Pixels and Image Filtering

Computer Vision

Derek Hoiem, University of Illinois

Graphic: http://www.notcot.org/post/4068/

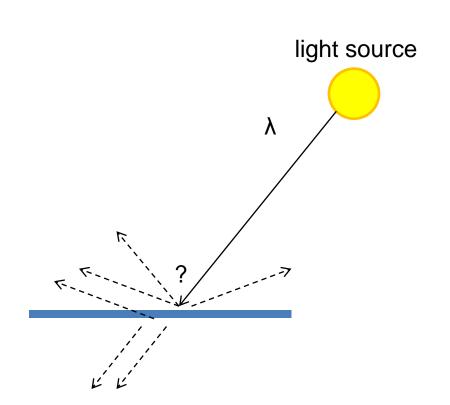
Today's Class: Pixels and Linear Filters

- Review of lighting
 - Reflection and absorption

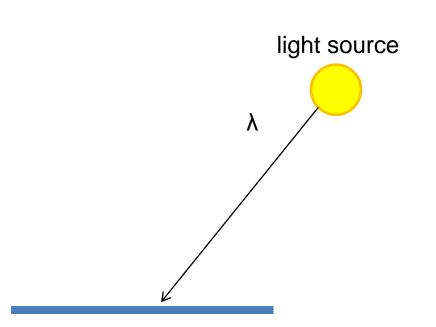
- What is a pixel? How is an image represented?
 - Color spaces

What is image filtering and how do we do it?

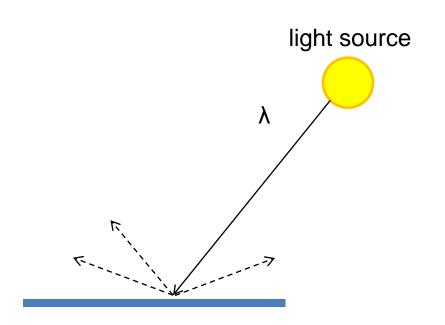
- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



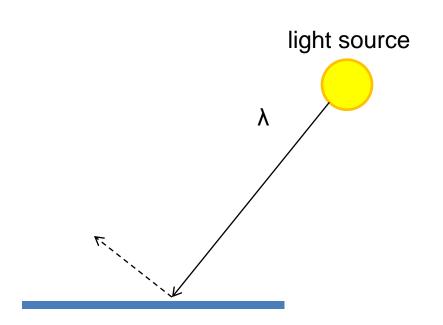
- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



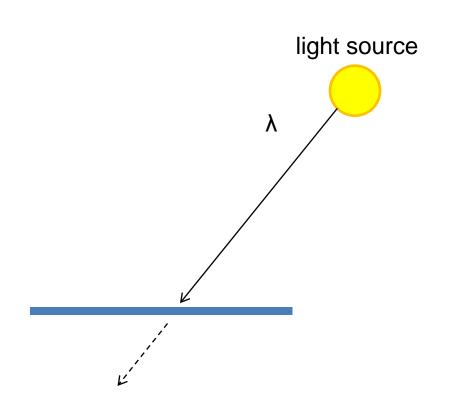
- Absorption
- Diffuse Reflection
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



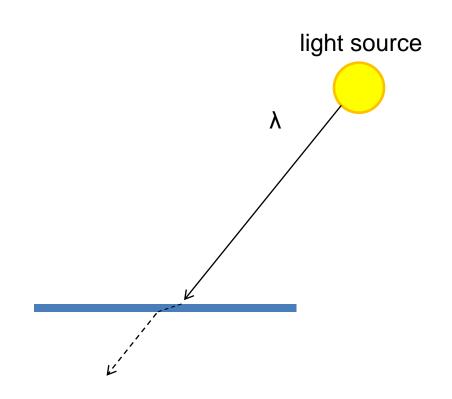
- Absorption
- Diffusion
- Specular Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



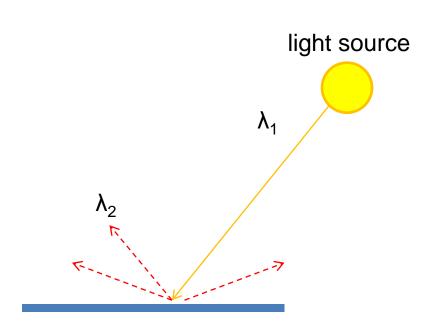
- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



