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Announcements

• HW 1 due today

• HW 2 out on Thursday
– Compute edges and find circles in image using Hough 

transform
– Create dictionary of texture responses and use it to match 

texture images
– Derive the EM algorithm for a mixture of multinomials
– Estimate foreground and background color distributions 

using EM and segment the object using graph cuts



Fitting: find the parameters of a model that 
best fit the data

Alignment: find the parameters of the 
transformation that best align matched points



Example: Computing vanishing points

Slide from Silvio Savarese



H

Example: Estimating an homographic 
transformation

Slide from Silvio Savarese



Example: Estimating “fundamental matrix” 
that corresponds two views

Slide from Silvio Savarese

Presenter
Presentation Notes
Assume that the intrinsic and extrinsic parameters of the cameras are knownWe can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get normalized image coordinatesWe can also set the global coordinate system to the coordinate system of the first camera



A

Example: fitting an 2D shape template

Slide from Silvio Savarese



Example: fitting a 3D object model

Slide from Silvio Savarese

Presenter
Presentation Notes
As shown at the beginning, it interesting to visualize the geometrical relationship between canonical parts. Notice that:These 2 canonical parts share the same pose. All parts that share the same pose form a canonical pose.These are other examples of canonical posesPart belonging to different canonical poses are linked by a full homograhic transformationHere we see examples of canonical poses mapped into object instances%%This plane collect canonical parts that share the same pose. All this canonical parts are related by a pure translation constraint.- These canonical parts do not share the same pose and belong to different planes. This change of pose is described by the homographic transformation Aij.- Canonical parts that are not visible at the same time are not linked.Canonical parts that share the same pose forms a single-view submodel.%Canonical parts that share the same pose form a single view sub-model of the object class. Canonical parts that do not belong to the same plane, correspond to different %poses of the 3d object. The linkage stucture quantifies this relative change of pose through the homographic transformations. Canonical parts that are not visible at the same %time are not linked.Notice this representation is more flexible than a  full 3d model yet, much richer than those where parts are linked by 'right to left', 'up to down‘ relationship, yet. . Also it is different from aspect graph:  in that: aspect graphs are able to segment the object in stable regions across views 



Critical issues: noisy data

Slide from Silvio Savarese
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Critical issues: intra-class variability

“All models are wrong, but some are useful.”  Box and Draper 1979

Slide from Silvio Savarese
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Critical issues: outliers

Slide from Silvio Savarese



Critical issues: missing data (occlusions)

Slide from Silvio Savarese
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Fitting and Alignment
• Design challenges

– Design a suitable goodness of fit measure
• Similarity should reflect application goals
• Encode robustness to outliers and noise

– Design an optimization method
• Avoid local optima
• Find best parameters quickly



Fitting and Alignment: Methods

• Global optimization / Search for parameters
– Least squares fit
– Robust least squares
– Iterative closest point (ICP)

• Hypothesize and test
– Generalized Hough transform
– RANSAC



Simple example: Fitting a line



Least squares line fitting
•Data: (x1, y1), …, (xn, yn)
•Line equation: yi = m xi + b
•Find (m, b) to minimize 

022 =−= yAApA TT

dB
dE

[ ]

)()()(2

1

1
1 2

2
11

1

2

ApApyApyy

yAp

TTT

nn

n

i ii

y

y

b
m

x

x
y

b
m

xE

+−=

−=















−
























=








−








= ∑ =



∑=
−−=

n

i ii bxmyE
1

2)(
(xi, yi)

y=mx+b

( ) yAAApyAApA TTTT 1−
=⇒=

Matlab: p = A \ y;

Modified from S. Lazebnik



Problem with “vertical” least squares
• Not rotation-invariant
• Fails completely for 

vertical lines

Slide from S. Lazebnik



Total least squares
If (a2+b2=1) then 
Distance between point (xi, yi) is 

|axi + byi + c|
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Slide modified from S. Lazebnik
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Total least squares
If (a2+b2=1) then 
Distance between point (xi, yi) is 

|axi + byi + c|

Find (a, b, c) to minimize the sum of 
squared perpendicular distances
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Total least squares
Find (a, b, c) to minimize the sum of 
squared perpendicular distances
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Solution is eigenvector corresponding to smallest eigenvalue of ATA

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh_quotient
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Recap: Two Common Optimization Problems

Problem statement Solution

    1  s.t.      minimize =xxAxAx TTT
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Search / Least squares conclusions
Good
• Clearly specified objective
• Optimization is easy (for least squares)

Bad
• Not appropriate for non-convex objectives

– May get stuck in local minima
• Sensitive to outliers

– Bad matches, extra points
• Doesn’t allow you to get multiple good fits

– Detecting multiple objects, lines, etc.



