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Pixels and Image Filtering

Computer Vision

Derek Hoiem, University of lllinois
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Today’s Class: Pixels and Linear Filters

e Review of lighting

— Reflection and absorption

 What is a pixel? How is an image
represented?

— Color spaces

 What is image filtering and how do we do it?



A photon’s life choices

* Absorption
e Diffusion
e Reflection

light source

* Transparency

e Refraction

* Fluorescence

e Subsurface scattering
 Phosphorescence

e Interreflection




A photon’s life choices
 Absorption

light source



A photon’s life choices

e Diffuse Reflection

light source




A photon’s life choices

light source

e Specular Reflection



A photon’s life choices

light source

* Transparency



A photon’s life choices

light source

 Refraction



A photon’s life choices

light source

* Fluorescence



A photon’s life choices

light source

* Subsurface scattering



A photon’s life choices

light source

 Phosphorescence
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(Specular Interreflection)

* Interreflection



Surface orientation and light intensity
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Why is (1) darker than (2)?
For diffuse reflection, will intensity change when viewing angle
changes?



Perception of Intensity

from Ted Adelson



Perception of Intensity

from Ted Adelson



Image Formation

Illumination (energy)
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Digital camera

A digital camera replaces film with a sensor array

Each cell in the array is light-sensitive diode that converts photons to
electrons
Two common types: Charge Coupled Device (CCD) and CMOS

http://electronics.howstuffworks.com/digital-camera.htm

Slide by Steve Seitz
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Sensor Array
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FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.



The raster image (pixel matrix
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The raster image (pixel

matrix)
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Digital Color Images

Bayer filter

£ 2000 Hiow STuf Works



Color Image

e 2000 phi 1gBin £, e




Images in Matlab

e |mages represented as a matrix

e Suppose we have a NxM RGB image called “im”

— im(1,1,1) = top-left pixel value in R-channel

— im(y, X, b) =y pixels down, x pixels to right in the bt channel

— im(N, M, 3) = bottom-right pixel in B-channel
 imread(filename) returns a uint8 image (values O to 255)

— Convert to double format (values 0 to 1) with im2double

row

column > R
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Color spaces

e How can we represent color?

http://en.wikipedia.org/wiki/File:RGB _illumination.jpg



Color spaces: RGB

Default color space

(G=0,B=0)

(R=0,B=0)

B
Some drawbacks (R=0,G=0)
» Strongly correlated channels

» Non-perceptual

Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png



Color spaces: HSV

Intuitive color space

Hue

Saturation




Color spaces: YCbCr

Fast to compute, good for
compression, used by TV

Y=0 Y=0.5

Cr

Cb

(Cb=0.5,Cr=0.5)

Cb

(Y=0.5,Cr=0.5)

Cr

(Y=0.5,Cb=05)



Color spaces: L*a*b*

“Perceptually uniform” color space

(L=65,b=0)

b

(L=65,a=0)




If you had to choose, would you rather go
without luminance or chrominance?



luminance



Most information in intensity

Only color shown — constant intensity



ost information in intensity

philg@mit,edu

Only intensity shown — constant color



ost information in intensity
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Original image



Back to grayscale intensity

Y
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Next three classes: three views of filtering

* |mage filters in spatial domain
— Filter is a mathematical operation of a grid of numbers
— Smoothing, sharpening, measuring texture

* |mage filters in the frequency domain
— Filtering is a way to modify the frequencies of images
— Denoising, sampling, image compression

e Templates and Image Pyramids
— Filtering is a way to match a template to the image
— Detection, coarse-to-fine registration



Image filtering

* Image filtering: compute function of local
neighborhood at each position

e Really important!

— Enhance images

* Denoise, resize, increase contrast, etc.

— Extract information from images
e Texture, edges, distinctive points, etc.

— Detect patterns
 Template matching



Example: box filter
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Slide credit: David Lowe (UBC)



Image filtering ABOE
g[ ’]5 1111

f[.,.] l.,.]

h[m,n]=> g[k,17 f[m+k,n+1]

Credit: S. Seitz
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Image filtering ABOE
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Image filtering TS

f[.,.] l.,.]

h[m,n]=> g[k,17 f[m+k,n+1]

Credit: S. Seitz



Image filtering
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30

h[m,n]=> g[k,17 f[m+k,n+1]

Credit: S. Seitz



Image filtering
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h[m,n]=> g[k,17 f[m+k,n+1]

Credit: S. Seitz



Image filtering al- -1 R

f[.,.]

h[m,n]=> g[k,17 f[m+k,n+1]

Credit: S. Seitz



Box Filter

What does it do?

