Fitting and Registration

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

Announcements

- HW 1 due today
- HW 2 out on Thursday
- Compute edges and find circles in image using Hough transform
- Create dictionary of texture responses and use it to match texture images
- Derive the EM algorithm for a mixture of multinomials
- Estimate foreground and background color distributions using EM and segment the object using graph cuts

Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points

Example: Computing vanishing points

Example: Estimating an homographic transformation

Example: Estimating "fundamental matrix" that corresponds two views

Example: fitting an 2D shape template

Example: fitting a 3D object model

Critical issues: noisy data

Critical issues: intra-class variability

"All models are wrong, but some are useful." Box and Draper 1979

Critical issues: outliers

Critical issues: missing data (occlusions)

Fitting and Alignment

- Design challenges
- Design a suitable goodness of fit measure
- Similarity should reflect application goals
- Encode robustness to outliers and noise
- Design an optimization method
- Avoid local optima
- Find best parameters quickly

Fitting and Alignment: Methods

- Global optimization / Search for parameters
- Least squares fit
- Robust least squares
- Iterative closest point (ICP)
- Hypothesize and test
- Generalized Hough transform
- RANSAC

Simple example: Fitting a line

Least squares line fitting

-Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
-Line equation: $y_{i}=m x_{i}+b$ \bullet-Find (m, b) to minimize

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

$$
\begin{array}{rlr}
E & =\sum_{i=1}^{n}\left(\left[\begin{array}{ll}
x_{i} & 1
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right]-y_{i}\right)^{2}=\left\|\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]-\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]\right\|^{2}=\|\mathbf{A p}-\mathbf{y}\|^{2} \\
& =\mathbf{y}^{T} \mathbf{y}-2(\mathbf{A p})^{T} \mathbf{y}+(\mathbf{A p})^{T}(\mathbf{A p}) & \\
& \frac{d E}{d B}=2 \mathbf{A}^{T} \mathbf{A p}-2 \mathbf{A}^{T} \mathbf{y}=0 & \\
& \text { Matlab: } \mathbf{p}=\mathbf{A} \backslash \mathbf{y} ; \\
& \mathbf{A}^{T} \mathbf{A p}=\mathbf{A}^{T} \mathbf{y} \Rightarrow \mathbf{p}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y} &
\end{array}
$$

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

Total least squares

If ($a^{2}+b^{2}=1$) then
Distance between point $\left(x_{i}, y_{i}\right)$ is

$$
\left|a x_{i}+b y_{i}+c\right|
$$

proof:
http://mathworld.wolfram.com/Point-

Total least squares

If ($a^{2}+b^{2}=1$) then
Distance between point $\left(x_{i}, y_{i}\right)$ is

$$
\left|a x_{i}+b y_{i}+c\right|
$$

Find (a, b, c) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}+c\right)^{2}
$$

Total least squares

Find (a, b, c) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}+c\right)^{2}
$$

$\frac{\partial E}{\partial c}=\sum_{i=1}^{n}-2\left(a x_{i}+b y_{i}+c\right)=0$

$$
\left.E=\sum_{i=1}^{n}\left(a\left(x_{i}-\bar{x}\right)+b\left(y_{i}-\bar{y}\right)\right)^{2}=\| \begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\vdots & \vdots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] \|_{\mathbf{n}^{T} \mathbf{A}^{T} \mathbf{A n}}^{2}=\mathbf{p}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{p}
$$

$\operatorname{minimize} \mathbf{p}^{T} \mathbf{A}^{T} \mathbf{A p}$ s.t. $\mathbf{p}^{T} \mathbf{p}=1 \Rightarrow \operatorname{minimize} \frac{\mathbf{p}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{p}}{\mathbf{p}^{T} \mathbf{p}}$
Solution is eigenvector corresponding to smallest eigenvalue of $A^{\top} A$

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh quotient

Recap: Two Common Optimization Problems

Problem statement

minimize $\|\mathbf{A x}-\mathbf{b}\|^{2}$

$$
\begin{aligned}
\mathbf{x} & =\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b} \\
\mathbf{x} & =\mathbf{A} \backslash \mathbf{b} \text { (matlab) }
\end{aligned}
$$

Problem statement

Solution

minimize $\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A x}$ s.t. $\mathbf{x}^{T} \mathbf{x}=1$
$\operatorname{minimize} \frac{\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$

$$
\begin{gathered}
{[\mathbf{v}, \lambda]=\operatorname{eig}\left(\mathbf{A}^{T} \mathbf{A}\right)} \\
\lambda_{1}<\lambda_{2 . n}: \mathbf{x}=\mathbf{v}_{1}
\end{gathered}
$$

non - trivial lsq solution to $\mathbf{M x}=0$

Search / Least squares conclusions

Good

- Clearly specified objective
- Optimization is easy (for least squares)

Bad

- Not appropriate for non-convex objectives
- May get stuck in local minima
- Sensitive to outliers
- Bad matches, extra points
- Doesn't allow you to get multiple good fits
- Detecting multiple objects, lines, etc.

