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Last class

• How to use filters for
– Matching
– Denoising
– Compression

• Image representation with pyramids

• Texture and filter banks



A couple remaining questions from earlier

• Does the curvature of the earth change the 
horizon location?

Illustrations from 
Amin Sadeghi



A couple remaining questions from earlier

• Computational complexity of coarse-to-fine 
search?

Image 1 Pyramid

Size N
Size M

Low Resolution 
Search O(N/M)

Repeated Local 
Neighborhood 
Search O(M)

Downsampling: 
O(N+M)

Image 2 Pyramid

Overall complexity: O(N+M)
Original high-resolution full search: O(NM) or O(N logN)



A couple remaining questions from earlier

• Why not use an ideal filter?

Attempt to apply ideal filter in frequency domain

Answer: has infinite spatial extent, clipping results in ringing



Today’s class

• Detecting edges

• Finding straight lines



Why do we care about edges?

• Extract information, 
recognize objects

• Recover geometry and 
viewpoint

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)



Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz



Closeup of edges



Closeup of edges



Closeup of edges



Closeup of edges



Characterizing edges
• An edge is a place of rapid change in the 

image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative



Intensity profile



With a little Gaussian noise

Gradient



Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

Presenter
Presentation Notes
How to fix?



Effects of noise
• Difference filters respond strongly to noise

– Image noise results in pixels that look very 
different from their neighbors

– Generally, the larger the noise the stronger the 
response

• What can we do about it?

Source: D. Forsyth



Solution: smooth first

• To find edges, look for peaks in )( gf
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Source: S. Seitz



• Differentiation is convolution, and convolution is 
associative:

• This saves us one operation:

g
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Source: S. Seitz



Derivative of Gaussian filter

• Is this filter 
separable?

* [1 -1] = 



• Smoothed derivative removes noise, but blurs 
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and localization

Source: D. Forsyth



Designing an edge detector
• Criteria for a good edge detector:

– Good detection: the optimal detector should find all 
real edges, ignoring noise or other artifacts

– Good localization
• the edges detected must be as close as possible to 

the true edges
• the detector must return one point only for each 

true edge point
• Cues of edge detection

– Differences in color, intensity, or texture across the 
boundary

– Continuity and closure
– High-level knowledge

Source: L. Fei-Fei



Canny edge detector

• This is probably the most widely used edge 
detector in computer vision

• Theoretical model: step-edges corrupted by 
additive Gaussian noise

• Canny has shown that the first derivative of 
the Gaussian closely approximates the 
operator that optimizes the product of 
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE 
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 

Source: L. Fei-Fei

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4�


Example

original image (Lena)



Derivative of Gaussian filter

x-direction y-direction



Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude



Get Orientation at Each Pixel
• Threshold at minimum level
• Get orientation

theta = atan2(gy, gx)



Non-maximum suppression for each 
orientation

At q, we have a 
maximum if the 
value is larger than 
those at both p and 
at r. Interpolate to 
get these values.

Source: D. Forsyth



Before Non-max Suppression



After non-max suppression



Hysteresis thresholding

• Threshold at low/high levels to get weak/strong edge pixels
• Do connected components, starting from strong edge pixels



Hysteresis thresholding

• Check that maximum value of gradient 
value is sufficiently large
– drop-outs?  use hysteresis

• use a high threshold to start edge curves and a low 
threshold to continue them.

Source: S. Seitz



Final Canny Edges



Canny edge detector
1. Filter image with x, y derivatives of Gaussian 
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

– Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):
– Define two thresholds: low and high
– Use the high threshold to start edge curves and the low 

threshold to continue them

• MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei



Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of σ depends on desired behavior
• large σ detects large scale edges
• small σ detects fine features

Source: S. Seitz



Learning to detect boundaries

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/�


pB boundary detector

Figure from Fowlkes

Martin, Fowlkes, Malik 2004: Learning to Detection 
Natural Boundaries…
http://www.eecs.berkeley.edu/Research/Projects/C
S/vision/grouping/papers/mfm-pami-boundary.pdf

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf�
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf�


pB Boundary Detector

Figure from Fowlkes



Brightness

Color

Texture

Combined

Human



Finding straight lines

• One solution: try many possible lines and see 
how many points each line passes through

• Hough transform provides a fast way to do 
this



Outline of Hough Transform

1. Create a grid of parameter values

2. Each point votes for a set of parameters, 
incrementing those values in grid

3. Find maximum or local maxima in grid



Finding lines using Hough transform
• Using m,b parameterization
• Using r, theta parameterization

– Using oriented gradients

• Practical considerations
– Bin size
– Smoothing
– Finding multiple lines
– Finding line segments



1. Image  Canny



2. Canny  Hough votes



3. Hough votes  Edges 

Find peaks and post-process



Hough transform example

http://ostatic.com/files/images/ss_hough.jpg



Finding circles using Hough transform
• Fixed r
• Variable r



Finding straight lines

• Another solution: get connected components 
of pixels and check for straightness



Finding line segments using connected 
components

1. Compute canny edges
– Compute: gx, gy (DoG in x,y directions)
– Compute: theta = atan(gy / gx)

2. Assign each edge to one of 8 directions
3. For each direction d, get edgelets:

– find connected components for edge pixels with directions in {d-1, d, 
d+1}

4. Compute straightness and theta of edgelets using eig of x,y
2nd moment matrix of their points

5. Threshold on straightness, store segment
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1. Image  Canny



2. Canny lines  … straight edges



Hough Transform Method

Comparison

Connected Components Method



Things to remember
• Canny edge detector =            

smooth  derivative  thin 
threshold  link

• Generalized Hough transform = 
points vote for shape parameters

• Straight line detector =               
canny + gradient orientations 
orientation binning  linking 
check for straightness



Next classes

• Fitting and Registration

• Clustering

• EM (mixture models)



Questions
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