
Finding Edges and Straight Lines

Computer Vision
CS 543 / ECE 549

University of Illinois

Derek Hoiem

02/10/11

Many slides from Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li

Last class

• How to use filters for
– Matching
– Denoising
– Compression

• Image representation with pyramids

• Texture and filter banks

A couple remaining questions from earlier

• Does the curvature of the earth change the
horizon location?

Illustrations from
Amin Sadeghi

A couple remaining questions from earlier

• Computational complexity of coarse-to-fine
search?

Image 1 Pyramid

Size N
Size M

Low Resolution
Search O(N/M)

Repeated Local
Neighborhood
Search O(M)

Downsampling:
O(N+M)

Image 2 Pyramid

Overall complexity: O(N+M)
Original high-resolution full search: O(NM) or O(N logN)

A couple remaining questions from earlier

• Why not use an ideal filter?

Attempt to apply ideal filter in frequency domain

Answer: has infinite spatial extent, clipping results in ringing

Today’s class

• Detecting edges

• Finding straight lines

Why do we care about edges?

• Extract information,
recognize objects

• Recover geometry and
viewpoint

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz

Closeup of edges

Closeup of edges

Closeup of edges

Closeup of edges

Characterizing edges
• An edge is a place of rapid change in the

image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

Intensity profile

With a little Gaussian noise

Gradient

Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

Presenter
Presentation Notes
How to fix?

Effects of noise
• Difference filters respond strongly to noise

– Image noise results in pixels that look very
different from their neighbors

– Generally, the larger the noise the stronger the
response

• What can we do about it?

Source: D. Forsyth

Solution: smooth first

• To find edges, look for peaks in)(gf
dx
d

∗

f

g

f * g

)(gf
dx
d

∗

Source: S. Seitz

• Differentiation is convolution, and convolution is
associative:

• This saves us one operation:

g
dx
dfgf

dx
d

∗=∗)(

Derivative theorem of convolution

g
dx
df ∗

f

g
dx
d

Source: S. Seitz

Derivative of Gaussian filter

• Is this filter
separable?

* [1 -1] =

• Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and localization

Source: D. Forsyth

Designing an edge detector
• Criteria for a good edge detector:

– Good detection: the optimal detector should find all
real edges, ignoring noise or other artifacts

– Good localization
• the edges detected must be as close as possible to

the true edges
• the detector must return one point only for each

true edge point
• Cues of edge detection

– Differences in color, intensity, or texture across the
boundary

– Continuity and closure
– High-level knowledge

Source: L. Fei-Fei

Canny edge detector

• This is probably the most widely used edge
detector in computer vision

• Theoretical model: step-edges corrupted by
additive Gaussian noise

• Canny has shown that the first derivative of
the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4�

Example

original image (Lena)

Derivative of Gaussian filter

x-direction y-direction

Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Get Orientation at Each Pixel
• Threshold at minimum level
• Get orientation

theta = atan2(gy, gx)

Non-maximum suppression for each
orientation

At q, we have a
maximum if the
value is larger than
those at both p and
at r. Interpolate to
get these values.

Source: D. Forsyth

Before Non-max Suppression

After non-max suppression

Hysteresis thresholding

• Threshold at low/high levels to get weak/strong edge pixels
• Do connected components, starting from strong edge pixels

Hysteresis thresholding

• Check that maximum value of gradient
value is sufficiently large
– drop-outs? use hysteresis

• use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz

Final Canny Edges

Canny edge detector
1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

– Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):
– Define two thresholds: low and high
– Use the high threshold to start edge curves and the low

threshold to continue them

• MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei

Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original

The choice of σ depends on desired behavior
• large σ detects large scale edges
• small σ detects fine features

Source: S. Seitz

Learning to detect boundaries

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/�

pB boundary detector

Figure from Fowlkes

Martin, Fowlkes, Malik 2004: Learning to Detection
Natural Boundaries…
http://www.eecs.berkeley.edu/Research/Projects/C
S/vision/grouping/papers/mfm-pami-boundary.pdf

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf�
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf�

pB Boundary Detector

Figure from Fowlkes

Brightness

Color

Texture

Combined

Human

Finding straight lines

• One solution: try many possible lines and see
how many points each line passes through

• Hough transform provides a fast way to do
this

Outline of Hough Transform

1. Create a grid of parameter values

2. Each point votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid

Finding lines using Hough transform
• Using m,b parameterization
• Using r, theta parameterization

– Using oriented gradients

• Practical considerations
– Bin size
– Smoothing
– Finding multiple lines
– Finding line segments

1. Image  Canny

2. Canny  Hough votes

3. Hough votes  Edges

Find peaks and post-process

Hough transform example

http://ostatic.com/files/images/ss_hough.jpg

Finding circles using Hough transform
• Fixed r
• Variable r

Finding straight lines

• Another solution: get connected components
of pixels and check for straightness

Finding line segments using connected
components

1. Compute canny edges
– Compute: gx, gy (DoG in x,y directions)
– Compute: theta = atan(gy / gx)

2. Assign each edge to one of 8 directions
3. For each direction d, get edgelets:

– find connected components for edge pixels with directions in {d-1, d,
d+1}

4. Compute straightness and theta of edgelets using eig of x,y
2nd moment matrix of their points

5. Threshold on straightness, store segment

() ()()
()() () 












−−−
−−−

=
∑∑

∑∑
2

2

yyx

yxx

yyx
yxx
µµµ

µµµ
M)eig(],[Μ=λv

))2,1(),2,2(2(atan vv=θ

12 /λλ=conf

Larger eigenvector

1. Image  Canny

2. Canny lines  … straight edges

Hough Transform Method

Comparison

Connected Components Method

Things to remember
• Canny edge detector =

smooth  derivative  thin 
threshold  link

• Generalized Hough transform =
points vote for shape parameters

• Straight line detector =
canny + gradient orientations 
orientation binning  linking 
check for straightness

Next classes

• Fitting and Registration

• Clustering

• EM (mixture models)

Questions

	Finding Edges and Straight Lines
	Last class
	A couple remaining questions from earlier
	A couple remaining questions from earlier
	A couple remaining questions from earlier
	Today’s class
	Why do we care about edges?
	Origin of Edges
	Closeup of edges
	Closeup of edges
	Closeup of edges
	Closeup of edges
	Characterizing edges
	Intensity profile
	With a little Gaussian noise
	Effects of noise
	Effects of noise
	Solution: smooth first
	Derivative theorem of convolution
	Derivative of Gaussian filter
	Tradeoff between smoothing and localization
	Designing an edge detector
	Canny edge detector
	Example
	Derivative of Gaussian filter
	Compute Gradients (DoG)
	Get Orientation at Each Pixel
	Non-maximum suppression for each orientation
	Before Non-max Suppression
	After non-max suppression
	Hysteresis thresholding
	Hysteresis thresholding
	Final Canny Edges
	Canny edge detector
	Effect of  (Gaussian kernel spread/size)
	Learning to detect boundaries
	pB boundary detector
	pB Boundary Detector
	Slide Number 45
	Finding straight lines
	Outline of Hough Transform
	Finding lines using Hough transform
	1. Image  Canny
	2. Canny  Hough votes
	3. Hough votes  Edges
	Hough transform example
	Finding circles using Hough transform
	Finding straight lines
	Finding line segments using connected components
	1. Image  Canny
	2. Canny lines  … straight edges
	Comparison
	Things to remember
	Next classes
	Questions

