03/15/11

## Image Categorization

Computer Vision CS 543 / ECE 549 University of Illinois

Derek Hoiem

• Thanks for feedback

• HW 3 is out

• Project guidelines are out

## Last classes

• Object recognition: localizing an object instance in an image

• Face recognition: matching one face image to another

## Today's class: categorization

• Overview of image categorization

- Representation
  - Image histograms

- Classification
  - Important concepts in machine learning
  - What the classifiers are and when to use them



• What is a category?

• Why would we want to put an image in one?

To predict, describe, interact. To organize.

• Many different ways to categorize





| flic   |                                                                                                                                                                                                                                                             | _                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Home   | he Tour Sign Up Explore 🖙 Upload                                                                                                                                                                                                                            |                  |
| Search | Photos   Groups   People                                                                                                                                                                                                                                    |                  |
|        | people SEARCH Descriptions   Discuss                                                                                                                                                                                                                        | sions            |
|        | Urban Fragments (No People)<br>41,760 members   238 discussions   768,309 items   Created 73 months ago<br>This is a group for photos of architectural details and ephemera: bits of carving an<br>paint, rusty metal, old brickwork, decaying wood, (more) | Join?<br>Id mold |
|        | All People<br>58,985 members   627 discussions   1,821,095 items   Created 74 months ag                                                                                                                                                                     | io   Joir        |

body or only part, formal or informal portraits.... ( more )

## Image Categorization



## **Image Categorization**



## Part 1: Image features



## **General Principles of Representation**

- Coverage
  - Ensure that all relevant info is captured
- Concision
  - Minimize number of features without sacrificing coverage
- Directness
  - Ideal features are independently useful for prediction



Image Intensity

## Image representations

• Templates

- Intensity, gradients, etc.



• Histograms

- Color, texture, SIFT descriptors, etc.

## Image Representations: Histograms



## Global histogram

- Represent distribution of features
  - Color, texture, depth, ...

Images from Dave Kauchak

## Image Representations: Histograms

Histogram: Probability or count of data in each bin



avoid empty bins



#### Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Images from Dave Kauchak

## Image Representations: Histograms

### Clustering



#### Use the same cluster centers for all images

Images from Dave Kauchak

## **Computing histogram distance**

histint
$$(h_i, h_j) = 1 - \sum_{m=1}^{K} \min(h_i(m), h_j(m))$$

Histogram intersection (assuming normalized histograms)

$$\chi^{2}(h_{i},h_{j}) = \frac{1}{2} \sum_{m=1}^{K} \frac{[h_{i}(m) - h_{j}(m)]^{2}}{h_{i}(m) + h_{j}(m)}$$

Chi-squared Histogram matching distance



Cars found by color histogram matching using chi-squared

## Histograms: Implementation issues

#### Quantization

- Grids: fast but applicable only with few dimensions
- Clustering: slower but can quantize data in higher dimensions

Few Bins Need less data Coarser representation

Many Bins Need more data Finer representation

- Matching
  - Histogram intersection or Euclidean may be faster
  - Chi-squared often works better
  - Earth mover's distance is good for when nearby bins represent similar values

# What kind of things do we compute histograms of?



L\*a\*b\* color space

HSV color space

• Texture (filter banks or HOG over regions)

## What kind of things do we compute histograms of?

• Histograms of oriented gradients



• "Bag of words"

## Image Categorization: Bag of Words

#### Training

- 1. Extract keypoints and descriptors for all training images
- 2. Cluster descriptors
- 3. Quantize descriptors using cluster centers to get "visual words"
- 4. Represent each image by normalized counts of "visual words"
- 5. Train classifier on labeled examples using histogram values as features

#### Testing

- 1. Extract keypoints/descriptors and quantize into visual words
- 2. Compute visual word histogram
- 3. Compute label or confidence using classifier

## But what about layout?



All of these images have the same color histogram

## Spatial pyramid



Compute histogram in each spatial bin

Right features depend on what you want to know

- Shape: scene-scale, object-scale, detail-scale
  - 2D form, shading, shadows, texture, linear perspective
- Material properties: albedo, feel, hardness, ...
  Color, texture
- Motion
  - Optical flow, tracked points
- Distance
  - Stereo, position, occlusion, scene shape
  - If known object: size, other objects

## Things to remember about representation

 Most features can be thought of as templates, histograms (counts), or combinations

- Think about the right features for the problem
  - Coverage
  - Concision
  - Directness

## Part 2: Classifiers



## Learning a classifier

Given some set of features with corresponding labels, learn a function to predict the labels from the features



## One way to think about it...

- Training labels dictate that two examples are the same or different, in some sense
- Features and distance measures define visual similarity
- Classifiers try to learn weights or parameters for features and distance measures so that visual similarity predicts label similarity

## Many classifiers to choose from

- SVM
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- K-nearest neighbor
- RBMs
- Etc.