Robust least squares (to deal with outliers)

General approach:
minimize

$$
\sum_{\mathrm{i}} \rho\left(\mathrm{u}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \theta\right) ; \sigma\right) \quad \mathrm{u}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{y}_{\mathrm{i}}-\mathrm{mx}_{\mathrm{i}}-\mathrm{b}\right)^{2}
$$

$u_{i}\left(x_{i}, \theta\right)$ - residual of $\mathrm{i}^{\text {th }}$ point w.r.t. model parameters ϑ ρ - robust function with scale parameter σ

The robust function ρ

- Favors a configuration with small residuals
- Constant penalty for large residuals

Robust Estimator (M-estimator)

1. Initialize $\sigma=0$
2. Choose params to minimize: $\sum_{i} \frac{\operatorname{error}\left(\theta, \text { data }_{i}\right)^{2}}{\sigma^{2}+\operatorname{error}\left(\theta, \text { data }_{i}\right)^{2}}$ - E.g., numerical optimization
3. Compute new $\sigma: \quad \sigma=1.5 \cdot$ median(error)
4. Repeat (2) and (3) until convergence

Demo - part 1

Hypothesize and test

1. Propose parameters

- Try all possible
- Each point votes for all consistent parameters
- Repeatedly sample enough points to solve for parameters

2. Score the given parameters

- Number of consistent points, possibly weighted by distance

3. Choose from among the set of parameters

- Global or local maximum of scores

4. Possibly refine parameters using inliers

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

$$
y=m x+b
$$

Hough transform

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959
Issue : parameter space [m,b] is unbounded...

Use a polar representation for the parameter space

$$
\mathrm{x} \cos \boldsymbol{\theta}+\mathrm{y} \sin \boldsymbol{\theta}=\boldsymbol{\rho}
$$

Hough transform - experiments

Hough transform - experiments

Noisy data

Issue: Grid size needs to be adjusted...

Hough transform - experiments

features

Issue: spurious peaks due to uniform noise

Hough transform

- Fitting a circle (x, y, r)

Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
- Can be hard to find sweet spot
- Not suitable for more than a few parameters
- grid size grows exponentially

Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are affine transform)
- Object category recognition (parameters are position/scale)

RANSAC

(RANdom SAmple Consensus) :
Fischler \& Bolles in " 81.

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

$$
N_{I}=6
$$

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)
- Number of sampled points s
- Minimum number needed to fit the model
- Distance threshold δ
- Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$

$$
\mathrm{N}=\log (1-\mathrm{p}) / \log \left(1-(1-e)^{\mathrm{s}}\right)
$$

proportion of outliers e								
s	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of parameters than Hough transform
- Parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

Demo - part 2

What if you want to align but have no prior matched pairs?

- Hough transform and RANSAC not applicable
- Important applications

Medical imaging: match brain scans or contours

Robotics: match point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

1. Assign each point in $\{$ Set 1$\}$ to its nearest neighbor in \{Set 2\}
2. Estimate transformation parameters

- e.g., least squares or robust least squares

3. Transform the points in $\{$ Set 1$\}$ using estimated parameters
4. Repeat steps 2-4 until change is very small

Example: solving for translation

Given matched points in $\{A\}$ and $\{B\}$, estimate the translation of the object

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{l}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$

Example: solving for translation

Least squares solution

1. Write down objective function
2. Derived solution
a) Compute derivative
b) Compute solution
3. Computational solution
a) Write in form $A x=b$
b) Solve using pseudo-inverse or eigenvalue decomposition

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{l}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
1 & 0 \\
0 & 1
\end{array}\right]\left[t_{x}\right]=\left[\begin{array}{c}
x_{1}^{B}-x_{1}^{A} \\
y_{y}^{B}-y_{1}^{A} \\
\vdots \\
x_{n}^{B}-x_{n}^{A} \\
y_{n}^{B}-y_{n}^{A}
\end{array}\right]
$$

Example: solving for translation

Problem: outliers

RANSAC solution

1. Sample a set of matching points (1 pair)
2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps $1-3 \mathrm{~N}$ times

Example: solving for translation

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

1. Initialize a grid of parameter values
2. Each matched pair casts a vote for

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$ consistent values

3. Find the parameters with the most votes
4. Solve using least squares with inliers

Example: solving for translation

Problem: no initial guesses for correspondence

ICP solution

1. Find nearest neighbors for each point
2. Compute transform using matches

$$
\left[\begin{array}{c}
x_{i}^{B} \\
y_{i}^{B}
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{A} \\
y_{i}^{A}
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$

3. Move points using transform
4. Repeat steps 1-3 until convergence

Next class: Clustering

- Clustering algorithms
- K-means
- K-medoids
- Hierarchical clustering
- Model selection

