# **Grouping and Segmentation**

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

#### Last week

• EM

Mixture of Gaussians

Segmentation using EM and graph cuts

# Today's class

- Segmentation and grouping
  - Gestalt cues
  - By clustering (mean-shift)
  - By boundaries (watershed)

# Gestalt grouping

#### Gestalt psychology or gestaltism

German: Gestalt - "form" or "whole"

Berlin School, early 20th century

Kurt Koffka, Max Wertheimer, and Wolfgang Köhler

#### View of brain:

- whole is more than the sum of its parts
- holistic
- parallel
- analog
- self-organizing tendencies



#### Gestaltism



The Muller-Lyer illusion

We perceive the interpretation, not the senses



# Principles of perceptual organization



#### Principles of perceptual organization



#### Gestaltists do not believe in coincidence





# **Emergence**



#### Grouping by invisible completion



#### Grouping involves global interpretation



#### Grouping involves global interpretation





#### Gestalt cues

Good intuition and basic principles for grouping

Basis for many ideas in segmentation and occlusion reasoning

 Some (e.g., symmetry) are difficult to implement in practice

#### Moving on to image segmentation ...

Goal: Break up the image into meaningful or perceptually similar regions



# Segmentation for feature support



#### Segmentation for efficiency





[Felzenszwalb and Huttenlocher 2004]







[Shi and Malik 2001]

[Hoiem et al. 2005, Mori 2005]

# Segmentation as a result



# Types of segmentations





Oversegmentation



Undersegmentation







Multiple Segmentations

#### Major processes for segmentation

- Bottom-up: group tokens with similar features
- Top-down: group tokens that likely belong to the same object



# Segmentation using clustering

Kmeans

Mean-shift

#### Feature Space



#### K-means clustering using intensity alone and color alone

Image Clusters on intensity Clusters on color







#### K-Means pros and cons

- Pros
  - Simple and fast
  - Easy to implement
- Cons
  - Need to choose K
  - Sensitive to outliers



- Usage
  - Rarely used for pixel segmentation



#### Mean shift segmentation

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

Versatile technique for clustering-based segmentation



# Mean shift algorithm

Try to find modes of this non-parametric

density









#### Kernel density estimation

Kernel density estimation function

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

Gaussian kernel

$$K\left(\frac{x-x_i}{h}\right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-x_i)^2}{2h^2}}.$$















# Computing the Mean Shift

#### Simple Mean Shift procedure:

- Compute mean shift vector
- Translate the Kernel window by m(x)



# Real Modality Analysis



#### Attraction basin

- Attraction basin: the region for which all trajectories lead to the same mode
- Cluster: all data points in the attraction basin of a mode



## Attraction basin



# Mean shift clustering

- The mean shift algorithm seeks modes of the given set of points
  - 1. Choose kernel and bandwidth
  - 2. For each point:
    - a) Center a window on that point
    - b) Compute the mean of the data in the search window
    - c) Center the search window at the new mean location
    - d) Repeat (b,c) until convergence
  - 3. Assign points that lead to nearby modes to the same cluster

# Segmentation by Mean Shift

- Compute features for each pixel (color, gradients, texture, etc)
- Set kernel size for features K<sub>f</sub> and position K<sub>s</sub>
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that are within width of K<sub>f</sub> and K<sub>s</sub>



## Mean shift segmentation results









http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html









#### Mean-shift: other issues

- Speedups
  - Binned estimation
  - Fast search of neighbors
  - Update each window in each iteration (faster convergence)
- Other tricks
  - Use kNN to determine window sizes adaptively
- Lots of theoretical support
  - D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

## Mean shift pros and cons

#### Pros

- Good general-practice segmentation
- Flexible in number and shape of regions
- Robust to outliers

#### Cons

- Have to choose kernel size in advance
- Not suitable for high-dimensional features

#### When to use it

- Oversegmentatoin
- Multiple segmentations
- Tracking, clustering, filtering applications

# Watershed algorithm



# Watershed segmentation



# Meyer's watershed segmentation

- 1. Choose local minima as region seeds
- 2. Add neighbors to priority queue, sorted by value
- 3. Take top priority pixel from queue
  - If all labeled neighbors have same label, assign to pixel
  - 2. Add all non-marked neighbors
- 4. Repeat step 3 until finished

Matlab: seg = watershed(bnd\_im)

# Simple trick

Use Gaussian or median filter to reduce number of

regions





# Watershed usage

- Use as a starting point for hierarchical segmentation
  - Ultrametric contour map (Arbelaez 2006)

- Works with any soft boundaries
  - Pb
  - Canny
  - Etc.

## Watershed pros and cons

- Pros
  - Fast (< 1 sec for 512x512 image)</p>
  - Among best methods for hierarchical segmentation
- Cons
  - Only as good as the soft boundaries
  - Not easy to get variety of regions for multiple segmentations
  - No top-down information

- Usage
  - Preferred algorithm for hierarchical segmentation

# Things to remember

- Gestalt cues and principles of organization
- Uses of segmentation
  - Efficiency
  - Better features
  - Want the segmented object
- Mean-shift segmentation
  - Good general-purpose segmentation method
  - Generally useful clustering, tracking technique
- Watershed segmentation
  - Good for hierarchical segmentation
  - Use in combination with boundary prediction







# Further reading

• Nicely written mean-shift explanation (with math)
<a href="http://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/">http://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/</a>

Mean-shift paper by Comaniciu and Meer
 <a href="http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf">http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf</a>

• Adaptive mean shift in higher dimensions <a href="http://mis.hevra.haifa.ac.il/~ishimshoni/papers/chap9.pdf">http://mis.hevra.haifa.ac.il/~ishimshoni/papers/chap9.pdf</a>

• Contours to regions (watershed): Arbelaez et al. 2009 <a href="http://www.eecs.berkeley.edu/~arbelaez/publications/Arbelaez Maire Fowlkes Malik CVPR2009.pdf">http://www.eecs.berkeley.edu/~arbelaez/publications/Arbelaez Maire Fowlkes Malik CVPR2009.pdf</a>

# Recap of Grouping and Fitting

## Edge and line detection

Canny edge detector =
 smooth → derivative → thin →
 threshold → link



Generalized Hough transform = points vote for shape parameters



Straight line detector =
 canny + gradient orientations →
 orientation binning → linking →
 check for straightness



# Robust fitting and registration

Key algorithms

• RANSAC, Hough Transform



# Clustering

## Key algorithm

• K-means



#### EM and Mixture of Gaussians

#### **Tutorials:**

http://www.cs.duke.edu/courses/spring04/cps196.1/.../EM/tomasiEM.pdf
http://www-clmc.usc.edu/~adsouza/notes/mix\_gauss.pdf



## Segmentation

- Mean-shift segmentation
  - Flexible clustering method, good segmentation
- Watershed segmentation
  - Hierarchical segmentation from soft boundaries
- Normalized cuts
  - Produces regular regions
  - Slow but good for oversegmentation
- MRFs with Graph Cut
  - Incorporates foreground/background/object model and prefers to cut at image boundaries
  - Good for interactive segmentation or recognition









## Next section: Recognition

- How to recognize
  - Specific object instances
  - Faces
  - Scenes
  - Object categories