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Object recognition
Last Class
• Object instance recognition: focus on localization of 

miscellaneous objects

This class
• Face recognition: focus on distinguishing one face from 

another
• Feature subspaces: PCA and FLD
• Look at results from recent vendor test
• Look at interesting findings about human face 

recognition



Face detection and recognition

Detection Recognition “Sally”



Applications of Face Recognition
• Digital photography



Applications of Face Recognition
• Digital photography
• Surveillance



Applications of Face Recognition
• Digital photography
• Surveillance
• Album organization



Consumer application: iPhoto 2009

http://www.apple.com/ilife/iphoto/

http://www.apple.com/ilife/iphoto/�


Consumer application: iPhoto 2009
• Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats�


Consumer application: iPhoto 2009
• Things iPhoto thinks are faces

http://www.flickr.com/groups/977532@N24/pool/�


Starting idea of “eigenfaces”
1. Treat pixels as a vector

2. Recognize face by nearest neighbor
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The space of all face images
• When viewed as vectors of pixel values, face images are 

extremely high-dimensional
– 100x100 image = 10,000 dimensions
– Slow and lots of storage

• But very few 10,000-dimensional vectors are valid face 
images

• We want to effectively model the subspace of face images



The space of all face images
• Eigenface idea: construct a low-dimensional linear 

subspace that best explains the variation in the set 
of face images



Principal Component Analysis (PCA)
• Given: N data points x1, … ,xN in Rd

• We want to find a new set of features that are 
linear combinations of original ones:

u(xi) = uT(xi – µ)
(µ: mean of data points)

• Choose unit vector u in Rd that captures the 
most data variance

Forsyth & Ponce, Sec. 22.3.1, 22.3.2



Principal Component Analysis
• Direction that maximizes the variance of the projected data:

Projection of data point

Covariance matrix of data

The direction that maximizes the variance is the eigenvector associated with the 
largest eigenvalue of Σ
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(show on board)

Maximize
subject to ||u||=1



Implementation issue 

• Covariance matrix is huge (N2 for N pixels)

• But typically # examples << N

• Simple trick
– X is matrix of normalized training data
– Solve for eigenvectors u of XXT instead of XTX
– Then XTu is eigenvector of covariance XTX
– May need to normalize (to get unit length vector)



Eigenfaces (PCA on face images)

1. Compute covariance matrix of face images

2. Compute the principal components 
(“eigenfaces”)

– K eigenvectors with largest eigenvalues

3. Represent all face images in the dataset as 
linear combinations of eigenfaces

– Perform nearest neighbor on these coefficients

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf�


Eigenfaces example

• Training images
• x1,…,xN



Eigenfaces example
Top eigenvectors: u1,…uk

Mean: μ



Visualization of eigenfaces
Principal component (eigenvector) uk

μ + 3σkuk

μ – 3σkuk



Representation and reconstruction
• Face x in “face space” coordinates:

=



Representation and reconstruction
• Face x in “face space” coordinates:

• Reconstruction:
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P = 4

P = 200

P = 400

Reconstruction

After computing eigenfaces using 400 face 
images from ORL face database



Eigenvalues (variance along eigenvectors)



Note
Preserving variance (minimizing MSE) does not 
necessarily lead to qualitatively good reconstruction.

P = 200



Recognition with eigenfaces
Process labeled training images
• Find mean µ and covariance matrix Σ
• Find k principal components (eigenvectors of Σ) u1,…uk

• Project each training image xi onto subspace spanned by 
principal components:
(wi1,…,wik) = (u1

T(xi – µ), … , uk
T(xi – µ))

Given novel image x
• Project onto subspace:

(w1,…,wk) = (u1
T(x – µ), … , uk

T(x – µ))
• Optional: check reconstruction error x – x to determine 

whether image is really a face
• Classify as closest training face in k-dimensional subspace

^

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf�


PCA

• General dimensionality reduction technique

• Preserves most of variance with a much more 
compact representation
– Lower storage requirements (eigenvectors + a few 

numbers per face)
– Faster matching

• What are the problems for face recognition?



