02/15/11

Fitting and Registration

Computer Vision CS 543 / ECE 549 University of Illinois

Derek Hoiem

Announcements

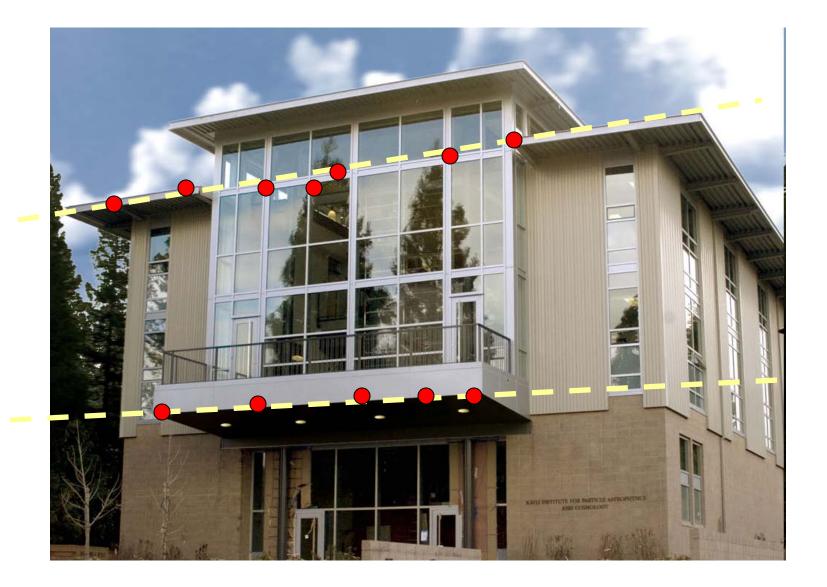
• HW 1 due today

- HW 2 out on Thursday
 - Compute edges and find circles in image using Hough transform
 - Create dictionary of texture responses and use it to match texture images
 - Derive the EM algorithm for a mixture of multinomials
 - Estimate foreground and background color distributions using EM and segment the object using graph cuts

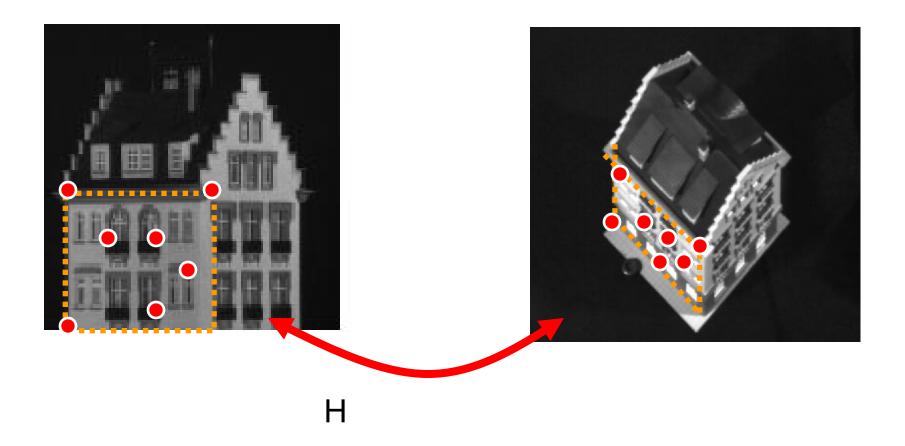
Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points