#### Which is the best one?

## No Free Lunch Theorem

Ē



## **Bias-Variance Trade-off**



See the following for explanations of bias-variance (also Bishop's "Neural Networks" book):

- http://www.stat.cmu.edu/~larry/=stat707/notes3.pdf
- http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf



## **Bias and Variance**

 $Error = noise^2 + bias^2 + variance$ 



## Choosing the trade-off

- Need validation set
- Validation set not same as test set



## Effect of Training Size

**Fixed classifier** 



Number of Training Examples

## How to measure complexity?

### • VC dimension

What is the VC dimension of a linear classifier for Ndimensional features? For a nearest neighbor classifier?

Upper bound on generalization error

Training error + 
$$\sqrt{\frac{h(\log(2N/h) + 1) - \log(\eta/4)}{N}}$$
  
N: size of training set  
h: VC dimension

 $\eta$ : 1-probability that bound holds

• Other ways: number of parameters, etc.

## How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Get more training data

Which of these could actually lead to greater error?

## **Reducing Risk of Error**

• Margins



## The perfect classification algorithm

- Objective function: encodes the right loss for the problem
- Parameterization: makes assumptions that fit the problem
- Regularization: right level of regularization for amount of training data
- Training algorithm: can find parameters that maximize objective on training set
- Inference algorithm: can solve for objective function in evaluation

## Generative vs. Discriminative Classifiers

#### Generative

- Training
  - Models the data and the labels
  - Assume (or learn) probability distribution and dependency structure
  - Can impose priors
- Testing
  - P(y=1, x) / P(y=0, x) > t?
- Examples
  - Foreground/background GMM
  - Naïve Bayes classifier
  - Bayesian network

#### Discriminative

- Training
  - Learn to directly predict the labels from the data
  - Assume form of boundary
  - Margin maximization or parameter regularization
- Testing

- f(x) > t; e.g.,  $w^T x > t$ 

- Examples
  - Logistic regression
  - SVM
  - Boosted decision trees

## K-nearest neighbor



1-nearest neighbor



3-nearest neighbor



## 5-nearest neighbor



What is the parameterization? The regularization? The training algorithm? The inference?

Is K-NN generative or discriminative?

## Using K-NN

• Simple, a good one to try first

• With infinite examples, 1-NN provably has error that is at most twice Bayes optimal error

## Naïve Bayes

- Objective
- Parameterization
- Regularization
- Training
- Inference



## **Using Naïve Bayes**

• Simple thing to try for categorical data

• Very fast to train/test

## **Classifiers: Logistic Regression**

- Objective
- Parameterization
- Regularization
- Training
- Inference



## Using Logistic Regression

• Quick, simple classifier (try it first)

- Use L2 or L1 regularization
  - L1 does feature selection and is robust to irrelevant features but slower to train

## Classifiers: Linear SVM



## **Classifiers: Linear SVM**

F



## Classifiers: Linear SVM

- Objective
- Parameterization
- Regularization
- Training
- Inference



## **Classifiers: Kernelized SVM**



## Using SVMs

- Good general purpose classifier
  - Generalization depends on margin, so works well with many weak features
  - No feature selection
  - Usually requires some parameter tuning
- Choosing kernel
  - Linear: fast training/testing start here
  - RBF: related to neural networks, nearest neighbor
  - Chi-squared, histogram intersection: good for histograms (but slower, esp. chi-squared)
  - Can learn a kernel function

## **Classifiers: Decision Trees**



## **Ensemble Methods: Boosting**

#### Discrete AdaBoost(Freund & Schapire 1996b)

- 1. Start with weights  $w_i = 1/N$ ,  $i = 1, \ldots, N$ .
- 2. Repeat for m = 1, 2, ..., M:
  - (a) Fit the classifier  $f_m(x) \in \{-1, 1\}$  using weights  $w_i$  on the training data.
  - (b) Compute  $\operatorname{err}_{m} = E_{w}[1_{(y \neq f_{m}(x))}], c_{m} = \log((1 \operatorname{err}_{m})/\operatorname{err}_{m}).$
  - (c) Set  $w_i \leftarrow w_i \exp[c_m \cdot 1_{(y_i \neq f_m(x_i))}]$ , i = 1, 2, ..., N, and renormalize so that  $\sum_i w_i = 1$ .
- 3. Output the classifier sign $\left[\sum_{m=1}^{M} c_m f_m(x)\right]$

