y0, . . . ,yN ) as Σ∗

i . We regard the representation of Xb
i as a measurement

of Xi with mean X
b,−

i and covariance Σb,−
i — the minus sign is because the ith
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FIGURE 1.9: The Kalman filter for a point moving on the line under our model of constant
velocity (compare with Figure 1.7). The state is plotted with open circles as a function of
the step i. The *-s give x−

i
, which is plotted slightly to the left of the state to indicate that

the estimate is made before the measurement. The x-s give the measurements, and the +-s
give x

+

i
, which is plotted slightly to the right of the state. The vertical bars around the

*-s and the +-s are three standard deviation bars using the estimate of variance obtained
before and after the measurement, respectively. When the measurement is noisy, the bars
don’t contract all that much when a measurement is obtained (compare with Figure 1.10).
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FIGURE 1.10: The Kalman filter for a point moving on the line under our model of
constant acceleration (compare with Figure 1.8). The state is plotted with open circles
as a function of the step i. The *-s give x

−

i
, which is plotted slightly to the left of the

state to indicate that the estimate is made before the measurement. The x-s give the
measurements, and the +-s give x

+

i
, which is plotted slightly to the right of the state.

The vertical bars around the *-s and the +-s are three standard deviation bars using
the estimate of variance obtained before and after the measurement, respectively. When
the measurement is noisy, the bars don’t contract all that much when a measurement is
obtained.

measurement cannot be used twice, meaning the backward filter predicts Xi us-
ing yN . . .yi+1. This measurement needs to be combined with P (Xi|y0, . . . ,yi),
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Algorithm 1.3: The forward–backward algorithm combines forward and backward

estimates of state to come up with an improved estimate.

Forward filter: Obtain the mean and variance of P (Xi|y0, . . . ,yi) using the

Kalman filter. These are X
f,+

i and Σf,+
i .

Backward filter: Obtain the mean and variance of P (X i|yi+1, . . . ,yN )

using the Kalman filter running backward in time. These are X
b,−

i and Σb,−
i .

Combining forward and backward estimates: Regard the backward
estimate as a new measurement for X i, and insert into the Kalman filter
equations to obtain

Σ∗
i =

[

(Σf,+
i )−1 + (Σb,−

i )−1
]−1

;

X
∗

i = Σ∗
i

[

(Σf,+
i )−1X

f,+

i + (Σb,−
i )−1X

b,−

i

]

.

which has mean X
f,+

i and covariance Σf,+
i (when we substitute into the Kalman

equations, these take the role of the representation before a measurement because

the value of the measurement is now X
b,−

i ).
Substituting into the Kalman equations, we find that

K∗
i = Σf,+

i

[

Σf,+
i +Σb,−

i

]−1

;

Σ∗
i = [I −Ki] Σ

+,f
i ;

X
∗

i = X
f,+

i +K∗
i

[

X
b,−

i −X
f,+

i

]

.

It turns out that a little manipulation (exercises!) yields a simpler form, which we
give in Algorithm 3. Forward–backward estimates can make a substantial difference
as Figure 1.11 illustrates.

Priors

In typical vision applications, we are tracking forward in time. This leads to
an inconvenient asymmetry: We may have a good idea of where the object started,
but only a poor one of where it stopped (i.e., we are likely to have a fair prior
for P (x0), but may have difficulty supplying a prior for P (xN ) for the forward–
backward filter). One option is to use P (xN |y0, . . . ,yN ) as a prior. This is a
dubious act as this probability distribution does not in fact reflect our prior belief
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FIGURE 1.11: Forward–backward estimation for a dynamic model of a point moving on
the line with constant velocity. We are plotting the position component of state against
time. On the top left, we show the forward estimates, again using the convention that
the state is shown with circles, the data is shown with an x, the prediction is shown with
a *, and the corrected estimate is shown with a +; the bars give one standard deviation in
the estimate. The predicted estimate is shown slightly behind the state and the corrected
estimate is shown slightly ahead of the state. You should notice that the measurements are
noisy. On the top right we show the backward estimates. Now time is running backward
(although we have plotted both curves on the same axis) so that the prediction is slightly
ahead of the measurement and the corrected estimate is slightly behind. We have used the
final corrected estimate of the forward filter as a prior. Again, the bars give one standard
deviation in each variable. On the bottom, we show the combined forward–backward
estimate. The squares give the estimates of state. Notice the significant improvement in
the estimate.

about P (xN ) — we’ve used all the measurements to obtain it. The consequences
can be that this distribution understates our uncertainty in xN and so leads to
a forward–backward estimate that significantly underestimates the covariance for
the later states. An alternative is to use the mean supplied by the forward filter,
but enlarge the covariance substantially; the consequences are a forward–backward
estimate that overestimates the covariance for the later states.

