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Today’s class: classifiers and objects

• More about classifiers

• Object categories and representation
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Remember…
• No classifier is inherently 

better than any other: you 
need to make assumptions to 
generalize

• Three kinds of error
– Inherent: unavoidable
– Bias: due to over-simplifications
– Variance: due to inability to 

perfectly estimate parameters 
from limited data



How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Get more training data



Very brief tour of some classifiers
• SVM
• Neural networks
• Naïve Bayes
• Bayesian network
• Logistic regression
• Randomized Forests
• Boosted Decision Trees
• K-nearest neighbor
• RBMs
• Etc.



Generative vs. Discriminative Classifiers

Generative Models
• Represent both the data and 

the labels
• Often, makes use of 

conditional independence 
and priors

• Examples
– Naïve Bayes classifier
– Bayesian network

• Models of data may apply to 
future prediction problems

Discriminative Models
• Learn to directly predict the 

labels from the data
• Often, assume a simple 

boundary (e.g., linear)
• Examples

– Logistic regression
– SVM
– Boosted decision trees

• Often easier to predict a 
label from the data than to 
model the data
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1-nearest neighbor
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3-nearest neighbor
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5-nearest neighbor
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Using K-NN

• Simple, a good one to try first

• With infinite examples, 1-NN provably has 
error that is at most twice Bayes optimal error



Naïve Bayes
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Using Naïve Bayes 

• Simple thing to try for categorical data

• Very fast to train/test



Classifiers: Logistic Regression
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Using Logistic Regression

• Quick, simple classifier (try it first)

• Outputs a probabilistic label confidence

• Use L2 or L1 regularization
– L1 does feature selection and is robust to 

irrelevant features but slower to train



Classifiers: Linear SVM
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Classifiers: Linear SVM
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Classifiers: Kernelized SVM
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Using SVMs
• Good general purpose classifier

– Generalization depends on margin, so works well with 
many weak features

– No feature selection
– Usually requires some parameter tuning

• Choosing kernel
– Linear: fast training/testing – start here
– RBF: related to neural networks, nearest neighbor
– Chi-squared, histogram intersection: good for histograms 

(but slower, esp. chi-squared)
– Can learn a kernel function



Classifiers: Decision Trees
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Ensemble Methods: Boosting

figure from Friedman et al. 2000



Boosted Decision Trees 
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Using Boosted Decision Trees
• Flexible: can deal with both continuous and 

categorical variables
• How to control bias/variance trade-off

– Size of trees
– Number of trees

• Boosting trees often works best with a small 
number of well-designed features

• Boosting “stubs” can give a fast classifier



Two ways to think about classifiers

1. What is the objective? What are the 
parameters?  How are the parameters 
learned? How is the learning regularized?  
How is inference performed?



Ideals for a classification algorithm

• Objective function: encodes the right loss for the 
problem

• Parameterization: takes advantage of the structure of 
the problem

• Regularization: good priors on the parameters

• Training algorithm: can find parameters that maximize 
objective on training set

• Inference algorithm: can solve for labels that maximize 
objective function for a test example



Two ways to think about classifiers

1. What is the objective? What are the 
parameters?  How are the parameters 
learned? How is the learning regularized?  
How is inference performed?

2. How is the data modeled?  How is similarity 
defined?  What is the shape of the 
boundary?



Comparison

Naïve 
Bayes

Logistic 
Regression

Linear 
SVM

Nearest 
Neighbor

Kernelized 
SVM

Learning Objective

( )
( )

∑
∑















+i
i

j
jiij

yP

yxP

0;log

;|log
maximize

θ

θ

Training

( )
( ) Krky

rkyx

i
i

i
iij

kj +=

+=∧=
=

∑
∑

δ

δ
θ

1

Inference
( )

( )
( )
( )
( )0|0

1|0
log           

,
0|1
1|1

log where

  01

0

1

01

==

==
=

==

==
=

>−+

yxP
yxP

yxP
yxP

j

j
j

j

j
j

TT

θ

θ

xθxθ

( )( )

( ) ( )( )xθθx

θθx

T
ii

i
i

yyP

yP

−+=

+∑
exp1/1,|  where

,|logmaximize λ
Gradient ascent   0>xθT

  0>xθTLinear programming
iy i

T
i

i
i

∀−≥

+∑
   1  such that 

2
1  minimize

ξ

ξλ

xθ

θ

Quadratic 
programming

complicated to write

most similar features  same label Record data

( )∑ >
i

iii Ky 0,ˆ xxα

( )xx ,ˆ  argmin where
  

i
i

i

Ki
y

=

assuming x in {0 1}



What to remember about classifiers

• No free lunch: machine learning algorithms are tools, 
not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers 
than simple features and smart classifiers

• Use increasingly powerful classifiers with more 
training data (bias-variance tradeoff)



Some Machine Learning References

• General
– Tom Mitchell, Machine Learning, McGraw Hill, 1997
– Christopher Bishop, Neural Networks for Pattern 

Recognition, Oxford University Press, 1995

• Adaboost
– Friedman, Hastie, and Tibshirani, “Additive logistic 

regression: a statistical view of boosting”, Annals of 
Statistics, 2000 

• SVMs
– http://www.support-vector.net/icml-tutorial.pdf



What do we want classifiers to predict?