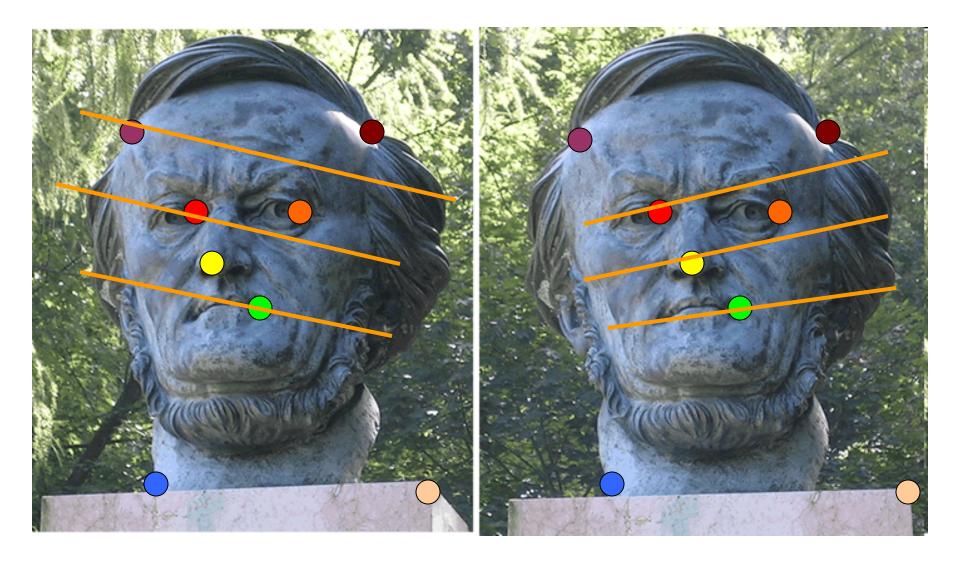
Example: Computing vanishing points



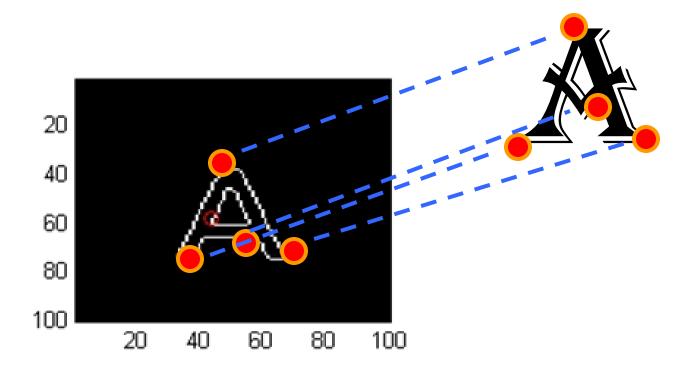
Example: Estimating an homographic transformation



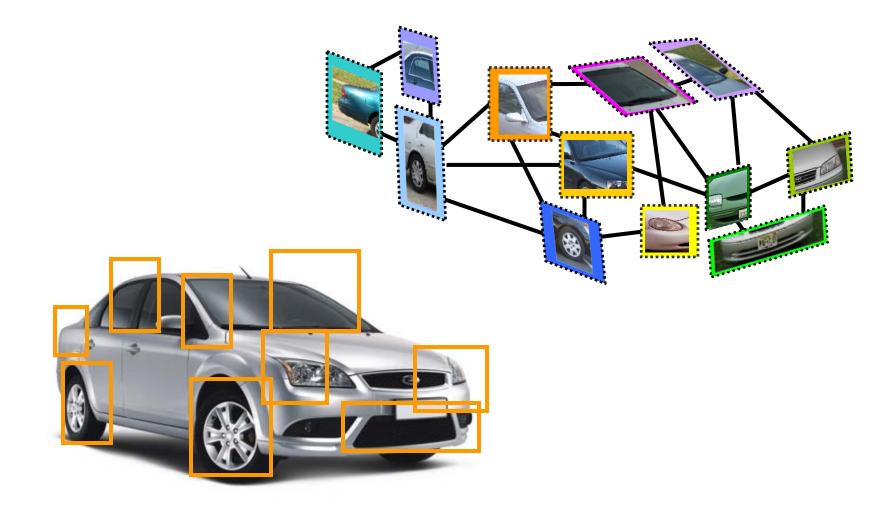
Example: Estimating "fundamental matrix" that corresponds two views