Not all applications have this asymmetry. For example, if we are engaged in
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a forensic study of a videotape, we might be able to start both the forward tracker
and the backward tracker by hand and provide a good estimate of the prior in each
case. If this is possible, then we have a good deal more information which may be
able to help choose correspondences, and so on — the forward tracker should finish
rather close to where the backward tracker starts.

Smoothing Over an Interval Although our formulation of forward–
backward smoothing assumed that the backward filter started at the last data
point, it is easy to start this filter a fixed number of steps ahead of the forward
filter. If we do this, we obtain an estimate of state in real time (essentially imme-
diately after the measurement) and an improved estimate some fixed numbers of
measurements later. This is sometimes useful. Furthermore, it is an efficient way to
obtain most of the improvement available from a backward filter if we can assume
that the effect of the distant future on our estimate is relatively small compared
with the effect of the immediate future. Notice that we need to be careful about
priors for the backward filter here; we might take the forward estimate and enlarge
its covariance somewhat.

1.4 DATA ASSOCIATION

Not all observations are informative. For example, if one wishes to track an aircraft
— where state might involve pose, velocity and acceleration variables, and mea-
surements might be radar returns giving distance and angle to the aircraft from
several radar aerials — some of the radar returns measured might not come from
the aircraft. Instead, they might be the result of noise, of other aircraft, of strips of
foil dropped to confuse radar apparatus (chaff or window; see (Jones 1998)), or of
other sources. The problem of determining which observations are informative and
which are not is known as data association. Data association is the dominant
difficulty in tracking objects in video. This is because so few of the very many
pixels in each frame lie on objects of interest. It can be spectacularly difficult to
tell which pixels in an image come from an object of interest and which do not.
The tracking methods of the first two sections focus on solving data association
problems using familiar ideas of detection (section ??) and of coherent appear-
ance (section ??). These methods can be linked to probabilistic representations to
exploit any dynamical information that happens to be available.

1.4.1 Linking Kalman Filters with Detection Methods

Notes: (1)Examples: - Kalman filter and Lucas Kanade; - Kalman filter and mean
shift; (2) More general points about data association (3)?

In section 1.1.2, we took a patch in image n and looked for one in image
n+1 that was “similar”. To find a match, we assumed that the patch translated a
relatively small distance from a known start point, and searched around that start
point using an approximate method to find the best SSD match. In that section, we
assumed that the start point was the patch’s location in image n. It could, instead,
be predicted by a Kalman filter. Similarly, in section 1.2.1, we had a domain that
was a circle of a fixed size in image n, and we searched around a start point for
a matching domain in image n + 1 using an approximate method to find the best



28 Chapter 1 Tracking

matching histogram. Again, we assumed the start point was the circle’s location in
image n, but it could be predicted by a Kalman filter. We will do the case of the
circle in somewhat greater detail to illustrate how this works.

The circular domains was represented with a vector y giving the center of the
circle. Our search needed a start point, which we wrote as y0. This start point could
come from a dynamical model. In fact, assuming as we did in section 1.2.1 that it
was the configuration of domain in image n is a simple dynamical model where the
object doesn’t move. An alternative model might be better. For example, we might
be observing an object in free fall in a plane parallel to the camera plane. In this
case, the object might move a considerable distance between frames, but its location
in image n+1 is quite easily predicted from earlier locations. To predict y0 with a
Kalman filter, we choose a state vector representation so that the configuration y

is a linear function of the state vector. We apply the prediction step of the Kalman
filter to obtain the predicted state vector, and compute yo from that. We then
search for y(n+1) as in section ??. The computed value is the observation for the
Kalman filter, and we use this to obtain the revised estimate of the state vector.
This gives the procedure of algorithm ??.

As an example, the state vector is x = (y, ẏ)T . The velocity drifts slightly,
so the dynamical model is given by

xn+1 = Axn + ξ =

(

I ∆tI
0 I

)

xn + ξn+1

where ξn+1 ∼ N(0,Σd). The measurement model is given by

yn = Bxn =
(

I 0
)

xn + ηn

where ηn ∼ N(0,Σm). Now assume we have x
(+)
n . We predict x

(−)
n+1 = Ax

(+)
n ,

which gives a prediction y0 = Bx
(−)
n+1. We start the search at this point, and obtain

y(n+1). This goes into the Kalman gain formula (algorithm ??) to give x
(+)
n+1. The

advantage of doing this is that, if the object has a significant but fixed velocity, our
search starts at the location predicted by this velocity model, and so is much more
likely to find the match we want.

1.4.2 Key Methods of Data Association

The case of the Kalman filter applied to tracking by detection is an instance of a
general strategy. In particular, we have an estimate of P (Xn|Y0, ..., Yn−1) and we
know P (Yn|Xn). From this we can obtain an estimate of P (Yn|Y0, ...Yn−1), which
gives us hints as to where the measurement might be. These hints can be applied
in a variety of ways.