## **Boosted Decision Trees**



[Collins et al. 2002]

## Using Boosted Decision Trees

- Flexible: can deal with both continuous and categorical variables
- How to control bias/variance trade-off
  - Size of trees
  - Number of trees
- Boosting trees often works best with a small number of well-designed features
- Boosting "stubs" can give a fast classifier

## Clustering (unsupervised)



## Two ways to think about classifiers

 What is the objective? What are the parameters? How are the parameters learned? How is the learning regularized? How is inference performed?

2. How is the data modeled? How is similarity defined? What is the shape of the boundary?

## Comparison

assuming x in {0 1}

1

|                        | Learning Objective                                                                                                                                                                             | Training                                                                       | Inference                                                                                                                                                                                                                                                                                    |   |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Naïve<br>Bayes         | maximize $\sum_{i} \begin{bmatrix} \sum_{j} \log P(x_{ij}   y_i; \theta_j) \\ + \log P(y_i; \theta_0) \end{bmatrix} = \theta_{kj}$                                                             | $=\frac{\sum_{i}\delta(x_{ij}=1 \land y_{i}=k)+r}{\sum_{i}\delta(y_{i}=k)+Kr}$ | $\boldsymbol{\theta}_{1}^{T} \mathbf{x} + \boldsymbol{\theta}_{0}^{T} (1 - \mathbf{x}) > 0$<br>where $\boldsymbol{\theta}_{1j} = \log \frac{P(x_{j} = 1 \mid y = 1)}{P(x_{j} = 1 \mid y = 0)},$<br>$\boldsymbol{\theta}_{0j} = \log \frac{P(x_{j} = 0 \mid y = 1)}{P(x_{j} = 0 \mid y = 0)}$ |   |
| Logistic<br>Regression | maximize $\sum_{i} \log(P(y_i   \mathbf{x}, \mathbf{\theta})) + \lambda \ \mathbf{\theta}\ $<br>where $P(y_i   \mathbf{x}, \mathbf{\theta}) = 1/(1 + \exp(-y_i \mathbf{\theta}^T \mathbf{x}))$ | Gradient ascent                                                                | $\mathbf{\theta}^T \mathbf{x} > 0$                                                                                                                                                                                                                                                           |   |
| Linear<br>SVM          | minimize $\lambda \sum_{i} \xi_{i} + \frac{1}{2} \  \boldsymbol{\theta} \ $<br>such that $y_{i} \boldsymbol{\theta}^{T} \mathbf{x} \ge 1 - \xi_{i}  \forall i$                                 | Linear programming                                                             | $\mathbf{\theta}^T \mathbf{x} > 0$                                                                                                                                                                                                                                                           |   |
| Kernelized<br>SVM      | complicated to write                                                                                                                                                                           | Quadratic<br>programming                                                       | $\sum_{i} y_{i} \alpha_{i} K(\hat{\mathbf{x}}_{i}, \mathbf{x}) > 0$                                                                                                                                                                                                                          |   |
| Nearest<br>Neighbor    | most similar features $\rightarrow$ same label                                                                                                                                                 | Record data                                                                    | $y_i$<br>where $i = \underset{i}{\operatorname{argmin}} K(\hat{\mathbf{x}}_i,$                                                                                                                                                                                                               | x |

## What to remember about classifiers

- No free lunch: machine learning algorithms are tools, not dogmas
- Try simple classifiers first
- Better to have smart features and simple classifiers than simple features and smart classifiers
- Use increasingly powerful classifiers with more training data (bias-variance tradeoff)

## Next class

• Object category detection overview

## Some Machine Learning References

#### General

- Tom Mitchell, Machine Learning, McGraw Hill, 1997
- Christopher Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995
- Adaboost
  - Friedman, Hastie, and Tibshirani, "Additive logistic regression: a statistical view of boosting", Annals of Statistics, 2000
- SVMs
  - http://www.support-vector.net/icml-tutorial.pdf