02/17/11

### Clustering

Computer Vision CS 543 / ECE 549 University of Illinois

Derek Hoiem

# Today's class

- Fitting and alignment
  - One more algorithm: ICP
  - Review of all the algorithms

- Clustering algorithms
  - K-means
  - Hierarchical clustering
  - Spectral clustering

What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

Important applications



Medical imaging: match brain scans or contours



Robotics: match point clouds

# Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

- **1.** Assign each point in {Set 1} to its nearest neighbor in {Set 2}
- 2. Estimate transformation parameters
  - e.g., least squares or robust least squares
- **3. Transform** the points in {Set 1} using estimated parameters
- 4. Repeat steps 2-4 until change is very small





Given matched points in {A} and {B}, estimate the translation of the object

$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$





#### Least squares solution

- 1. Write down objective function
- 2. Derived solution
  - a) Compute derivative
  - b) Compute solution
- 3. Computational solution
  - a) Write in form Ax=b
  - b) Solve using pseudo-inverse or eigenvalue decomposition







#### **Problem: outliers**

#### **RANSAC** solution

- 1. Sample a set of matching points (1 pair)
- 2. Solve for transformation parameters
- 3. Score parameters with number of inliers
- 4. Repeat steps 1-3 N times







Problem: outliers, multiple objects, and/or many-to-one matches

#### Hough transform solution

- 1. Initialize a grid of parameter values
- 2. Each matched pair casts a vote for consistent values
- 3. Find the parameters with the most votes
- 4. Solve using least squares with inliers







#### **Problem: no initial guesses for correspondence**

#### **ICP** solution

- 1. Find nearest neighbors for each point
- 2. Compute transform using matches
- 3. Move points using transform
- 4. Repeat steps 1-3 until convergence



# Clustering: group together similar points and represent them with a single token

### Key Challenges:

 What makes two points/images/patches similar?
 How do we compute an overall grouping from pairwise similarities?

# Why do we cluster?

#### • Summarizing data

- Look at large amounts of data
- Patch-based compression or denoising
- Represent a large continuous vector with the cluster number

#### • Counting

- Histograms of texture, color, SIFT vectors

#### Segmentation

Separate the image into different regions

#### • Prediction

- Images in the same cluster may have the same labels

### How do we cluster?

- K-means
  - Iteratively re-assign points to the nearest cluster center
- Agglomerative clustering
  - Start with each point as its own cluster and iteratively merge the closest clusters
- Spectral clustering
  - Split the nodes in a graph based on assigned links with similarity weights

### **Clustering for Summarization**

Goal: cluster to minimize variance in data given clusters

Preserve information







### K-means

- 1. Initialize cluster centers:  $\mathbf{c}^0$ ; t=0
- 2. Assign each point to the closest center  $\boldsymbol{\delta}^{t} = \underset{\boldsymbol{\delta}}{\operatorname{argmin}} \frac{1}{N} \sum_{i}^{N} \sum_{i}^{K} \boldsymbol{\delta}_{ii} \left( \mathbf{c}_{i}^{t-1} - \mathbf{x}_{j} \right)^{2}$
- 3. Update cluster centers as the mean of the points  $\mathbf{c}^{t} = \underset{\mathbf{c}}{\operatorname{argmin}} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij}^{t} (\mathbf{c}_{i} - \mathbf{x}_{j})^{2}$
- 4. Repeat 2-3 until no points are re-assigned (t=t+1)

### K-means: design choices

- Initialization
  - Randomly select K points as initial cluster center
  - Or greedily choose K points to minimize residual
- Distance measures
  - Traditionally Euclidean, could be others
- Optimization
  - Will converge to a *local minimum*
  - May want to perform multiple restarts

### How to choose the number of clusters?

- Minimum Description Length (MDL) principal for model comparison
- Minimize Schwarz Criterion

also called Bayes Information Criteria (BIC)

Distortion +  $\lambda$  (#parameters) log *R* 



### How to evaluate clusters?

- Generative
  - How well are points reconstructed from the clusters?
- Discriminative
  - How well do the clusters correspond to labels?
    - Purity
  - Note: unsupervised clustering does not aim to be discriminative