One can use a gate — we look only at measurements that lie in a domain
where P (Yn|Y0, ..., Yn−1) is big enough. This is a method with roots in radar
tracking of missiles and aeroplanes, where one must deal with only a small number
(compared with the number of pixels in an image!) of returns, but the idea has
been useful in visual tracking applications. For example, if we are tracking using an
object detector, we would apply it only within the gate (or ignore detector responses
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outside the gate). This approach is quite commonly adopted within vision, and is
useful.

One can use nearest neighbours. In the classical version, we have a small
set of possible measurements, and we choose the measurement with the largest
value of P (Yn|Y0, ..., Yn−1). This has all the dangers of wishful thinking — we are
deciding that a measurement is valid because it is consistent with our track —
but is often useful in practice. Our example of using a Kalman filter to identify a
start point for a search is a nearest neighbours strategy. Again, this approach is
commonly adopted and is useful.

One can use probabilistic data association, where we construct a virtual
observation from a weighted combination of measurements within a gate, weighted
using (a) the predicted measurement and (b) the probability a detector has failed to
detect. For example, if we are using tracking by detection, we could form a virtual
observation as a weighted sum of detects that appear within a gate. This approach
tends not to be used, however, perhaps because it is uncommon in practice to have
a detector that is reliable enough to use like this but not good enough to support
nearest neighbours.

1.5 PARTICLE FILTERING

The main difficulty in tracking in the presence of complicated likelihood functions or of non-
linear dynamics is in maintaining a satisfactory representation of P (xi|y0, . . . ,yi). This
representation should be handle multiple peaks in the distribution, and should be able to
handle a high-dimensional state vector without difficulty. There is no completely satisfac-
tory general solution to this problem (and there will never be). In this section, we discuss
an approach that has been useful in many applications.

1.5.1 Multiple Modes

The Kalman filter is the workhorse of estimation, and can give useful results under
many conditions. One doesn’t need a guarantee of linearity to use a Kalman filter
— if the logic of the application indicates that a linear model is reasonable, there is a
good chance a Kalman filter will work. Rohr used a Kalman filter to track a walking
person successfully, evaluating the measurement by matches to line segments on the
outline (Rohr 1994, Rohr 1993).

More recently, the method tends not to be used because of concerns about
multiple modes. The representation adopted by a Kalman filter (the mean and co-
variance, sufficient statistics for a Gaussian distribution) tends to represent multi-
modal distributions poorly. There are several reasons one might encounter multiple
modes.

First, nonlinear dynamics — or nonlinear measurement processes, or both
— can create serious problems. The basic difficulty is that even quite innocuous
looking setups can produce densities that are not normal, and are very difficult to
represent and model. For example, let us look at only the hidden state. Assume
that this is one dimensional. Now assume that state updates are deterministic,
with Xi+1 = Xi + ǫ sin(Xi). If ǫ is sufficiently small, we have that for 0 < Xi < π,
Xi < Xi+1 < π; for −π < Xi < 0, −π < Xi+1 < Xi; and so on. Now assume that
P (X0) is normal. For sufficiently large k, P (Xk) will not be; there will be “clumps”
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of probability centered around the points (2j + 1)π for j an integer. These clumps
will be very difficult to represent, particularly if P (X0) has very large variance so
that many clumps are important. Notice that what is creating a problem here is that
quite small non-linearities in dynamics can cause probability to be concentrated in
ways that are very difficult to represent. In particular, nonlinear dynamics are likely
to produce densities with complicated sufficient statistics. There are cases where
nonlinear dynamics does lead to densities that can be guaranteed to have finite-
dimensional sufficient statistics (see (Benes̆ 1981, Daum 1995b, Daum 1995a)); to
our knowledge, these have not been applied to human tracking.

There are practical phenomena in human tracking that tend to suggest that
non-normal distributions are a significant part of the problem. Assume we wish to
track a 3D model of an arm in a single image. The elbow is bent; as it straight-
ens, it will eventually run into an end-stop — the forearm can’t rotate further
without damage. At the end-stop, the posterior on state can’t be a normal dis-
tribution, because a normal distribution would have some support on the wrong
side of the end-stop, and this has a significant effect on the shape of the posterior
(see figure 1.12). Another case that is likely, but not guaranteed, to cause trouble
is a kinematic singularity. For example, if the elbow is bent, we will be able
to observe rotation about the humerus, but current observation models will make
this unobservable if the elbow is straight (because the outline of the arm will not
change; no current method can use the changes in appearance of the hand that will
result). The dimension of the state space has collapsed. The posterior might be a
normal distribution in this reduced dimension space, but that would require explic-
itly representing the collapse. The alternative, a covariance matrix of reduced rank,
creates unattractive problems of representation. Deutscher et al. produce evidence
that, in both cases, posteriors are not, in fact, normal distributions, and show that
an extended Kalman filter can lose track in these cases (Deutscher, North, Bascle
& Blake 1999).