Example: fitting an 2D shape template



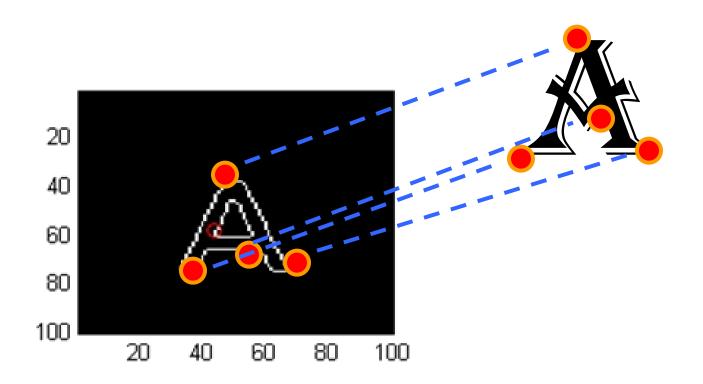
Example: fitting a 3D object model



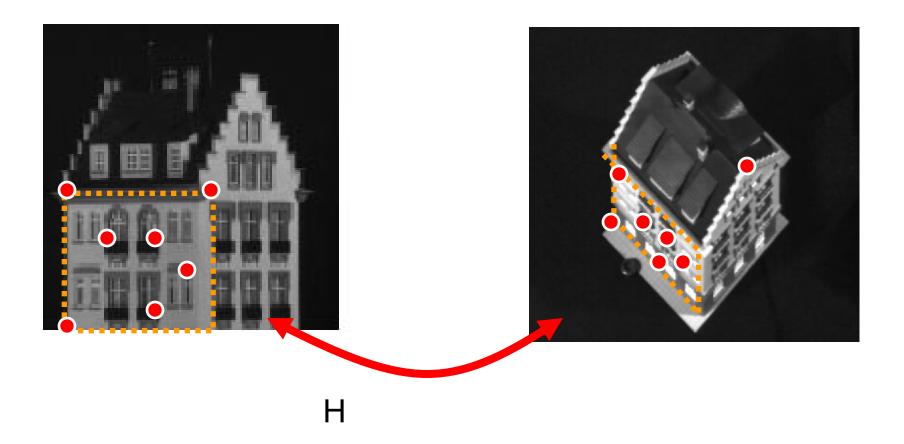
Critical issues: noisy data

Critical issues: intra-class variability

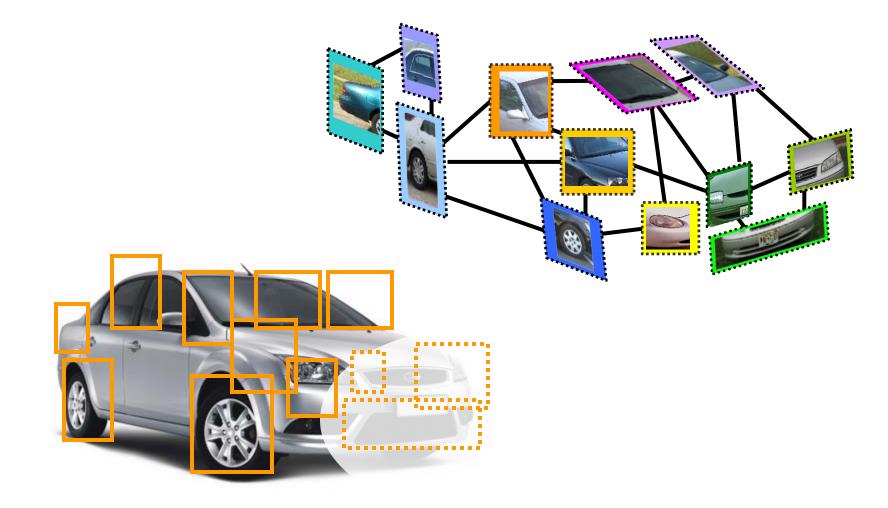
"All models are wrong, but some are useful." Box and Draper 1979



Critical issues: outliers



Critical issues: missing data (occlusions)



Fitting and Alignment

- Design challenges
 - Design a suitable **goodness of fit** measure
 - Similarity should reflect application goals
 - Encode robustness to outliers and noise
 - Design an **optimization** method
 - Avoid local optima
 - Find best parameters quickly

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Iterative closest point (ICP)

- Hypothesize and test
 - Generalized Hough transform
 - RANSAC

Simple example: Fitting a line

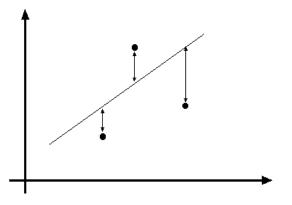
Least squares line fitting

•Data:
$$(x_1, y_1), \dots, (x_n, y_n)$$

•Line equation: $y_i = mx_i + b$
•Find (m, b) to minimize
 $E = \sum_{i=1}^n (y_i - mx_i - b)^2$
 $E = \sum_{i=1}^n (x_i - 1 \begin{bmatrix} m \\ b \end{bmatrix} - y_i)^2 = \left\| \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\|^2 = \left\| \mathbf{A} \mathbf{p} - \mathbf{y} \right\|^2$
 $= \mathbf{y}^T \mathbf{y} - 2(\mathbf{A} \mathbf{p})^T \mathbf{y} + (\mathbf{A} \mathbf{p})^T (\mathbf{A} \mathbf{p})$
 $\frac{dE}{dB} = 2\mathbf{A}^T \mathbf{A} \mathbf{p} - 2\mathbf{A}^T \mathbf{y} = 0$
 $\mathbf{A}^T \mathbf{A} \mathbf{p} = \mathbf{A}^T \mathbf{y} \Rightarrow \mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines



Total least squares

If $(a^2+b^2=1)$ then Distance between point (x_i, y_i) is $|ax_i + by_i + c|$

proof:

http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

$$ax+by+c=0$$
Unit normal:
 (x_i, y_i) $N=(a, b)$

٠

Total least squares

If $(a^2+b^2=1)$ then Distance between point (x_i, y_i) is $|ax_i + by_i + c|$

Find (a, b, c) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

$$ax+by+c=0$$

$$unit normal:$$

$$(x_i, y_i) \quad N=(a, b)$$

ax+by+c=0Unit normal:

N=(a, b)

 (x_i, y_i)

Total least squares

Find (*a*, *b*, *c*) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

$$\frac{\partial E}{\partial c} = \sum_{i=1}^{n} -2(ax_i + by_i + c) = 0 \qquad c = -\frac{a}{n} \sum_{i=1}^{n} x_i - \frac{b}{n} \sum_{i=1}^{n} x_i = -a\overline{x} - b\overline{y}$$

