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HW 1 is graded

e Mean =93, Median =98

e Afew comments
— Diffuse component for estimating light color
— Make sure to choose an appropriate size filter

— Comparing frequencies for images at multiple
scales

— Wide variety of interesting apps

e Maybe some would make good final project?



HW 1.:

Estimating Camera/Building Height
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Today’s Class

 Examples of Missing Data Problems
— Detecting outliers
— Latent topic models (HW 2, problem 3)
— Segmentation (HW 2, problem 4)

e Background
— Maximum Likelihood Estimation
— Probabilistic Inference

* Dealing with “Hidden” Variables

— EM algorithm, Mixture of Gaussians
— Hard EM



Missing Data Problems: Outliers

You want to train an algorithm to predict whether a
photograph is attractive. You collect annotations from

Mechanical Turk. Some annotators try to give accurate
ratings, but others answer randomly.

Challenge: Determine which people to trust and the
average rating by accurate annotators.

Annotator
Ratings
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Missing Data Problems: Object Discovery

You have a collection of images and have extracted
regions from them. Each is represented by a histogram
of “visual words”.

Challenge: Discover frequently occurring object
categories, without pre-trained appearance models.
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http://www.robots.ox.ac.uk/~vga/publications/papers/russell06.pdf



http://www.robots.ox.ac.uk/~vgg/publications/papers/russell06.pdf�

Missing Data Problems: Segmentation

You are given an image and want to assign
foreground/background pixels.

Challenge: Segment the image into figure and

ground without knowing what the foreground
looks like in advance.

Foreground

Background



Missing Data Problems: Segmentation

Challenge: Segment the image into figure and ground
without knowing what the foreground looks like in advance.

Three steps:

1. If we had labels, how could we model the appearance of
foreground and background?

2. Once we have modeled the fg/bg appearance, how do we
compute the likelihood that a pixel is foreground?

3. How can we get both labels and appearance models at
once?

Background

Foreground




Maximum Likelihood Estimation

1. If we had labels, how could we model the appearance
of foreground and background?
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Foreground




Maximum Likelihood Estimation

data_,

X parameters
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Presenter
Presentation Notes
Assume data is i.i.d. and solve using partial derivatives.
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Example: MLE

>>

>>

>>

>>

>>

Parameters used to Generate

fg: mu=0.6, sigma=0.1
bg: mu=0.4, sigma=0.1

mu_fg = mean(im(labels))
mu fg = 0.6012

sigma_fg = sqrt(mean((im(labels)-mu_fg)."2))
sigma _fg = 0.1007

mu_bg = mean(im(~labels))
mu_bg = 0.4007

sigma_bg = sqgrt(mean((im(~labels)-mu_bg) ."2))
sigma _bg = 0.1007

pfg = mean(labels(:));

labels



Probabilistic Inference

2. Once we have modeled the fg/bg appearance, how
do we compute the likelihood that a pixel is
foreground?

Background

Foreground




Probabilistic Inference

Compute the likelihood that a particular
model generated a sample

component or label

\
p(z, =m|Xx,,0)



Probabilistic Inference

Compute the likelihood that a particular
model generated a sample

component or label

\ _
p(zn T m’Xn |9m)
Z,=M|X,,0)=
p(z, | X,,0) o(x. [6)




Probabilistic Inference

Compute the likelihood that a particular
model generated a sample

component or label

\ _
p(zn o m’Xn |9m)
Z =mM|X_,0)=
p(z, =m|x,,0) o(x. [6)
(z =m, X, |6’)




Probabilistic Inference

Compute the likelihood that a particular
model generated a sample

component or label

\ _
p(zn T m’Xn |9m)
Z,=M|X,,0)=
p(z, | X,,0) o(x. [6)

p(z, =m,x, |6,,)

:Zp(zn :k’Xn |(9k)
k

_ p(xn |Zn :m’gm)p(zn :mlem)
Z p(Xn |Zn :k’gk)p(zn :klgk)
k




Example: Inference

Learned Parameters
fg: mu=0.6, sigma=0.1

bg: mu=0.4, sigma=0.1

>>
>>
>>
>>

pfg =
px_Fg
px_bg
pfg_x

0.