Kinematic ambiguity in the relations between 3D and 2D are a major source of
multiple modes. Assume we are tracking a human figure using a 3D representation
of the body in a single view. If, for example, many 3D configurations correspond
exactly to a single 2D configuration, then we expect the posterior to have multiple
modes. Chapter ?? discusses this issue in extensive detail.

The richest source of multiple modes is data association problems. An easy
example illustrates how nasty this problem can be. Assume we have a problem with
linear dynamics and a linear measurement model. However, at each tick of the clock
we receive more than one measurement, exactly one of which comes from the process
being studied. We will continue to write the states as Xi, the measurements as Y i;
but we now have δi, an indicator variable that tells which measurement comes from
the process (and is unknown). P (XN |Y 1..N , δ1..N) is clearly Gaussian. We want
P (XN |Y 1..N ) =

∑

histories P (XN |Y 1..N , δ1..N)P (δ1..N |Y 1..N ), which is clearly a
mixture of Gaussians. The number of components is exponential in the number of
frames — there is one component per history — meaning that P (XN |Y 1..N ) could
have a very large number of modes.
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(a) (b) (c)

FIGURE 1.12: Attribution: Figure 4, 2a of Sminchisescu and Triggs, Covariance
scaled..., particlefilter/009090509 Several nasty phenomena result from kinematic
ambiguities and from kinematic limits, as Sminchisescu and Triggs (Sminchisescu
& Triggs 2001, Sminchisescu & Triggs 2003). Ambiguities in reconstruction —
which are caused because body segments can be oriented in 3D either toward or
away from the camera, as described in the section ??— result in multiple modes in
the posterior. The two graphs on the left (a and b) show the fitting cost (which can
be thought of as a log-likelihood) as a function of the value of two state variables
(scaled by their standard deviation). The state variables refer to the kinematic
configuration of the 3D model. Note the significant “bumps” from the second mode
(the vertical arrows). For reference, there is a quadratic approximation shown as
well. Note also the the significant deformations of modes resulting from a kinematic
limit (the horizontal arrows). This is caused by the fact that no probability can
lie on the other side of the limit, so the mode must be “squashed”. Figure from
“Covariance Scaled Sampling for Monocular 3D Body Tracking”, Sminchisescu and
Triggs, Proc. Computer Vision and Pattern Recognition, 2001 c© 2001 IEEE.

1.5.2 Sampled Representations of Probability Distributions

A natural way to think about representations of probability distributions is to ask
what a probability distribution is for. Computing a representation of a probability
distributions is not our primary objective; we wish to represent a probability distri-
bution so that we can compute one or another expectation. For example, we might
wish to compute the expected state of an object given some information; we might
wish to compute the variance in the state, or the expected utility of shooting at
an object, etc. Probability distributions are devices for computing expectations —
thus, our representation should be one that gives us a decent prospect of computing
an expectation accurately. This means that there is a strong resonance between
questions of representing probability distributions and questions of efficient numer-
ical integration.

Monte Carlo Integration using Importance Sampling Assume that
we have a collection of N points ui, and a collection of weights wi. These points are
independent samples drawn from a probability distribution S(U) — we call this the
sampling distribution; notice that we have broken with our usual convention
of writing any probability distribution with a P . We assume that S(U) has a
probability density function s(U).

The weights have the form wi = f(ui)/s(ui) for some function f . Now it is
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a fact that

E

[

1

N

∑

i

g(ui)wi

]

=

∫

g(U)
f(U)

s(U)
s(U)dU

=

∫

g(U)f(U)dU

where the expectation is taken over the distribution on the collection of N inde-
pendent samples from S(U) (you can prove this fact using the weak law of large
numbers). The variance of this estimate goes down as 1/N , and is independent of
the dimension of U .

Representing Distributions using Weighted Samples If we think
about a distribution as a device for computing expectations — which are integrals
— we can obtain a representation of a distribution from the integration method de-
scribed above. This representation will consist of a set of weighted points. Assume
that f is non-negative, and

∫

f(U)dU exists and is finite. Then

f(X)
∫

f(U)dU

is a probability density function representing the distribution of interest. We shall
write this probability density function as pf (X).

Now we have a collection of N points ui ∼ S(U), and a collection of weights
wi = f(ui)/s(ui). Using this notation, we have that

E

[

1

N

∑

i

wi

]

=

∫

1
f(U)

s(U)
s(U )dU

=

∫

f(U)dU

Now this means that

Epf
[g] =

∫

g(U)pf (U)dU

=

∫

g(U)f(U)dU
∫

f(U)dU

= E

[∑

i g(ui)wi
∑

i wi

]

≈

∑

i g(ui)wi
∑

i wi

(where we have cancelled some N ’s). This means that we can in principle represent
a probability distribution by a set of weighted samples (Algorithm 4). There are
some significant practical issues here, however. Before we explore these, we will
discuss how to perform various computations with sampled representations. We
have already shown how to compute an expectation (above, and Algorithm 5).
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Algorithm 1.4: Obtaining a sampled representation of a probability distribution

Represent a probability distribution

pf(X) =
f(X)

∫

f(U)dU

by a set of N weighted samples

{

(ui, wi)
}

where ui ∼ s(u) and wi = f(ui)/s(ui).