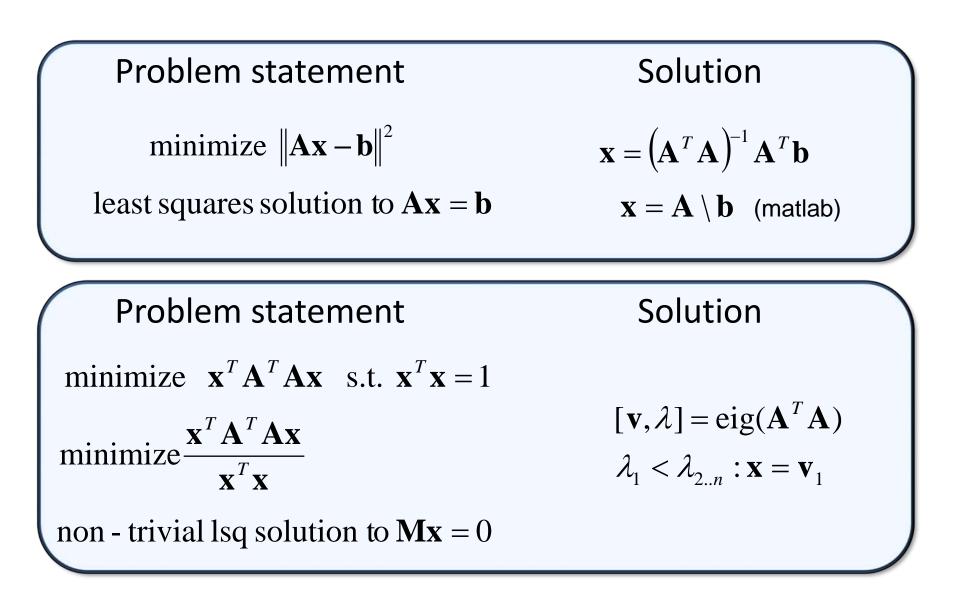
$$E = \sum_{i=1}^{n} (a(x_i - \overline{x}) + b(y_i - \overline{y}))^2 = \left\| \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix}^2 \| = \mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}$$

minimize $\mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}$ s.t. $\mathbf{p}^T \mathbf{p} = 1 \implies \text{minimize} \frac{\mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p}}{\mathbf{p}^T \mathbf{p}}$

Solution is eigenvector corresponding to smallest eigenvalue of A^TA

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh_quotient

Recap: Two Common Optimization Problems



Search / Least squares conclusions

Good

- Clearly specified objective
- Optimization is easy (for least squares)

Bad

- Not appropriate for non-convex objectives
 - May get stuck in local minima
- Sensitive to outliers
 - Bad matches, extra points
- Doesn't allow you to get multiple good fits
 - Detecting multiple objects, lines, etc.

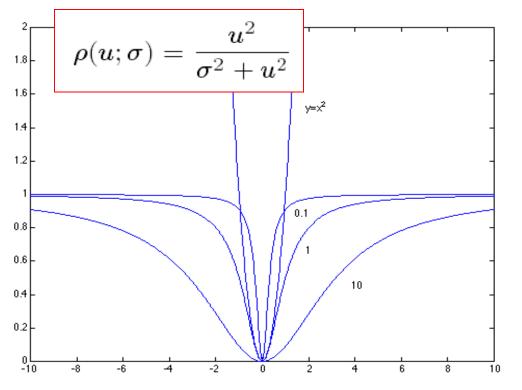
Robust least squares (to deal with outliers)

General approach:

minimize

$$\sum_{i} \boldsymbol{\rho} (\mathbf{u}_{i} (\mathbf{x}_{i}, \boldsymbol{\theta}); \boldsymbol{\sigma}) \qquad \mathbf{u} = \sum_{i=1}^{n} (\mathbf{y}_{i} - \mathbf{m}\mathbf{x}_{i} - \mathbf{b})^{2}$$

 $u_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters ϑ ρ – robust function with scale parameter σ



The robust function ρ

- Favors a configuration with small residuals
- Constant penalty for large residuals

Robust Estimator (M-estimator)

- 1. Initialize $\sigma=0$
- 2. Choose params to minimize:
 - E.g., numerical optimization

$$\sum_{i} \frac{error(\theta, data_i)^2}{\sigma^2 + error(\theta, data_i)^2}$$

- 3. Compute new σ : $\sigma = 1.5 \cdot \text{median}(error)$
- 4. Repeat (2) and (3) until convergence