Limitations
Global appearance method: not robust to 
misalignment, background variation



Limitations
• The direction of maximum variance is not 

always good for classification



A more discriminative subspace: FLD
• Fisher Linear Discriminants  “Fisher Faces”

• PCA preserves maximum variance

• FLD preserves discrimination
– Find projection that maximizes scatter between 

classes and minimizes scatter within classes

Reference: Eigenfaces vs. Fisherfaces, Belheumer et al., PAMI 1997

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.3247&rep=rep1&type=pdf�


Comparing with PCA



Variables

• N Sample images: 
• c classes:

• Average of each class: 

• Average of all data:
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Scatter Matrices

• Scatter of class i: ( )( )Tik
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• Within class scatter:

• Between class scatter:



Illustration
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Within class scatter

Between class scatter



Mathematical Formulation
• After projection

– Between class scatter
– Within class scatter

• Objective

• Solution: Generalized Eigenvectors

• Rank of Wopt is limited
– Rank(SB) <= |C|-1
– Rank(SW) <= N-C
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Illustration

2S

1S

BS

21 SSSW +=

x1

x2



Recognition with FLD
• Similar to “eigenfaces”

• Compute within-class and between-class 
scatter matrices

• Solve generalized eigenvector problem

• Project to FLD subspace and classify by 
nearest neighbor

WSW

WSW
W

W
T

B
T

opt W
max arg= miwSwS iWiiB ,,1            == λ

( )( )Tik
x

iki xxS
ik

µµ
χ

−−= ∑
∈

∑
=

=
c

i
iW SS

1

( )( )∑
=

−−=
c

i

T
iiiB NS

1
µµµµ

xWx T
opt=ˆ



Results: Eigenface vs. Fisherface

• Variation in Facial Expression, Eyewear, and Lighting

• Input: 160 images of 16 people
• Train: 159 images
• Test: 1 image

With 
glasses

Without 
glasses

3 Lighting 
conditions

5 expressions

Reference: Eigenfaces vs. Fisherfaces, Belheumer et al., PAMI 1997

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.3247&rep=rep1&type=pdf�


Eigenfaces vs. Fisherfaces

Reference: Eigenfaces vs. Fisherfaces, Belheumer et al., PAMI 1997

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.3247&rep=rep1&type=pdf�


Large scale comparison of methods
• FRVT 2006 Report
• Not much (or any) information available about 

methods, but gives idea of what is doable

http://www.frvt.org/FRVT2006/docs/FRVT2006andICE2006LargeScaleReport.pdf�


FVRT Challenge

• Frontal faces
– FVRT2006 evaluation

False 
Rejection 
Rate at False 
Acceptance 
Rate = 0.001



FVRT Challenge

• Frontal faces
– FVRT2006 evaluation: controlled illumination



FVRT Challenge

• Frontal faces
– FVRT2006 evaluation: uncontrolled illumination



FVRT Challenge

• Frontal faces
– FVRT2006 evaluation: computers win!



Face recognition by humans

Face recognition by humans: 20 results (2005)

Slides by Jianchao Yang

http://web.mit.edu/bcs/sinha/papers/20Results_2005.pdf�
http://web.mit.edu/bcs/sinha/papers/20Results_2005.pdf�
http://web.mit.edu/bcs/sinha/papers/20Results_2005.pdf�
http://www.cs.uiuc.edu/homes/dhoiem/courses/cs598_spring09/slides/spring09_jianchao_biologicalInspiredComputerVision.pdf�




















Things to remember

• PCA is a generally useful dimensionality reduction 
technique
– But not ideal for discrimination

• FLD better for discrimination, though only ideal 
under Gaussian data assumptions

• Computer face recognition works very well under 
controlled environments – still room for 
improvement in general conditions



Next class

• Image categorization: features and classifiers
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