* Replaces each pixel with 11111
an average of its 1
neighborhood —| 1] 1|1

O
_ _ 1 (1] 1
* Achieve smoothing effect

(remove sharp features)

Slide credit: David Lowe (UBC)



Smoothing with box filter




Practice with linear filters

Original

Source: D. Lowe



Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe



Practice with linear filters

Original

Source: D. Lowe



Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe



Practice with linear filters
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(Note that filter sums to 1)

Original

Source: D. Lowe



Practice with linear filters
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Original

Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe



Sharpening

before

Source: D. Lowe



Other filters

1]0]-1

210 |-2

1]10]-1
Sobel

Vertical Edge
(absolute value)



Other filters
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Horizontal Edge
(absolute value)



How could we synthesize motion blur?

theta = 30; len = 20;

fil = 1imrotate(ones(1, len), theta, “bilinear”);
il = il /7 sum(fil(:2));

figure(2), imshow(imfilter(im, fil));



Filtering vs. Convolution

g=filter f=image

e 2d filtering
—h=filter2(g,f); or h=imfilter(f,g);

h[m,n]=> g[k,17 f[m+k,n+1]

e 2d convolution
—h=conv2(g, f);

h[m,n]=> g[k,17 f[m—k,n—1]



Key properties of linear filters

Linearity:
filter(f, + £,) = filter(f) + filter(f)

Shift invariance: same behavior regardless of

pixel location
filter(shift(f)) = shife(filter(Y))

Any linear, shift-invariant operator can be
represented as a convolution

Source: S. Lazebnik



More properties

e Commutative:a*b=b*a
— Conceptually no difference between filter and signal

e Associative:a *(b*c)=(a*b) *c
— Often apply several filters one after another: (((a * b;) * b,) * b,)
— This is equivalent to applying one filter: a * (b, * b, * b,)

e Distributes over addition:a * (b+c)=(a * b) + (a * ¢)
e Scalars factorout: ka *b=a *kb =k (a * b)

e |dentity: unit impulse e =10, 0, 1, 0, 0],
a*e=a

Source: S. Lazebnik



Important filter: Gaussian

* Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

9x5,0=1

Slide credit: Christopher Rasmussen



Smoothing with Gaussian filter
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Smoothing with box filter




Gaussian filters

e Remove “high-frequency” components from the
image (low-pass filter)
— Images become more smooth

e Convolution with self is another Gaussian

— So can smooth with small-width kernel, repeat, and
get same result as larger-width kernel would have

— Convolving two times with Gaussian kernel of width o
is same as convolving once with kernel of width ov2

e Separable kernel

— Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Xty
G, (X _ 207
o(X.y) = S5 eXp -
1 x° y*
_ (f - TZ) 1 g 22
V2o V2o

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe



Separability example

2D convolution 5> |4 |2 3
(center location only)

N
N

The filter factors 112 |1 Tl x [1]2]1
iInto a product of 1D 2 1412 (=]>
filters: A CRE B
: 2 1313 11
Perform convolution Tl «E 1= —
along rows:
4 14 |6 18

Followed by convolution
along the remaining column:

Source: K. Grauman



Separability

e Why is separability useful in practice?



Some practical matters



Practical matters
How big should the filter be?

e Values at edges should be near zero

e Rule of thumb for Gaussian: set filter half-width to
about3 o

Effectof o

e

R

a 2 4 G g 10 12 14 g 15 20




Practical matters

 What about near the edge?

— the filter window falls off the edge of the image

T —

— need to extrapolate

— methods:
e clip filter (black)

e wrap around

e copy edge
* reflect across edge

Source: S. Marschner



Practical matters

— methods (MATLAB):
e clip filter (black): imfilter(f, g, O)
e wrap around: imfilter(f, g, ‘circular’)
e copy edge: imfilter(f, g, ‘replicate’)
e reflect across edge: imfilter(f, g, ‘symmetric’)

Q?

Source: S. Marschner



Practical matters

* What is the size of the output?
e MATLAB: filter2(g, f, shape)

— shape = ‘“full’: output size is sum of sizesof fand g
— shape = ‘same’: output size is same as f
— shape = ‘valid’: output size is difference of sizes of fand g

___________ full same valid

Source: S. Lazebnik



Take-home messages

* Image is a matrix of numbers .i:,

e Linear filtering is sum of dot

product at each position

— Can smooth, sharpen, translate

(among many other uses)

e Be aware of details for filter size,
extrapolation, cropping




Practice questions

1. Write down a 3x3 filter that returns a positive
value if the average value of the 4-adjacent
neighbors is less than the center and a
negative value otherwise

2. Write down a filter that will compute the
gradient in the x-direction:

gradx(y,x) = im(y,x+1)-im(y,x) for each x, y



Practice questions fiteing Operator

3. Fillinthe blanks: g9 5= ~  *
C) F:B*:
d =D™=*D




Next class: Thinking in Frequency
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