There are two other important activities for tracking: marginalisation, and turning
a representation of a prior into a representation of a posterior.

Marginalizing a Sampled Representation

An attraction of sampled representations is that some computations are par-
ticularly easy. Marginalisation is a good and useful example. Assume we have a
sampled representation of pf(U ) = pf((M ,M)). We write U as two components
(M ,N) so that we can marginalise with respect to one of them.

Now assume that the sampled representation consists of a set of samples which
we can write as

{

((mi,ni), wi)
}

In this representation, (mi,ni) ∼ s(M ,N) and wi = f((mi,ni))/s((mi,ni)).

We want a representation of the marginal pf (M) =
∫

pf(M ,N)dN . We
will use this marginal to estimate integrals, so we can derive the representation by
thinking about integrals. In particular

∫

g(M)pf (M )dM =

∫

g(M )

∫

pf(M ,N)dNdM

=

∫ ∫

g(M)pf (M ,N)dNdM

≈

∑N

i=1 g(m
i)wi

∑N

i=1 w
i

meaning that we can represent the marginal by dropping the ni components of the
sample (or ignoring them, which may be more efficient!).

Transforming a Sampled Representation of a Prior into a Sampled

Representation of a Posterior

Appropriate manipulation of the weights of a sampled distribution yields rep-
resentations of other distributions. A particularly interesting case is representing a
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Algorithm 1.5: Computing an expectation using a set of samples

We have a representation of a probability distribution

pf (X) =
f(X)

∫

f(U)dU

by a set of weighted samples
{

(ui, wi)
}

where ui ∼ s(u) and wi = f(ui)/s(ui). Then:

∫

g(U)pf (U)dU ≈

∑N

i=1 g(u
i)wi

∑N

i=1 w
i

posterior, given some measurement. Recall that

p(U |V = v0) =
p(V = v0|U)p(U)

∫

p(V = v0|U)p(U)dU

=
1

K
p(V = v0|U)p(U )

where v0 is some measured value taken by the random variable V .
Assume we have a sampled representation of p(U), given by

{

(ui, wi)
}

. We
can evaluate K fairly easily:

K =

∫

p(V = v0|U)p(U)dU

= E

[

∑N

i=1 p(V = v0|u
i)wi

∑N

i=1 w
i

]

≈

∑N

i=1 p(V = v0|u
i)wi

∑N

i=1 w
i

Now let us consider the posterior.

∫

g(U)p(U |V = v0)dU =
1

K

∫

g(U)p(V = v0|U)p(U)dU

≈
1

K

∑N

i=1 g(u
i)p(V = v0|u

i)wi

∑N

i=1 w
i

≈

∑N

i=1 g(u
i)p(V = v0|u

i)wi

∑N

i=1 p(V = v0|ui)wi
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Algorithm 1.6: Computing a representation of a marginal distribution

Assume we have a sampled representation of a distribution

pf (M ,N)

given by
{

((mi,ni), wi)
}

Then
{

(mi, wi)
}

is a representation of the marginal,

∫

pf (M ,N)dN

(where we substituted the approximate expression for K in the last step). This
means that, if we take

{

(ui, wi)
}

and replace the weights with

w′i = p(V = v0|u
i)wi

the result
{

(ui, w′i)
}

is a representation of the posterior.

1.5.3 The Simplest Particle Filter

Assume that we have a sampled representation of P (Xi−1|y0, . . . ,yi−1), and we
need to obtain a representation of P (Xi|y0, . . . ,yi). We will follow the usual two
steps of prediction and correction.

We can regard each sample as a possible state for the process at step Xi−1.
We are going to obtain our representation by firstly representing

P (Xi,Xi−1|y0, . . . ,yi−1)

and then marginalising out Xi−1 (which we know how to do). The result is the
prior for the next state, and, since we know how to get posteriors from priors, we
will obtain P (Xi|y0, . . . ,yi).

Prediction Now

p(Xi,Xi−1|y0, . . . ,yi−1) = p(Xi|Xi−1)p(Xi−1|y0, . . . ,yi−1)

Write our representation of p(Xi−1|y0, . . . ,yi−1) as

{

(uk
i−1, w

k
i−1)

}

(the superscripts index the samples for a given step i, and the subscript gives the
step).
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Algorithm 1.7: Transforming a sampled representation of a prior into a sampled

representation of a posterior.