How should we represent objects?



What do we want to 
know about this 
object? 



Recognition: describe, predict, or interact 
with the object based on visual cues

Is it alive?
Can I poke with it? Can I put stuff in it?

What shape is it? Is it soft?

Does it have a tail? Will it blend?



The perception of function

• Direct perception (affordances): Gibson
Flat surface
Horizontal
Knee-high
…

Sittable
upon

Flat surface
Horizontal
Knee-high
…

Sittable
upon

Chair

• Mediated perception (categorization)

Slide Credit: Torralba



Direct perception

Some aspects of an object’s function can be 
perceived directly
– Functional form: Some forms clearly indicate to a 

function (“sittable-upon”, container,  cutting 
device, …)

Sittable-upon Sittable-upon

Sittable-upon

Slide Credit: Torralba



Direct perception

Some aspects of an object function can be 
perceived directly
– Observer relativity: Function is observer 

dependent

From http://lastchancerescueflint.org

Slide Credit: Torralba



Limitations of Direct Perception

Objects of similar structure might have very different functions

Not all functions seem to be available from direct visual information only.



Limitations of Direct Perception

Propulsion system

Strong protective surface

Something that looks like a door

Sure, I can travel to space on 
this object

Visual appearance might 
be a very weak cue to 
function

Slide Credit: Torralba



Why do we care about categories?

From an object’s category, we can make 
predictions about its behavior in the future, 
beyond of what is immediately perceived.

Slide Credit: Torralba



How do you define a category?



Prototype or Sum of Exemplars ?

Prototype Model Exemplars Model

Category judgments are made
by comparing a new exemplar
to the prototype.

Category judgments are made
by comparing a new exemplar
to all the old exemplars of  a category
or to the exemplar that is the most
appropriate

Slide Credit: Torralba



How do you define a category?
In computer vision:

LAB Histogram

Textons

Bag of SIFT

HOG
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Which level of categorization is the right one?

Car is an object composed of: 
a few doors, four wheels (not all visible at all times), a roof, 
front lights, windshield 

?

Slide Credit: Torralba



Levels of Categorization

BASIC-LEVEL CATEGORIES

SUPERORDINATE LEVEL CATEGORIES

SUBORDINATE LEVEL CATEGORIES



Rosch’s Levels of Categorization

Definition of Basic Level:

• Similar shape: Basic level categories are the highest-level category for 
which their members have similar shapes.

• Similar motor interactions: … for which people interact with its members 
using similar motor sequences. 

• Common attributes: … there are a significant number of attributes in 
common between pairs of members.

Sub       Basic      Superordinate

similarity

Similarity declines only slightly
going from subordinate to
basic level, and then drops
dramatically.



• Rosch et al (1976) found that 
– People can tell whether an object belongs to a 

basic-level category faster
– People tend to predict the basic category (e.g., 

“dog”) before superordinate (“animal”) or 
subordinate (“cocker-spaniel”) categories

• “Basic” could be different for different people 
(e.g., is “tree” basic, or “oak”?)

Levels of Categorization



Entry-level categories
(Jolicoeur, Gluck, Kosslyn 1984)

• Typical member of a basic-level category are 
categorized at the expected level

• Atypical members tend to be classified at a 
subordinate level.

A bird
An ostrich



How many categories?



Slide by Aude OlivaMany



How many object categories are there?

Biederman 1987

Slide Credit: Torralba



How many categories?
• An infinite number (“the kind of person who 

would wear a yellow hat”)… but not all are 
useful



Beyond categories… a property-based view 
of recognition



1. We want detailed information about objects

“Dog” 
vs. 

“Large, angry animal with pointy teeth”



2.  We want to be able to infer something about 
unfamiliar objects

Familiar Objects New Object



2.  We want to be able to infer something about 
unfamiliar objects

Cat Horse Dog ???

If we can infer category names…

Familiar Objects New Object



3.  We want to make comparisons between 
objects or categories

What is unusual about this dog? What is the difference between horses 
and zebras?



All three strategies are important

classifier
associated 
properties

Object Image

Category

“Car”

Has Wheels
Used for Transport
Made of Metal
Has Windows
Old
No Wheels
Brown
…

associated 
properties

Similar Image
similarity 
function

classifier for each attribute



Vehicle

Wheel

Animal

Leg

Head

Four-legged
Mammal

Can run
Can Jump
Facing right

Moves on road

Farhadi Endres Hoiem 2010



Next class
• Sliding window detectors
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