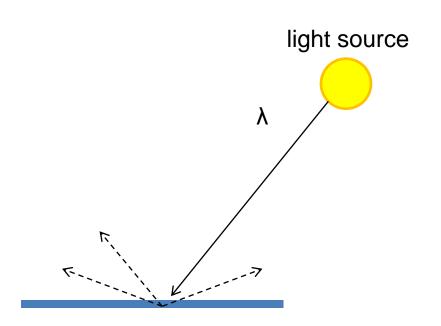
- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



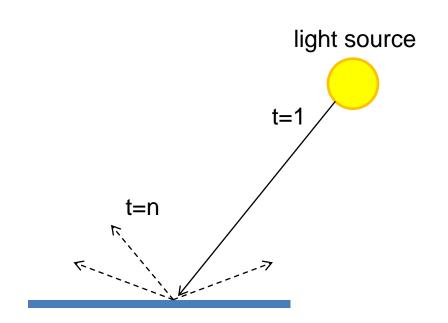
- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



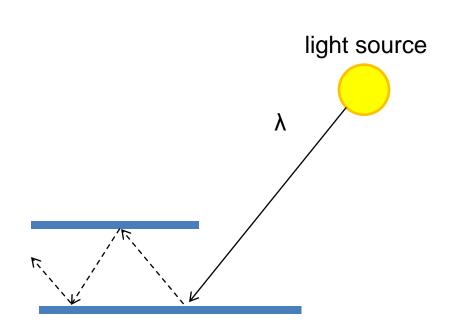
- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

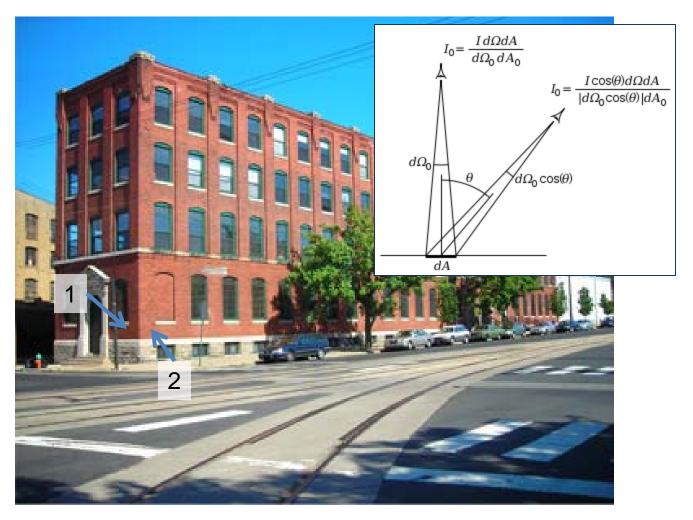


- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection



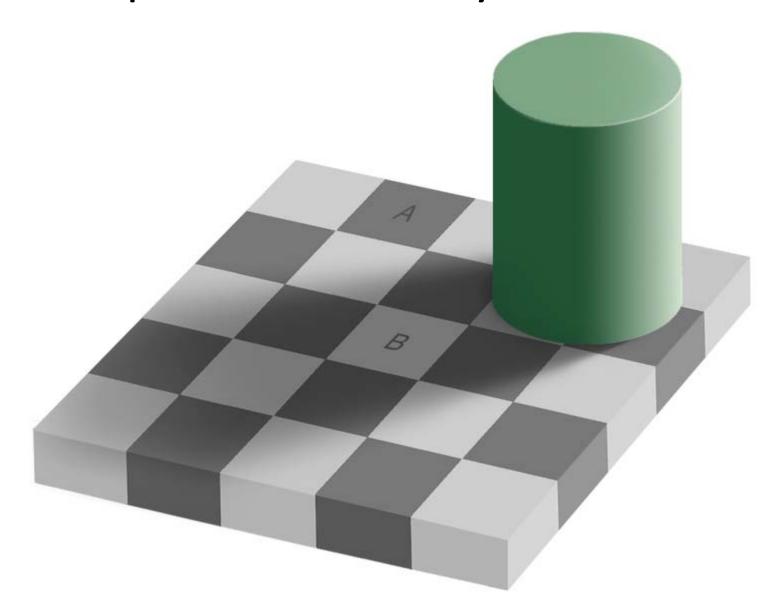
(Specular Interreflection)

Surface orientation and light intensity



Why is (1) darker than (2)? For diffuse reflection, will intensity change when viewing angle changes?