Assume we have a representation of p(U) as

{

(ui, wi)
}

Assume we have an observation V = v0, and a likelihood model p(V |U). The
posterior, p(U |V = v0) is represented by

{

(ui, w′i)
}

where
w′i = p(V = v0|u

i)wi

Now for any given sample uk
i−1, we can obtain samples of p(Xi|Xi−1 = uk

i−1)
fairly easily. This is because our dynamic model is

xi = f(xi−1) + ξi

where ξi ∼ N(0,Σmi
). Thus, for any given sample uk

i−1, we can generate samples
of p(X i|Xi−1 = uk

i−1) as
{

(f(uk
i−1) + ξli, 1)

}

where ξli ∼ N(0,Σmi
). The index l indicates that we might generate several such

samples for each uk
i−1.

We can now represent p(Xi,Xi−1|y0, . . . ,yi−1) as
{

((f(uk
i−1) + ξli,u

k
i−1), w

k
i−1)

}

(notice that there are two free indexes here, k and l; by this we mean that, for each
sample indexed by k, there might be several different elements of the set, indexed
by l).

Because we can marginalise by dropping elements, the representation of

P (xi|y0, . . . ,yi−1)

is given by
{

(f(uk
i−1) + ξli, w

k
i−1)

}

(we walk through a proof in the exercises). We will reindex this collection of samples
— which may have more than N elements — and rewrite it as

{

(uk,−
i , wk,−

i )
}
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assuming that there are M elements. Just as in our discussion of Kalman filters,
the superscript ‘−’ indicates that this our representation of the i’th state before a
measurement has arrived. The superscript k gives the individual sample.

Correction Correction is simple: we need to take the prediction, which
acts as a prior, and turn it into a posterior. We do this by choosing an appropriate
weight for each sample, following Algorithm 7. The weight is

p(Y i = yi|Xi = s
k,−
i )wk,−

i

(you should confirm this by comparing with Algorithm 7). and our representation
of the posterior is

{

(sk,−i , p(Y i = yi|Xi = s
k,−
i )wk,−

i )
}

The Tracking Algorithm In principle, we now have most of a tracking
algorithm — the only missing step is to explain where the samples of p(X0) came
from. The easiest thing to do here is to start with a diffuse prior of a special form
that is easily sampled — a Gaussian with large covariance might do it — and give
each of these samples a weight of 1. It is a good idea to implement this tracking
algorithm to see how it works (exercises!); you will notice that it works poorly
even on the simplest problems (Figure 1.13 compares estimates from this algorithm
to exact expectations computed with a Kalman filter). The algorithm gives bad
estimates because most samples represent no more than wasted computation. In
jargon, the samples are called particles.

If you implement this algorithm, you will notice that weights get small very
fast; this isn’t obviously a problem, because the mean value of the weights is can-
celled in the division, so we could at each step divide the weights by their mean
value. If you implement this step, you will notice that very quickly one weight
becomes close to one and all others are extremely small. It is a fact that, in the
simple particle filter, the variance of the weights cannot decrease with i (meaning
that, in general, it will increase and we will end up with one weight very much
larger than all others).

If the weights are small, our estimates of integrals are likely to be poor. In
particular, a sample with a small weight is positioned at a point where f(u) is much
smaller than p(u); in turn (unless we want to take an expectation of a function
which is very large at this point) this sample is likely to contribute relatively little
to the estimate of the integral.

Generally, the way to get accurate estimates of integrals is to have samples
that lie where the integral is likely to be large — we certainly don’t want to miss
these points. We are unlikely to want to take expectations of functions that vary
quickly, and so we would like our samples to lie where f(u) is large. In turn, this
means that a sample whose weight w is small represents a waste of resources —
we’d rather replace it with another sample with a large weight. This means that
the effective number of samples is decreasing — some samples make no significant
contribution to the expectations we might compute, and should ideally be replaced
(Figure 1.13 illustrates this important effect). In the following section, we describe
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FIGURE 1.13: The simple particle filter behaves very poorly, as a result of a phenomenon
called sample impoverishment, which is rather like quantisation error. In this example,
we have a point on the line drifting on the line (i.e., xi ∼ N(xi−1, σ

2)). The measurements
are corrupted by additive Gaussian noise. In this case, we can get an exact representation
of the posterior using a Kalman filter. In the figure on the left, we compare a repre-
sentation obtained exactly using a Kalman filter with one computed from simple particle
filtering. We show the mean of the posterior as a point with a one standard deviation bar
(previously we used three standard deviations, but that would make these figures difficult
to interpret). The mean obtained using a Kalman filter is given as an x; the mean ob-
tained using a particle filter is given as an o; we have offset the standard deviation bars
from one another so as to make the phenomenon clear. Notice that the mean is poor, but
the standard deviation estimate is awful, and gets worse as the tracking proceeds. In par-
ticular, the standard deviation estimate woefully underestimates the standard deviation
— this could mislead a user into thinking the tracker was working and producing good
estimates, when in fact it is hopelessly confused. The figure on the right indicates what
is going wrong; we plot the tracks of ten particles, randomly selected from the 100 used.
Note that relatively few particles ever lie within one standard deviation of the mean of
the posterior; in turn, this means that our representation of P (xi+1|y0, . . . , y0) will tend
to consist of many particles with very low weight, and only one with a high weight. This
means that the density is represented very poorly, and the error propagates.

ways of maintaining the set of particles that lead to effective and useful particle
filters.

