Object Category Detection: Sliding Windows

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

Administrative

 Remember to e-mail project descriptions (by Thurs) and talk to Ian or me (by Fri)

Clarifications about the homework?

Today's class: Object Category Detection

- Statistical template matching with sliding window detector
 - Schneiderman Kanade detector
 - Viola Jones detector

Broader overview of object category detection

Object category detection in computer vision

Goal: detect all pedestrians, cars, monkeys, etc in image

Basic Steps of Category Detection

1. Align

- E.g., choose position, scale orientation
- How to make this tractable?

2. Compare

- Compute similarity to an example object or to a summary representation
- Which differences in appearance are important?

Sliding window: a simple alignment solution

Each window is separately classified

Statistical Template

 Object model = sum of scores of features at fixed positions

$$+3+2-2-1-2.5 = -0.5 > 7.5$$
Non-object

$$+4+1+0.5+3+0.5=10.5 > 7.5$$
Object

Design challenges

- How to efficiently search for likely objects
 - Even simple models require searching hundreds of thousands of positions and scales
- Feature design and scoring
 - How should appearance be modeled? What features correspond to the object?
- How to deal with different viewpoints?
 - Often train different models for a few different viewpoints
- Implementation details
 - Window size
 - Aspect ratio
 - Translation/scale step size
 - Non-maxima suppression

Schneiderman and Kanade

Decision function for statistical template matching:

$$\frac{P(image|object)}{P(image|non-object)} > \lambda \qquad \left(\lambda = \frac{P(non-object)}{P(object)}\right)$$

Appearance model

 Each feature is a group of quantized wavelet coefficients that are statistically dependent

L1 L1 L1 HL L1 L1 LH HH Level 2 LH	Level 2 HL Level 2 HH	Level 3 HL
Level 3		Level 3
LH		HH

Intra-subband

Inter-orientation

Inter-frequency

Inter-frequency/ Inter-orientation

Learning to classify (feature likelihoods)

Class-conditional likelihood ratio

$$\frac{\prod\limits_{\substack{x,\,y\,\in\;\mathrm{region}\,k\,=\,1\\17}}^{17}P_k(pattern_k(x,\,y),\,x,\,y\,|\,\mathrm{object})}{\prod\limits_{\substack{x,\,y\,\in\;\mathrm{region}\,k\,=\,1\\}}^{17}P_k(pattern_k(x,\,y),\,x,\,y\,|\,\mathrm{non\text{-}object})}>\lambda$$

 Estimate P(pattern|object) and P(pattern| non-object) by counting over examples

$$P(pattern \mid object) = \frac{count(pattern \& object)}{count(object)}$$

Tune weights discriminatively using Adaboost

Training

- 1) Create training data
 - a) Prepare each image: pre-process (optional), compute wavelet coefficients, discretize
 - b) Extract positive windows and sample of negative windows
 - c) Compute feature values for each example window
- 2) Learn scores for all possible feature values
 - a) Compute ratios of histograms by counting for positive and negative examples
 - b) Reweight examples using Adaboost
- Get high-scoring negative examples (bootstrapping)

Training multiple viewpoints

Train new detector for each viewpoint.

Testing

- 1) Processing:
 - a) Lighting correction (optional)
 - b) Compute wavelet coefficients, quantize
- 2) Slide window over each position/scale (2 pixels, $2^{1/4}$ scale)
 - a) Compute feature values
 - b) Look up scores
 - c) Sum scores over features
 - d) Threshold
- 3) Use faster classifier to prune patches (cascade...more on this later)
- 4) Non-maximum suppression

Results: faces

Table 1. Face detection with out-of-plane rotation

γ	Detection (all faces)	Detection (profiles)	False Detections
0.0	92.7%	92.8%	700
1.5	85.5%	86.4%	91
2.5	75.2%	78.6%	12

208 images with 441 faces, 347 in profile

Results: cars

Table 3. Car detection

γ	Detections	False Detections
1.05	83%	7
1.0	86%	10
0.9	92%	71

Results: faces today

http://demo.pittpatt.com/

Viola-Jones sliding window detector

Fast detection through two mechanisms

- Quickly eliminate unlikely windows
- Use features that are fast to compute

Cascade for Fast Detection

- Choose threshold for low false negative rate
- Fast classifiers early in cascade
- Slow classifiers later, but most examples don't get there

Features that are fast to compute

- "Haar-like features"
 - Differences of sums of intensity
 - Thousands, computed at various positions and scales within detection window

Integral Images

• ii = cumsum(cumsum(lm, 1), 2)

ii(x,y) = Sum of the values in the grey region

How to compute B-A?

How to compute A+D-B-C?