Perception of Intensity



Perception of Intensity

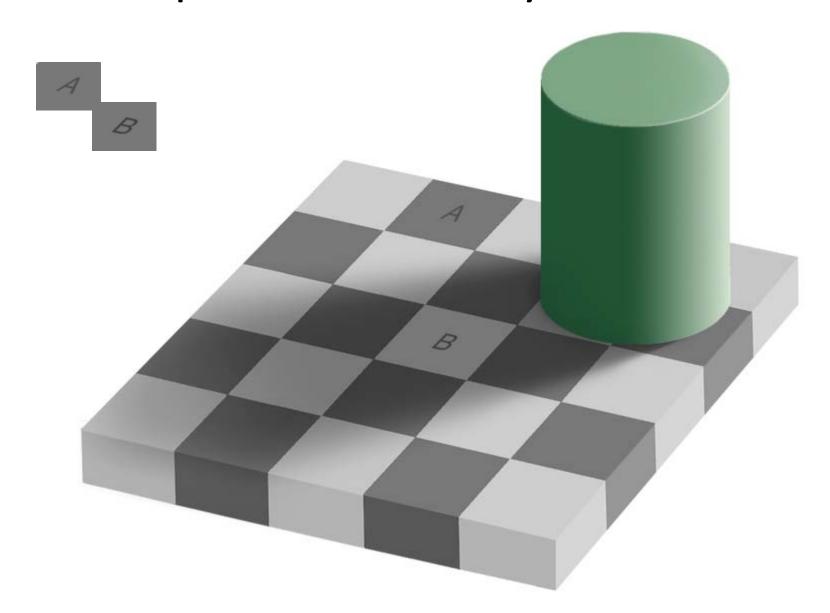
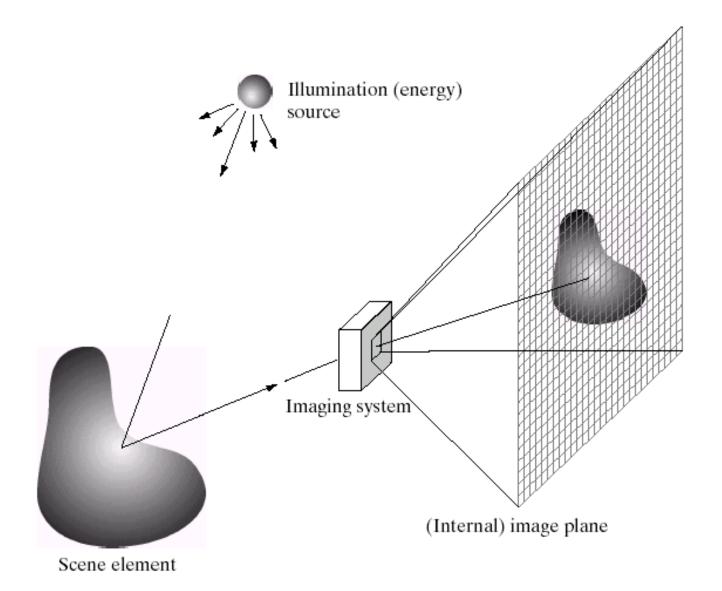