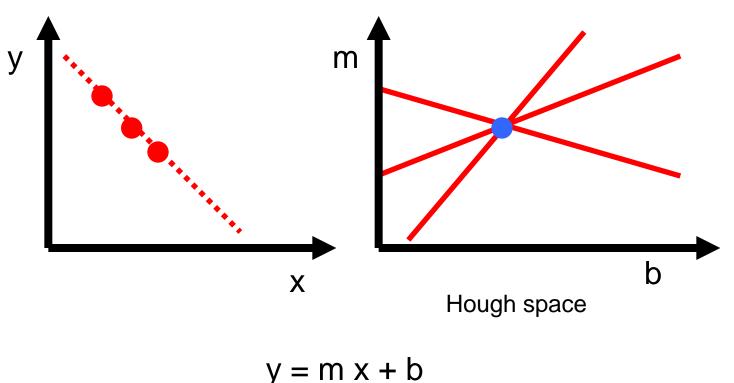
Demo – part 1

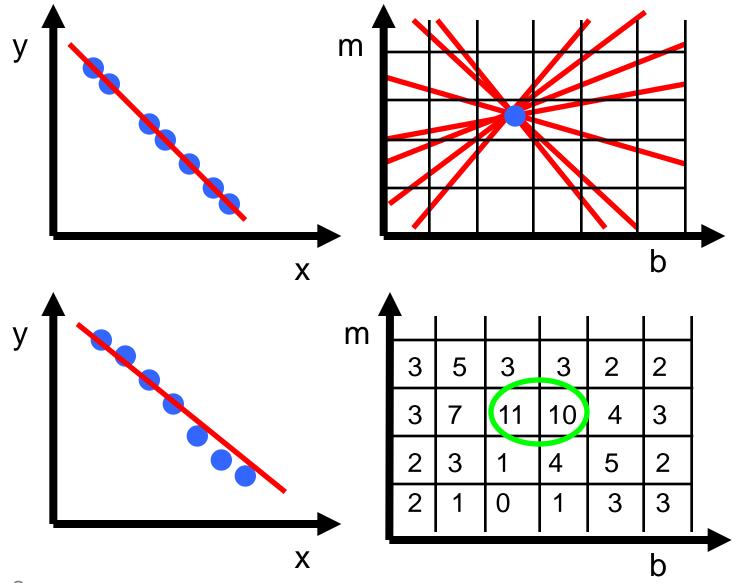
Hypothesize and test

- 1. Propose parameters
 - Try all possible
 - Each point votes for all consistent parameters
 - Repeatedly sample enough points to solve for parameters
- 2. Score the given parameters
 - Number of consistent points, possibly weighted by distance
- 3. Choose from among the set of parameters
 - Global or local maximum of scores
- 4. Possibly refine parameters using inliers

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

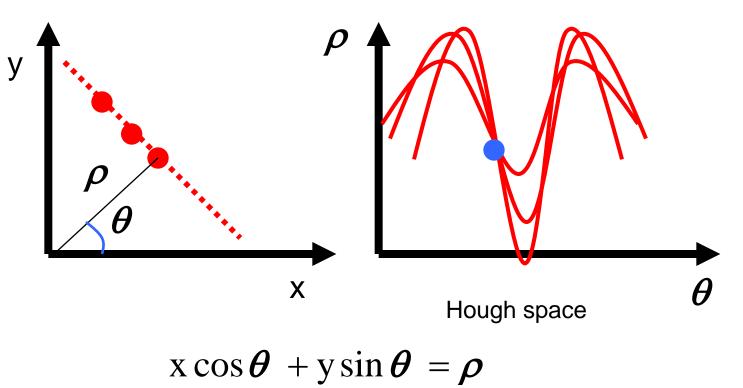




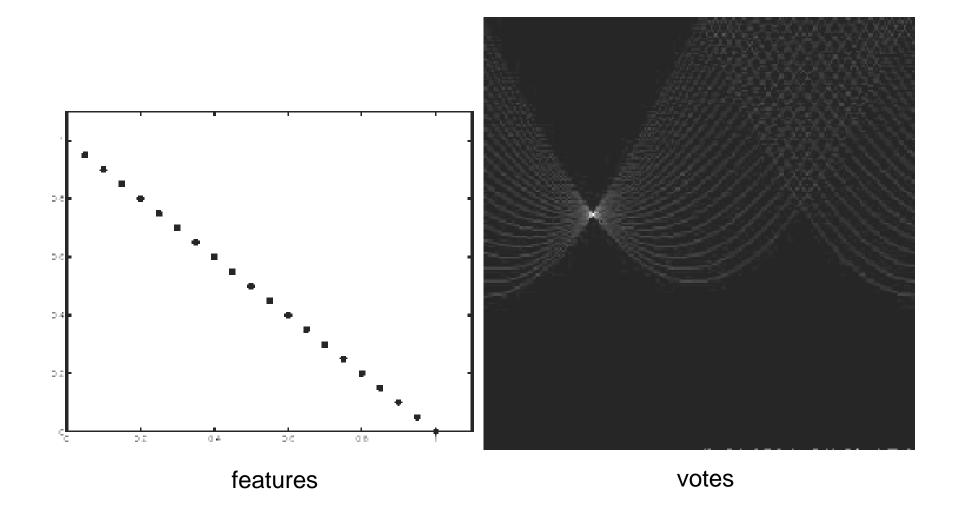
P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