### How to choose the number of clusters?

- Validation set
  - Try different numbers of clusters and look at performance
    - When building dictionaries (discussed later), more clusters typically work better

### K-means demos

General <u>http://home.dei.polimi.it/matteucc/Clustering/tutorial\_html/AppletKM.html</u>

Color clustering <a href="http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/">http://www.cs.washington.edu/research/imagedatabase/demo/kmcluster/</a>

# **Conclusions: K-means**

### Good

- Finds cluster centers that minimize conditional variance (good representation of data)
- Simple to implement, widespread application

### Bad

- Prone to local minima
- Need to choose K
- All clusters have the same parameters (e.g., distance measure is non-adaptive)
- Can be slow: each iteration is O(KNd) for N d-dimensional points

# **Building Visual Dictionaries**

- Sample patches from a database
  - E.g., 128 dimensional
     SIFT vectors
- 2. Cluster the patches
  - Cluster centers are the dictionary
- Assign a codeword (number) to each new patch, according to the nearest cluster





### Examples of learned codewords



Most likely codewords for 4 learned "topics" EM with multinomial (problem 3) to get topics

http://www.robots.ox.ac.uk/~vgg/publications/papers/sivic05b.pdf Sivic et al. ICCV 2005

# Common similarity/distance measures

- P-norms
  - City Block (L1)
  - Euclidean (L2)
  - L-infinity

Mahalanobis
 – Scaled Euclidean

$$d(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{N} \frac{(x_i - y_i)^2}{\sigma_i^2}}$$

Cosine distance

similarity = 
$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

### K-medoids

- Just like K-means except
  - Represent the cluster with one of its members, rather than the mean of its members
  - Choose the member (data point) that minimizes cluster dissimilarity

Applicable when a mean is not meaningful

 E.g., clustering values of hue or using L-infinity similarity



 Say "Every point is its own cluster"

Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 40



- Say "Every point is its own cluster"
- Find "most similar" pair of clusters

Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 41



- Say "Every point is its own cluster"
- 2. Find "most similar" pair of clusters
- Merge it into a parent cluster

Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 42



- Say "Every point is its own cluster"
- 2. Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 43



- Say "Every point is its own cluster"
- 2. Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat



Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 44

How to define cluster similarity?

- Average distance between points, maximum distance, minimum distance
- Distance between means or medoids

#### How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or based on distance between merges





http://home.dei.polimi.it/matteucc/Clustering/tutorial html/AppletH.html

# Conclusions: Agglomerative Clustering

### Good

- Simple to implement, widespread application
- Clusters have adaptive shapes
- Provides a hierarchy of clusters

### Bad

- May have imbalanced clusters
- Still have to choose number of clusters or threshold
- Need to use an "ultrametric" to get a meaningful hierarchy

### Spectral clustering

### Group points based on links in a graph





### Cuts in a graph



Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$Ncut(A,B) = \frac{cut(A,B)}{volume(A)} + \frac{cut(A,B)}{volume(B)}$$

volume(A) = sum of costs of all edges that touch A

### Normalized cuts for segmentation



### Visual PageRank

- Determining importance by random walk
  - What's the probability that you will randomly walk to a given node?
    - Create adjacency matrix based on visual similarity
    - Edge weights determine probability of transition



Jing Baluja 2008

# Which algorithm to use?

- Quantization/Summarization: K-means
  - Aims to preserve variance of original data
  - Can easily assign new point to a cluster



Quantization for computing histograms



Summary of 20,000 photos of Rome using "greedy k-means"

http://grail.cs.washington.edu/projects/canonview/

# Which algorithm to use?

- Image segmentation: agglomerative clustering
  - More flexible with distance measures (e.g., can be based on boundary prediction)
  - Adapts better to specific data
  - Hierarchy can be useful



http://www.cs.berkeley.edu/~arbelaez/UCM.html

# Which algorithm to use?

- Image segmentation: spectral clustering
  - Can provide more regular regions
  - Spectral methods also used to propagate global cues (e.g., Global pB)



# Things to remember

- K-means useful for summarization, building dictionaries of patches, general clustering
- Agglomerative clustering useful for segmentation, general clustering
- Spectral clustering useful for determining relevance, summarization, segmentation







### Next class

- EM algorithm
  - Soft clustering
  - Mixture models
  - Hidden labels