Image Formation

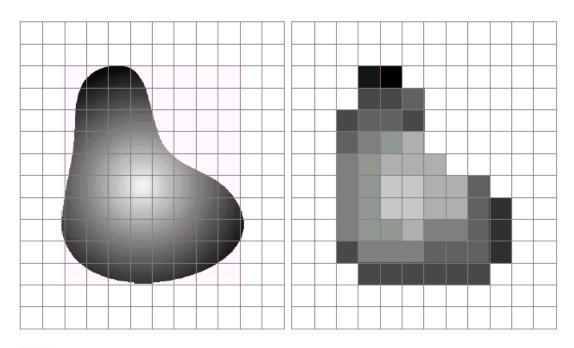


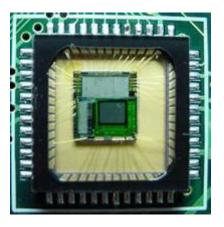
Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- Two common types: Charge Coupled Device (CCD) and CMOS
- http://electronics.howstuffworks.com/digital-camera.htm

Sensor Array



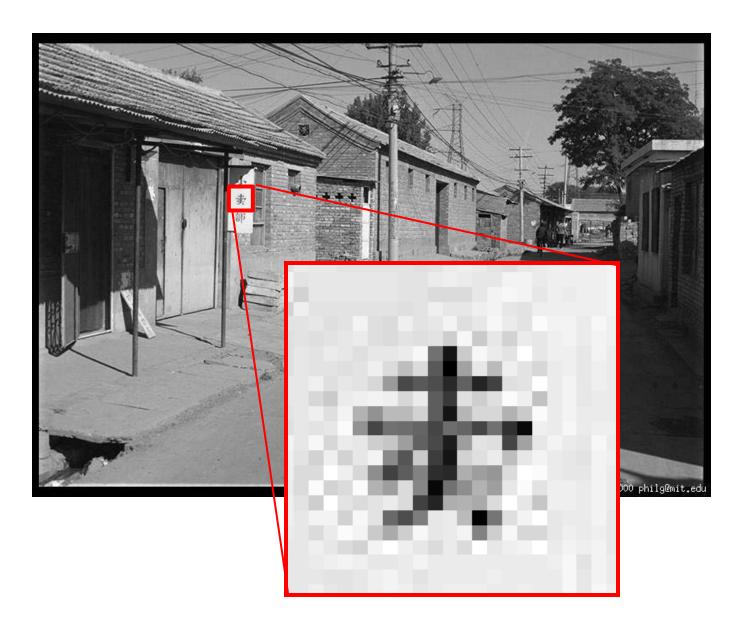


CMOS sensor

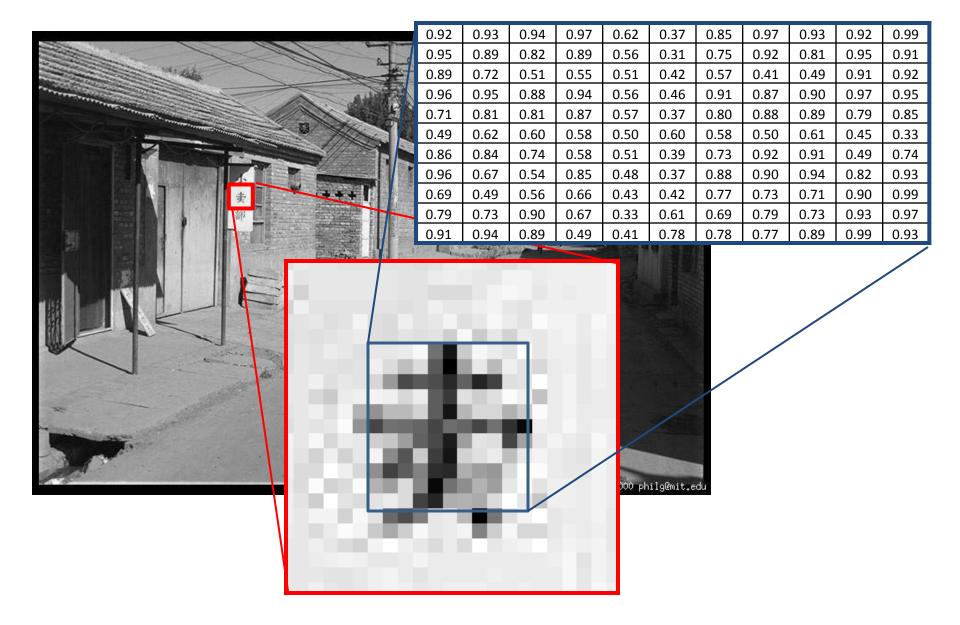
a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