1.5.4 A Workable Particle Filter

Particles with very low weights are fairly easily dealt with — we will adjust the col-
lection of particles to emphasize those that appear to be most helpful in representing
the posterior. This will help us deal with another difficulty, too. In discussing the
simple particle filter, we did not discuss how many samples there were at each stage
— if, at the prediction stage, we drew several samples of P (Xi|X i−1 = s

k,+
i−1) for

each s
k,+
i−1, the total pool of samples would grow as i got bigger. Ideally, we would

have a constant number of particles N . All this suggests that we need a method to
discard samples, ideally concentrating on discarding unhelpful samples. There are
a number of strategies that are popular.
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Resampling the Prior At each step i, we have a representation of

P (Xi−1|y0, . . . ,yi−1)

via weighted samples. This representation consists of N (possibly distinct) samples,
each with an associated weight. Now in a sampled representation, the frequency
with which samples appear can be traded off against the weight with which they
appear. For example, assume we have a sampled representation of P (U) consisting
of N pairs (sk, wk). Form a new set of samples consisting of a union of Nk copies
of (sk, 1), for each k. If

Nk
∑

k Nk

= wk

this new set of samples is also a representation of P (U) (you should check this).
Furthermore, if we take a sampled representation of P (U) using N samples,

and draw N ′ elements from this set with replacement, uniformly and at random,
the result will be a representation of P (U), too (you should check this, too). This
suggests that we could (a) expand the sample set and then (b) subsample it to get
a new representation of P (U). This representation will tend to contain multiple
copies of samples that appeared with high weights in the original representation.

This procedure is equivalent to the rather simpler process of making N draws
with replacement from the original set of samples, using the weights wi as the
probability of drawing a sample. Each sample in the new set would have weight
1; the new set would predominantly contain samples that appeared in the old set
with large weights. This process of resampling might occur at every frame, or only
when the variance of the weights is too high.

Resampling Predictions

A slightly different procedure is to generate several samples of P (Xi|Xi−1 =

s
k,+
i−1) for each s

k,+
i−1, makeN draws, with replacement, from this set using the weights

wi as the probability of drawing a sample, to get N particles. Again, this process
will emphasize particles with larger weight over those with smaller weights.

The Consequences of Resampling

Figure 1.14 illustrates the improvements that can be obtained by resampling.
Resampling is not a uniformly benign activity, however: it is possible — but unlikely
— to lose important particles as a result of resampling, and resampling can be
expensive computationally if there are many particles.

1.5.5 If’s, And’s and But’s — Practical Issues in Building Particle Filters

Particle filters have been extremely successful in many practical applications in
vision, but can produce some nasty surprises. One important issue has to do with
the number of particles; while the expected value of an integral estimated with
a sampled representation is the true value of the integral, it may require a very
large number of particles before the variance of the estimator is low enough to be
acceptable. It is difficult to say how many particles will be required to produce
usable estimates. In practice, this problem is usually solved by experiment.
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Algorithm 1.8: A practical particle filter resamples the posterior.

Initialization: Represent P (X0) by a set of N samples

{

(sk,−0 , wk,−
0 )

}

where
s
k,−
0 ∼ Ps(S) and wk,−

0 = P (sk,−0 )/Ps(S = s
k,−
0 )

Ideally, P (X0) has a simple form and s
k,−
0 ∼ P (X0) and wk,−

0 = 1.
Prediction: Represent P (Xi|y0,yi−1) by

{

(sk,−i , wk,−
i )

}

where
s
k,−
i = f(sk,+i−1) + ξki and wk,−

i = wk,+
i−1 and ξki ∼ N(0,Σdi

)

Correction: Represent P (X i|y0,yi) by

{

(sk,+i , wk,+
i )

}

where
s
k,+
i = s

k,−
i and wk,+

i = P (Y i = yi|Xi = s
k,−
i )wk,−

i

Resampling: Normalise the weights so that
∑

iw
k,+
i = 1 and compute the

variance of the normalised weights. If this variance exceeds some threshold,
then construct a new set of samples by drawing, with replacement, N samples
from the old set, using the weights as the probability that a sample will be drawn.
The weight of each sample is now 1/N .