Feature selection with Adaboost

- Create a large pool of features (180K)
- Select features that are discriminative and work well together
 - "Weak learner" = feature + threshold + parity

$$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$$

- Choose weak learner that minimizes error on the weighted training set
- Reweight

Adaboost

- Given example images (x₁, y₁),..., (x_n, y_n) where y_i = 0, 1 for negative and positive examples respectively.
- Initialize weights w_{1,i} = \frac{1}{2m}, \frac{1}{2l} for y_i = 0, 1 respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
- Choose the classifier, h_t, with the lowest error ε_t.
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{e_t}{1 - e_t}$.

The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where
$$\alpha_t = \log \frac{1}{\beta_t}$$

Interpretations of Adaboost

- Additive logistic regression (Friedman et al. 2000)
 - LogitBoost from Collins et al. 2002 does this more explicitly
- Margin maximization (Schapire et al. 1998)
 - Ratch and Warmuth 2002 do this more explicitly

Top 2 selected features

Viola-Jones details

- 38 stages with 1, 10, 25, 50 ... features
 - 6061 total used out of 180K candidates
 - 10 features evaluated on average
- Examples
 - 4916 positive examples
 - 10000 negative examples collected after each stage
- Scanning
 - Scale detector rather than image
 - Scale steps = 1.25, Translation 1.0*s to 1.5*s
- Non-max suppression: average coordinates of overlapping boxes
- Train 3 classifiers and take vote

Viola Jones Results

False detections							
Detector	10	31	50	65	78	95	167
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2 %	93.7%
Rowley-Baluja-Kanade	83.2%	86.0%	-	-	-	89.2%	90.1%
Schneiderman-Kanade	-	-	1	94.4%	-	-	-
Roth-Yang-Ahuja	-	-	-	-	(94.8%)	-	-

MIT + CMU face dataset

Schneiderman later results

Schneiderman 2004

Viola-Jones 2001 Roth et al. 1999 Schneiderman-Kanade 2000

	89.7%	93.1%	94.4%	94.8%	95.7%
Bayesian Network *	1	8	19	36	56
Semi- Naïve Bayes*	6	19	29	35	46
[6]	31	65			-
[7]*				78	
[16]*			65		

Table 2. False alarms as a function of recognition rate on the MIT-CMU Test Set for Frontal Face Detection. * indicates exclusion of the 5 images of hand-drawn faces.

Speed: frontal face detector

• Schneiderman-Kanade (2000): 5 seconds

Viola-Jones (2001): 15 fps

Strengths and Weaknesses of Statistical Template Approach

Strengths

- Works very well for non-deformable objects: faces, cars, upright pedestrians
- Fast detection

Weaknesses

- Not so well for highly deformable objects
- Not robust to occlusion
- Requires lots of training data

General Process of Object Recognition

Specifying an object model

- 1. Statistical Template in Bounding Box
 - Object is some (x,y,w,h) in image
 - Features defined wrt bounding box coordinates

Image

Template Visualization

Specifying an object model

2. Articulated parts model

- Object is configuration of parts
- Each part is detectable

Specifying an object model

3. Hybrid template/parts model

Detections

Template Visualization

part filters finer resolution

deformation models

Specifying an object model

- 4. 3D-ish model
- Object is collection of 3D planar patches under affine transformation

General Process of Object Recognition

1. Sliding window

Test patch at each location and scale

1. Sliding window

Test patch at each location and scale

2. Voting from patches/keypoints

3. Region-based proposal

Endres Hoiem 2010

General Process of Object Recognition

General Process of Object Recognition

Resolving detection scores

1. Non-max suppression

Resolving detection scores

2. Context/reasoning

(g) Car Detections: Local (h) Ped Detections: Local

Influential Works in Detection

- Sung-Poggio (1994, 1998) : ~1450 citations
 - Basic idea of statistical template detection (I think), bootstrapping to get "face-like" negative examples, multiple whole-face prototypes (in 1994)
- Rowley-Baluja-Kanade (1996-1998): ~2900
 - "Parts" at fixed position, non-maxima suppression, simple cascade, rotation, pretty good accuracy, fast
- Schneiderman-Kanade (1998-2000,2004): ~1250
 - Careful feature engineering, excellent results, cascade
- Viola-Jones (2001, 2004): ~6500
 - Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to implement
- Dalal-Triggs (2005): ~2000
 - Careful feature engineering, excellent results, HOG feature, online code
- Felzenszwalb-Huttenlocher (2000): ~800
 - Efficient way to solve part-based detectors
- Felzenszwalb-McAllester-Ramanan (2008)? ~350
 - Excellent template/parts-based blend

Things to remember

- Sliding window for search
- Features based on differences of intensity (gradient, wavelet, etc.)
 - Excellent results require careful feature design
- Boosting for feature selection (also L1-logistic regression)
- Integral images, cascade for speed
- Bootstrapping to deal with many, many negative examples

Next class

Deformable parts models and the distance transform