Robust least squares (to deal with outliers)
General approach: 

minimize

ui (xi, θ) – residual of ith point w.r.t. model parameters θ
ρ – robust function with scale parameter σ
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The robust function ρ
• Favors a configuration 
with small residuals
• Constant penalty for large 
residuals
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Robust Estimator (M-estimator)

1. Initialize σ=0

2. Choose params to minimize:
– E.g., numerical optimization

3. Compute new σ:

4. Repeat (2) and (3) until convergence
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Demo – part 1



Hypothesize and test
1. Propose parameters

– Try all possible
– Each point votes for all consistent parameters
– Repeatedly sample enough points to solve for parameters

2. Score the given parameters
– Number of consistent points, possibly weighted by 

distance

3. Choose from among the set of parameters
– Global or local maximum of scores

4. Possibly refine parameters using inliers
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y = m x + b

Hough transform

Given a set of points, find the curve or line that explains 
the data points best

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 
Energy Accelerators and Instrumentation, 1959 

Hough space

Slide from S. Savarese
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Hough transform
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Hough transform

Issue : parameter space [m,b] is unbounded…

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 
Energy Accelerators and Instrumentation, 1959 

Hough space

ρθθ =+   siny  cosx

 θ
ρ

Use a polar representation for the parameter space 
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ρ
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features votes

Hough transform - experiments

Slide from S. Savarese

Presenter
Presentation Notes
Figure 15.1, top half.  Note that most points in the vote array are very dark, because theyget only one vote.



features votes

Issue: Grid size needs to be adjusted…

Hough transform - experiments

Noisy data

Slide from S. Savarese

Presenter
Presentation Notes
This is 15.1 lower half



Issue: spurious peaks due to uniform noise
features votes

Hough transform - experiments

Slide from S. Savarese
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Presentation Notes
15.2; main point is that lots of noise can lead to large peaks in the array



Hough transform 
• Fitting a circle (x, y, r)



Hough transform conclusions
Good
• Robust to outliers: each point votes separately
• Fairly efficient (much faster than trying all sets of parameters)
• Provides multiple good fits

Bad
• Some sensitivity to noise
• Bin size trades off between noise tolerance, precision, and 

speed/memory
– Can be hard to find sweet spot

• Not suitable for more than a few parameters
– grid size grows exponentially

Common applications
• Line fitting (also circles, ellipses, etc.)
• Object instance recognition (parameters are affine transform)
• Object category recognition  (parameters are position/scale)



RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Presenter
Presentation Notes
Let me give you an intuition of what is going on. Suppose we have the standard line fitting problem in presence of outliers.We can formulate this problem as follows: want to find the best partition of points in inlier set and outlier set such that…The objective consists of adjusting the parameters of a model function so as to best fit a data set. "best" is defined by a function f that needs to be minimized.Such that the best parameter of fitting the line give rise to a residual error lower that deltaas when the sum, S, of squared residuals 



RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example
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RANSAC

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example
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RANSAC

6=IN

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example
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Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
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How to choose parameters?
• Number of samples N

– Choose N so that, with probability p, at least one random sample is free 
from outliers (e.g. p=0.99) (outlier ratio: e )

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold δ
– Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

( ) ( )( )se11log/p1logN −−−=
proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

modified from  M. Pollefeys



RANSAC conclusions
Good
• Robust to outliers
• Applicable for larger number of parameters than Hough 

transform
• Parameters are easier to choose than Hough transform

Bad
• Computational time grows quickly with fraction of outliers 

and number of parameters 
• Not good for getting multiple fits

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)



Demo – part 2



What if you want to align but have no prior 
matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: match brain 
scans or contours

Robotics: match point clouds



Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense 
sets of points

1. Assign each point in {Set 1} to its nearest neighbor in 
{Set 2}

2. Estimate transformation parameters 
– e.g., least squares or robust least squares

3. Transform the points in {Set 1} using estimated 
parameters

4. Repeat steps 2-4 until change is very small



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution
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1. Write down objective function
2. Derived solution

a) Compute derivative
b) Compute solution

3. Computational solution
a) Write in form Ax=b
b) Solve using pseudo-inverse or 

eigenvalue decomposition 
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Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution








+








=









y

x
A
i

A
i

B
i

B
i

t
t

y
x

y
x

(tx, ty)

1. Sample a set of matching points (1 pair)
2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4



Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution
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1. Initialize a grid of parameter values
2. Each matched pair casts a vote for 

consistent values
3. Find the parameters with the most votes
4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches



Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence
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1. Find nearest neighbors for each point
2. Compute transform using matches
3. Move points using transform
4. Repeat steps 1-3 until convergence



Next class: Clustering 

• Clustering algorithms
– K-means
– K-medoids
– Hierarchical clustering

• Model selection
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