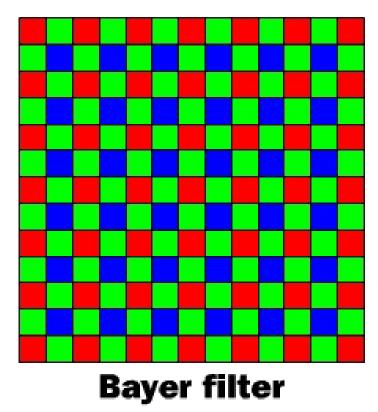
The raster image (pixel matrix)



The raster image (pixel matrix)



Digital Color Images



© 2000 How Stuff Works

Color Image

R

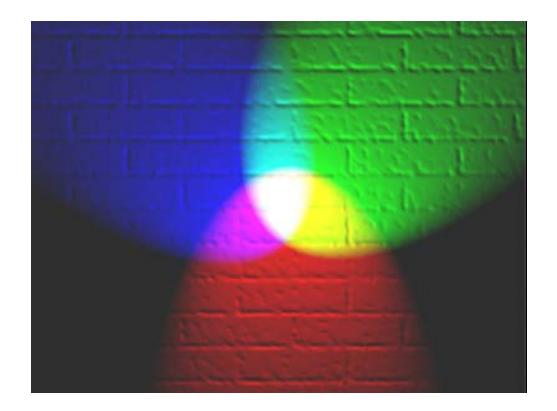
Images in Matlab

- Images represented as a matrix
- Suppose we have a NxM RGB image called "im"
 - im(1,1,1) = top-left pixel value in R-channel
 - im(y, x, b) = y pixels down, x pixels to right in the bth channel
 - im(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255)
 - Convert to double format (values 0 to 1) with im2double

row	colu	ımn		>								R				
IOW	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	11				
	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91			_		
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	ı G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.95	0.91			D
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	0.91	0.92			В
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.97	0.95	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.75	0.33	0.91	0.92	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.97	0.95	
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.49	0.74	0.79	0.85	
V	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93		0.93	0.45	0.33	
			0.03	0.13	0.00	0.67	0.13	0.12	0.77	0.70	0.72	0.90		0.49	0.74	
			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	
			0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	
					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	

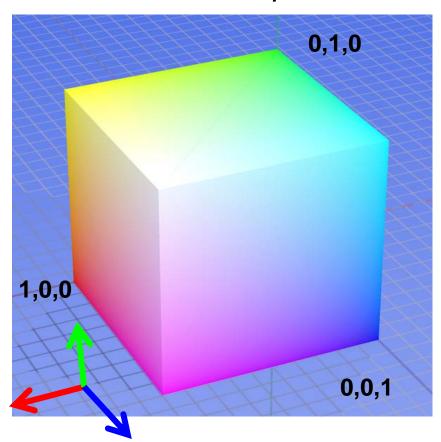
Color spaces

• How can we represent color?