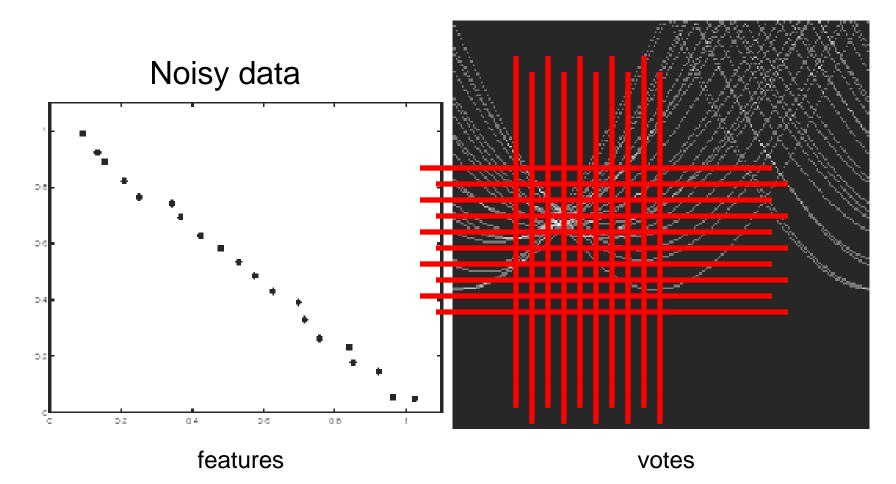
Use a polar representation for the parameter space



Hough transform - experiments

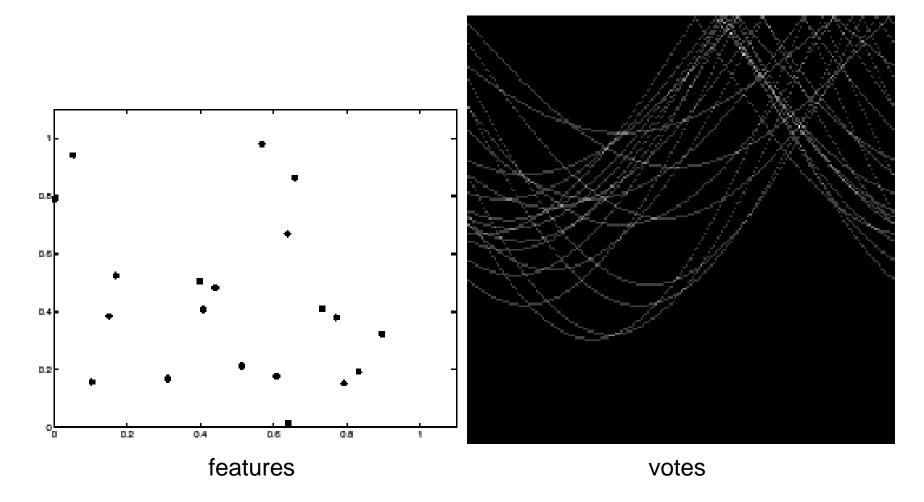


Hough transform - experiments



Issue: Grid size needs to be adjusted...

Hough transform - experiments



Issue: spurious peaks due to uniform noise

• Fitting a circle (x, y, r)

Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

Bad

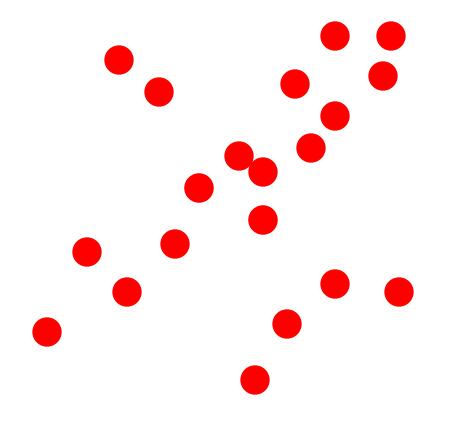
- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
- Not suitable for more than a few parameters
 - grid size grows exponentially

Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are affine transform)
- Object category recognition (parameters are position/scale)

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

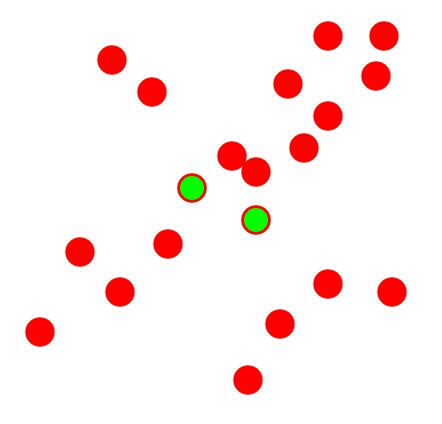


Algorithm:

- 1. Sample (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

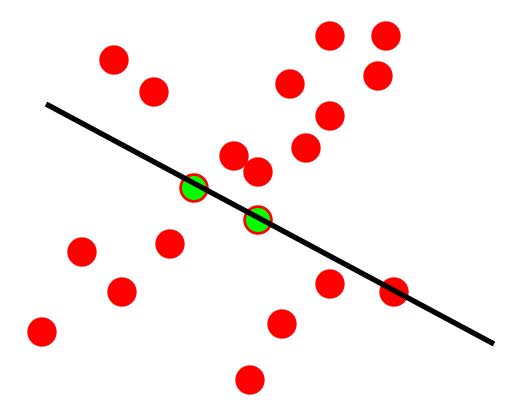


Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



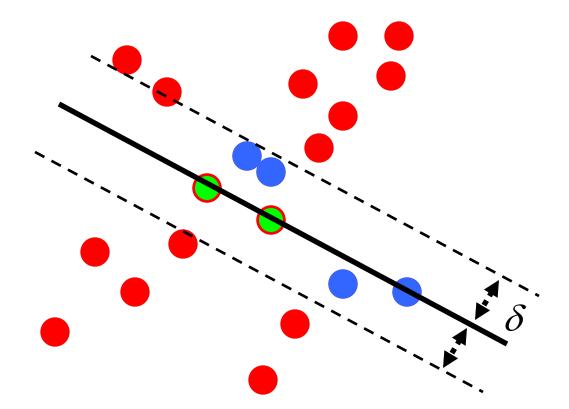
Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

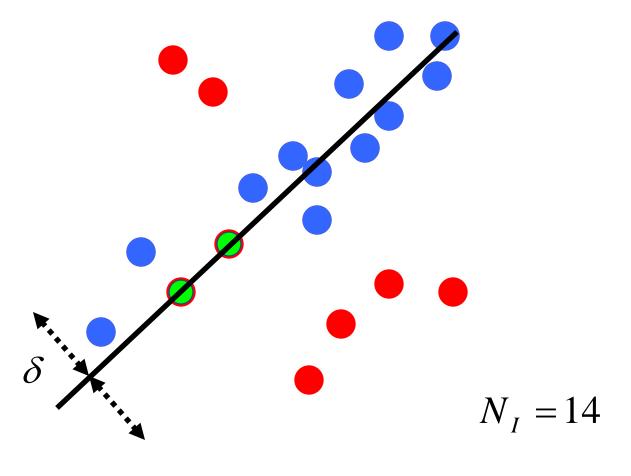
 $N_{I} = 6$



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

- Number of samples *N*
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points *s*
 - Minimum number needed to fit the model
- Distance threshold δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
 - Zero-mean Gaussian noise with std. dev. σ : t²=3.84 σ ²

$$N = \log(1-p) / \log(1-(1-e)^s)$$

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

modified from M. Pollefeys

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of parameters than Hough transform
- Parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Common applications

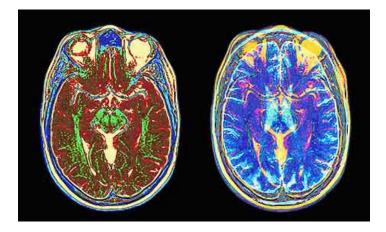
- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

Demo – part 2

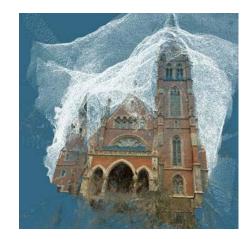
What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

Important applications



Medical imaging: match brain scans or contours

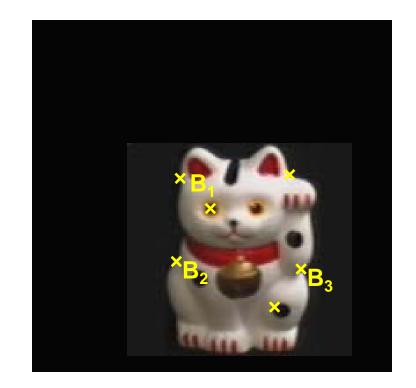


Robotics: match point clouds

Iterative Closest Points (ICP) Algorithm

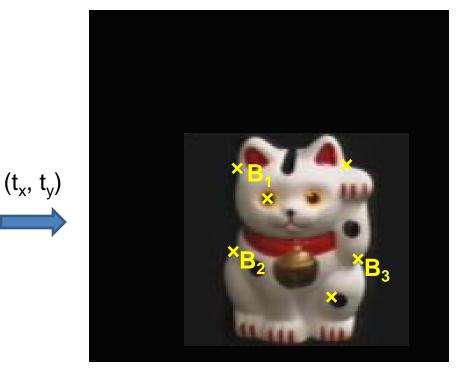
Goal: estimate transform between two dense sets of points

- **1.** Assign each point in {Set 1} to its nearest neighbor in {Set 2}
- 2. Estimate transformation parameters
 - e.g., least squares or robust least squares
- **3. Transform** the points in {Set 1} using estimated parameters
- 4. Repeat steps 2-4 until change is very small