S;

normpdf(im, mu_fg, sigma fg);

normpdf(im, mu_bg, sigma bg);

px_fg*pfg ./ (px_fg*pfg + px_bg*(1-pfg));




Dealing with Hidden Variables

3. How can we get both labels and appearance models
at once?

Background

Foreground




Mixture of Gaussians

mixture component

component model component prior
parameters

N

p(x, Nwo?,w)= S plx,.2, =m|u,,0,7 7,)

p(Xn,Zn — m|,um,c7m2,7zm)

plx,.2, =m|,0” )

= p(Xn |:Um’0m2)p(zn - m|7zm)

2
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Mixture of Gaussians

With enough components, can represent any
probability density function

— Widely used as general purpose pdf estimator



Segmentation with Mixture of Gaussians

Pixels come from one of several Gaussian
components

— We don’t know which pixels come from which
components

— We don’t know the parameters for the
components




Simple solution

1. Initialize parameters

2. Compute the probability of each hidden
variable given the current parameters

3. Compute new parameters for each model,
weighted by likelihood of hidden variables

4. Repeat 2-3 until convergence



K

~ () _ Zanm n &mz(tﬂ) Z Zanm (X —,Um) ﬁ_m(t+1) _

Mixture of Gaussians: Simple Solution

1. Initialize parameters

2. Compute likelihood of hidden variables for

current parameters

=p(z, =m|x,,p®, 6" a®)

3. Estimate new parameters for each model,
weighted by likelihood

Xom n N

n n



Expectation Maximization (EM) Algorithm

Goal: 6 = argmax Iog(z p(x,z | H)j
0 Z
\

Log of sums is intractable

Jensen’s Inequality
fELX )= E[f(X)]

for concave funcions, such as f(x)=log(x)

See here for proof. www.stanford.edu/class/cs229/notes/cs229-notes8.ps
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Expectation Maximization (EM) Algorithm

Goal: 6 = argmax Iog(z p(x,z | H)j
0 Z

1. E-step: compute
E,. o lloa(p(x.z]0)) Zlog (x,2160))p(z]x,60)

2. M-step: solve
0" =argmax Y log(p(x,z| 0))p(z|x,0¢)
0 i



EM for Mixture of Gaussians (on board)

2 2 _ 1 (Xn_:um)2
p(xn |p,o ,71:)=Zp(xn,zn =m|u,, o, ,7Z'm) —Z = EXp| — o 2 T

m 270, m

1. E-step: E|e(t)[log (x,210))] Z'Og (x,210)) (Z|X"9(t))

2. M-step: 6% =argmax " log(p(x,z|6))p(z|x,6®)
0 z



EM for Mixture of Gaussians (on board)

2 2 _ 1 (Xn_:um)2
p(xn “,l,G 1“):Zp(xn’zn :mlzum’Gm ’ﬂm) _Z 2 exp B o 2 T

m 270, m

L. Estep: E, . [log(p(x,z]6))]= log(p(x,z|6))plz|x,0)

2. M-step: 6" :argmaxZIog(p(x,z|6?))p(z|x,9(”)
0 z




EM Algorithm

e Maximizes a lower bound on the data
likelihood at each iteration

e Each step increases the data likelihood
— Converges to local maximum

e Common tricks to derivation
— Find terms that sum or integrate to 1
— Lagrange multiplier to deal with constraints



EM Demos

e Mixture of Gaussian demo

e Simple segmentation demo



“Hard EM"”

Same as EM except compute z* as most likely
values for hidden variables

K-means is an example

Advantages
— Simpler: can be applied when cannot derive EM

— Sometimes works better if you want to make hard
predictions at the end

But
— Generally, pdf parameters are not as accurate as EM



Missing Data Problems: Outliers

You want to train an algorithm to predict whether a
photograph is attractive. You collect annotations from

Mechanical Turk. Some annotators try to give accurate
ratings, but others answer randomly.

Challenge: Determine which people to trust and the
average rating by accurate annotators.

Annotator
Ratings
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Missing Data Problems: Object Discovery

You have a collection of images and have extracted
regions from them. Each is represented by a histogram
of “visual words”.

Challenge: Discover frequently occurring object
categories, without pre-trained appearance models.
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http://www.robots.ox.ac.uk/~vgg/publications/papers/russell06.pdf�

3  EM - Mixture of Multinomials (15%)

Probabilistic mixture models are useful in a variety of applications, such as gaussian mixture models
for segmentation (see problem 4). Multinomial distributions are another useful distribution for
mixture models, and can be used to model the bag-of-words representation seen in the previous
problem: for a given texture i, codeword j oceurs with probability ;.

A mixture of multinomials would allow modeling 1mages that are composed of multiple textures,
each defined by 8;. where texture i occurs with probability 7;. More sophisticated methods such
as pLSA and LDA replace 7 with a per-image distribution over textures classes, which must be
inferred. Again, note that this was originally introduced for representing documents composed of
multiple “topics.”

Derive the EM algorithm for the following multinomial mixture model for n examples {z; }:

P(x|{8:},{m}) =D mP(x]6;), st. ) m=10<m <1
1
P(x|0;) = ﬁﬂaﬁ;ﬁ, sty 6;=1,0<6,<1
I i

Show the Expectation step (7 pts) and give the EM update formulae for m; (3 pts) and ©; (5
pts). Show all steps including application of Bayes rule and computation of derivatives. Lagrange
multipliers can be helpful for keeping 7; and 8, on the probability simplex.

n is number of elements in histogram



Next class

e MRFs and Graph-cut Segmentation
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