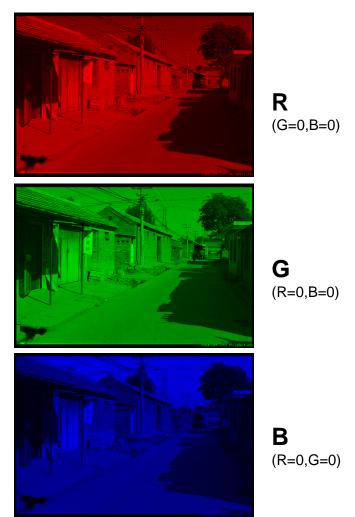
Color spaces: RGB

Default color space



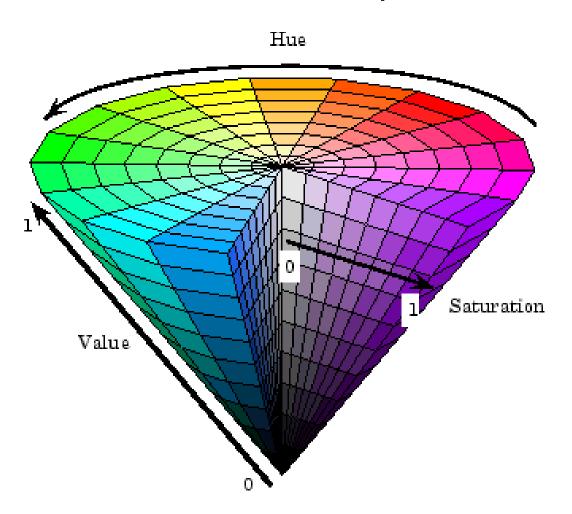
Some drawbacks

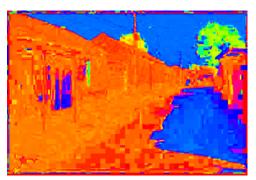
- Strongly correlated channels
- Non-perceptual



Color spaces: HSV

Intuitive color space





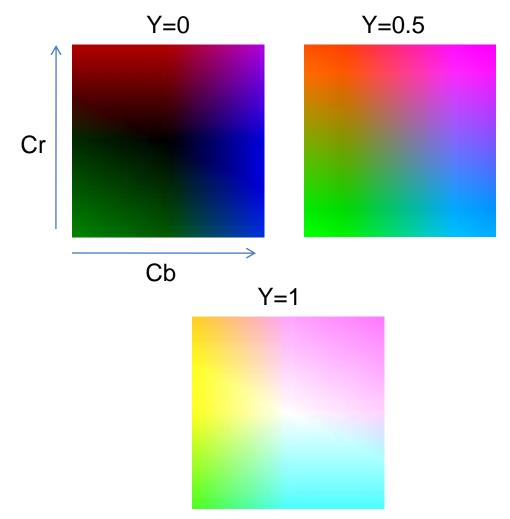
H (S=1,V=1)

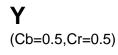
S (H=1,V=1)

V (H=1,S=0)

Color spaces: YCbCr

Fast to compute, good for compression, used by TV





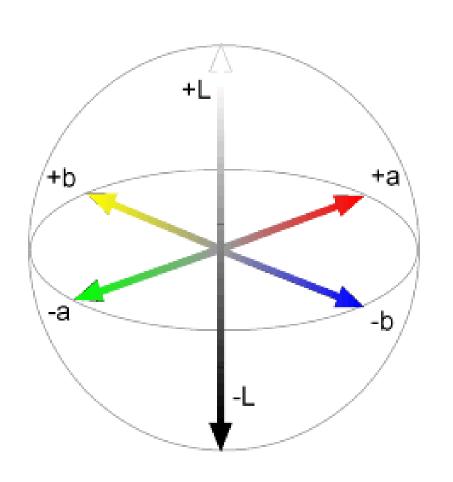
Cb (Y=0.5,Cr=0.5)

Cr (Y=0.5,Cb=05)

Color spaces: L*a*b*

(a=0,b=0)

"Perceptually uniform" color space



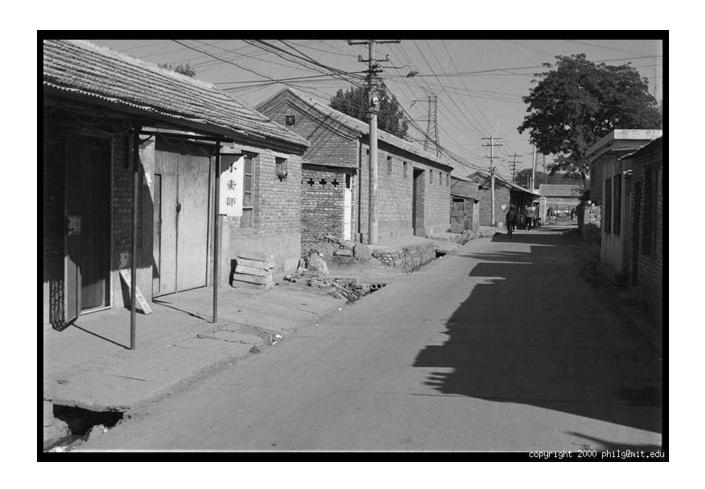
If you had to choose, would you rather go without luminance or chrominance?

If you had to choose, would you rather go without luminance or chrominance?