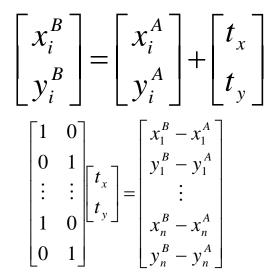
Given matched points in {A} and {B}, estimate the translation of the object

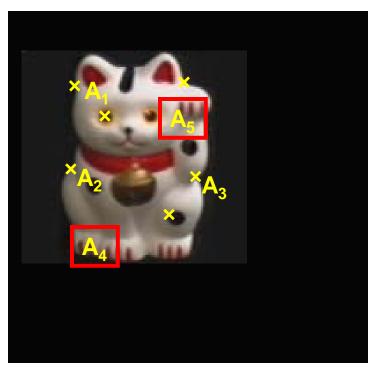
$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

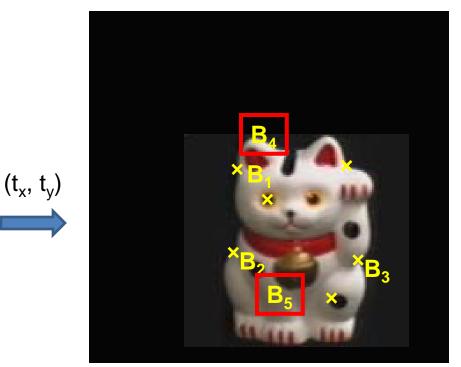


Least squares solution

- 1. Write down objective function
- 2. Derived solution
 - a) Compute derivative
 - b) Compute solution
- 3. Computational solution
 - a) Write in form Ax=b
 - b) Solve using pseudo-inverse or eigenvalue decomposition



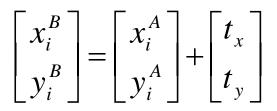


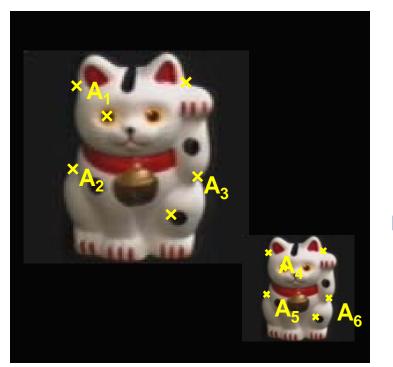


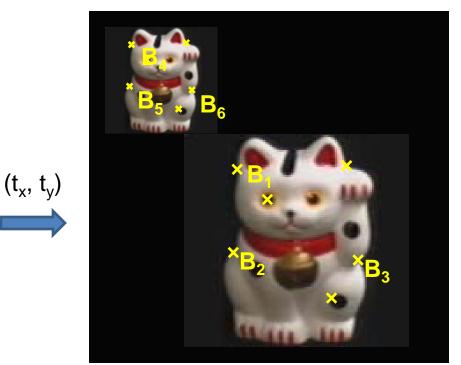
Problem: outliers

RANSAC solution

- 1. Sample a set of matching points (1 pair)
- 2. Solve for transformation parameters
- 3. Score parameters with number of inliers
- 4. Repeat steps 1-3 N times



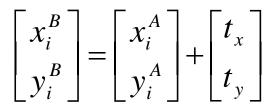


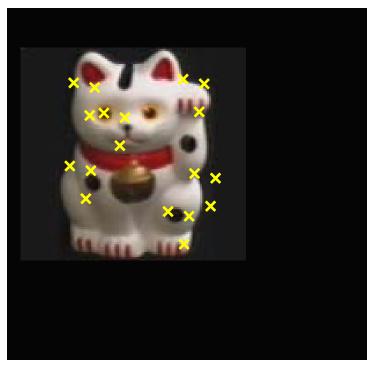


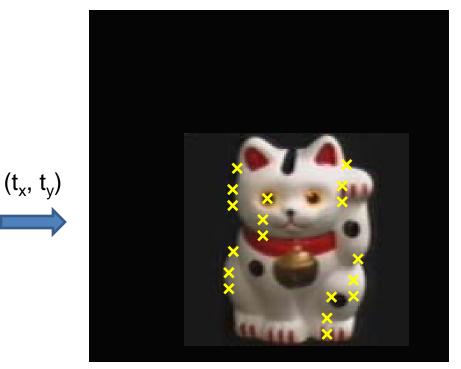
Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

- 1. Initialize a grid of parameter values
- 2. Each matched pair casts a vote for consistent values
- 3. Find the parameters with the most votes
- 4. Solve using least squares with inliers



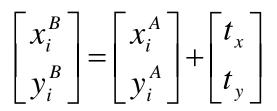




Problem: no initial guesses for correspondence

ICP solution

- 1. Find nearest neighbors for each point
- 2. Compute transform using matches
- 3. Move points using transform
- 4. Repeat steps 1-3 until convergence



Next class: Clustering

- Clustering algorithms
 - K-means
 - K-medoids
 - Hierarchical clustering

• Model selection