Unfortunately, these experiments may be misleading. You can (and should!)
think about a particle filter as a form of search — we have a series of estimates of
state, which we update using the dynamic model, and then compare to the data;
estimates which look as though they could have yielded the data are kept, and the
others are discarded. The difficulty is that we may miss good hypotheses. This
could occur if, for example, the likelihood function had many narrow peaks. We
may end up with updated estimates of state that lie in some, but not all of these
peaks; this would result in good state hypotheses being missed. While this problem
can (just!) be caused to occur in one dimension, it is particularly serious in high
dimensions. This is because real likelihood functions can have many peaks, and
these peaks are easy to miss in high dimensional spaces. It is extremely difficult
to get good results from particle filters in spaces of dimension much greater than
about 10.

The problem can be significant in low dimensions, too — its significance de-
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Algorithm 1.9: An alternative practical particle filter.

Initialization: Represent P (X0) by a set of N samples

{

(sk,−0 , wk,−
0 )

}

where
s
k,−
0 ∼ Ps(S) and wk,−

0 = P (sk,−0 )/Ps(S = s
k,−
0 )

Ideally, P (X0) has a simple form and s
k,−
0 ∼ P (X0) and wk,−

0 = 1.
Prediction: Represent P (Xi|y0,yi−1) by

{

(sk,−i , wk,−
i )

}

where
s
k,l,−
i = f(sk,+i−1) + ξli and wk,l,−

i = wk,+
i−1

and
ξli ∼ N(0,Σdi

)

and the free index l indicates that each s
k,+
i−1 generates M different values of

s
k,l,−
i . This means that there are now MN particles.

Correction: We reindex the set of MN samples by k. Represent P (Xi|y0,yi)
by

{

(sk,+i , wk,+
i )

}

where
s
k,+
i = s

k,−
i and wk,+

i = P (Y i = yi|Xi = s
k,−
i )wk,−

i

Resampling: As in Algorithm 8.

pends, essentially, on how good a prediction of the likelihood we can make. This
problem manifests itself in the best-known fashion when one uses a particle filter to
track people. Because there tend to be many image regions that are long, roughly
straight, and coherent, it is relatively easy to obtain many narrow peaks in the like-
lihood function — these correspond, essentially, to cases where the configuration
for which the likelihood is being evaluated has a segment lying over one of these
long, straight coherent image regions. While there are several tricks for addressing
this problem — all involve refining some form of search over the likelihood — there
is no standard solution yet.

1.6 NOTES

Main points: look at various books. Much of the flow/detection stuff

can be complicated by probability, but there isn’t much point. Data association
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FIGURE 1.14: Resampling hugely improves the behavior of a particle filter. We now show
a resampled particle filter tracking a point drifting on the line (i.e., xi ∼ N(xi−1, σ

2)).
The measurements are corrupted by additive Gaussian noise, and are the same as for
Figure 1.13. In the figure on the left, we compare an exact representation obtained using
a Kalman filter with one computed from simple particle filtering. We show the mean of
the posterior as a point with a one standard deviation bar. The mean obtained using
a Kalman filter is given as an ‘x’; the mean obtained using a particle filter is given as
an ‘o’; we have offset the standard deviation bars from one another so as to make the
phenomenon clear. Notice that estimates of both mean and standard deviation obtained
from the particle filter compare well with the exact values obtained from the Kalman filter.
The figure on the right indicates where this improvement came from; we plot the tracks
of ten particles, randomly selected from the 100 used. Because we are now resampling
the particles according to their weights, particles that tend to reflect the state rather well
usually reappear in the resampled set. This means that many particles lie within one
standard deviation of the mean of the posterior, and so the weights on the particles tend
to have much smaller variance, meaning the representation is more efficient.

is the hard bit.

In this chapter, there is a brief discussion of the particle filter, a current
favorite method for dealing with multi-modal densities. There are other methods:
Benes̆ describes a class of nonlinear dynamical model for which the posterior can
be represented with a sufficient statistic of constant finite dimension (Benes̆ 1981).
Daum extends the class of models for which this is the case ((Daum 1995a, Daum
1995b); see also (Schmidt 1993) for an application and (Farina, Benvenuti & Ristic
2002) for a comparison with the particle filter). Extensive accounts of particle filters
appear in (Doucet, Freitas & Gordon 2001, Liu & Chen 1999, Ristic, Arulampalam
& Gordon 2004).
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sampled representations, 31
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expectation
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sampling distribution, 31
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forward–backward smoothing, 22,
25–27

linear dynamic models
all conditional probabilities nor-
mal, 22

are tracked using a Kalman filter,
qv, 22

constant acceleration, 19, 21
constant velocity, 19, 20
drift, 19
periodic motion, 21

main problems
correction, 18
data association, 17
prediction, 17

measurement
measurement matrix, 19
observability, 19

particle filtering, 29
practical issues, 39
sampled representations, 31–36
simplest particle filter, 35
simplest particle filter, algorithm,
37

simplest particle filter, correction
step, 37

simplest particle filter, difficulties
with, 38

simplest particle filter, prediction
step, 35

working particle filter, 38, 40–42
working particle filter, by resam-
pling, 39

smoothing, 22, 25–27

window, see chaff
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