Most information in intensity

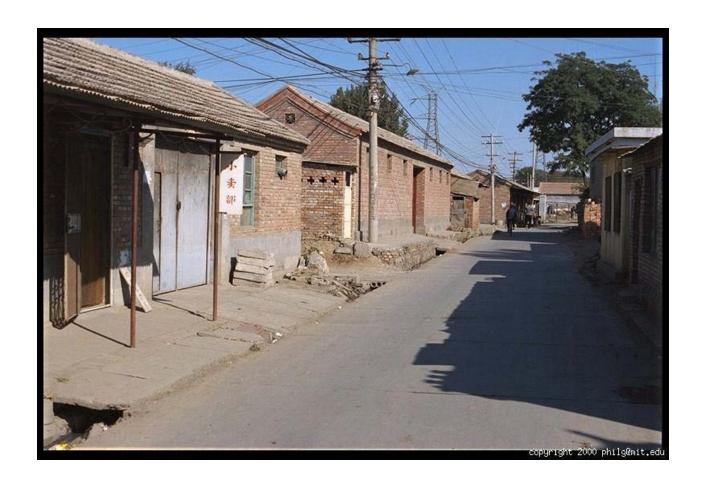
Only color shown – constant intensity

Most information in intensity



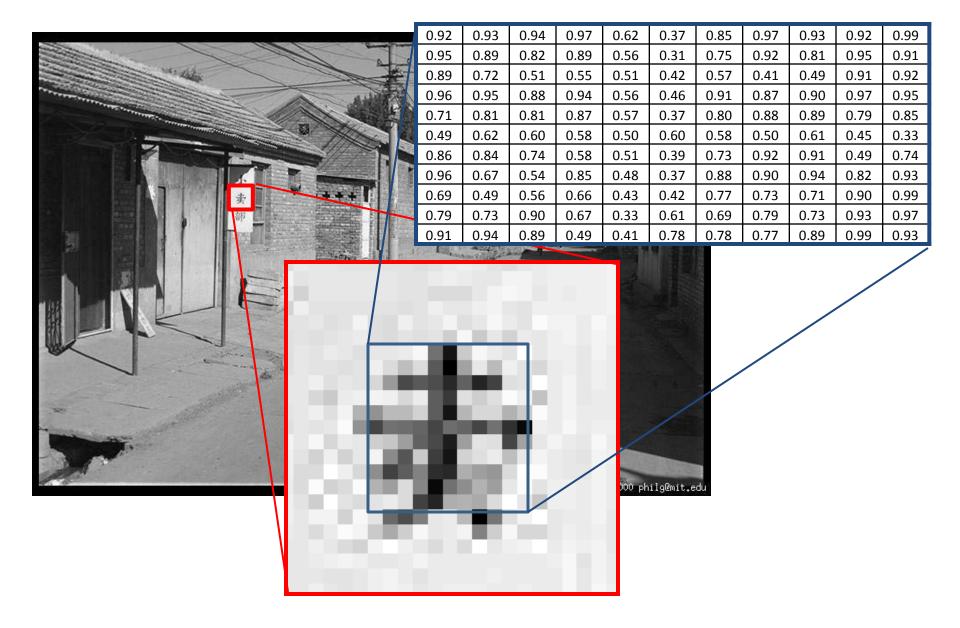
Only intensity shown – constant color

Most information in intensity



Original image

Back to grayscale intensity



Next three classes: three views of filtering

- Image filters in spatial domain
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression
- Templates and Image Pyramids
 - Filtering is a way to match a template to the image
 - Detection, coarse-to-fine registration

Image filtering

 Image filtering: compute function of local neighborhood at each position

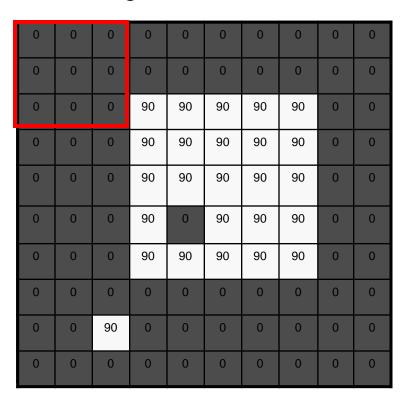
- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

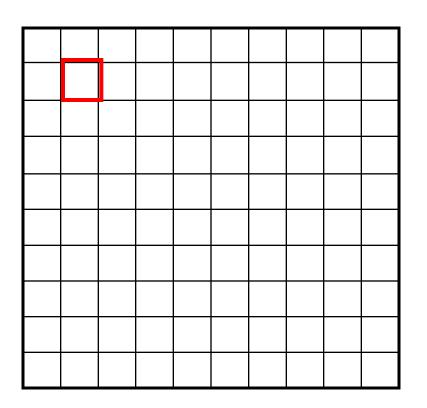
Example: box filter

$$g[\cdot\,,\cdot\,]$$

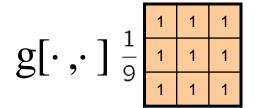
$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

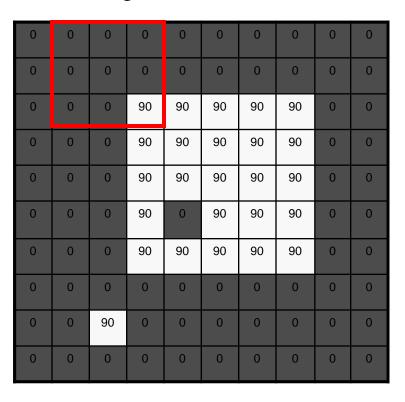
$$g[\cdot,\cdot]^{\frac{1}{9}}$$

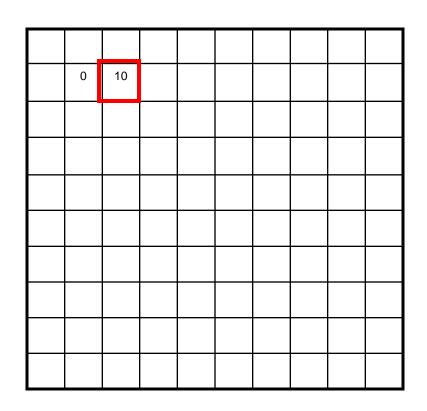




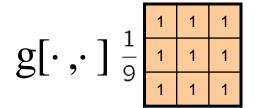
$$h[m,n] = \sum_{l=l} g[k,l] f[m+k,n+l]$$

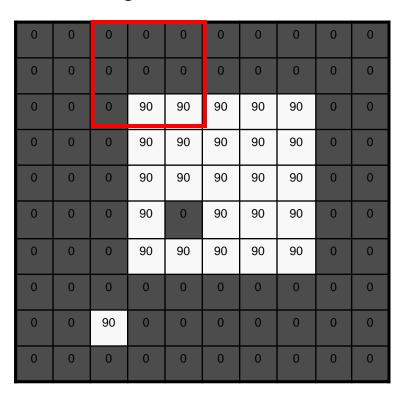


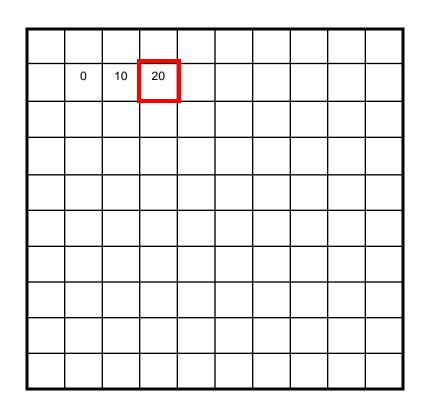




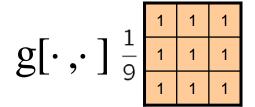
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

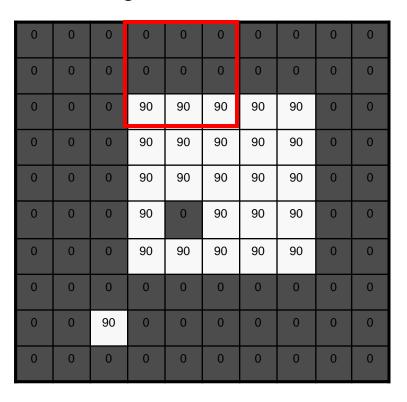


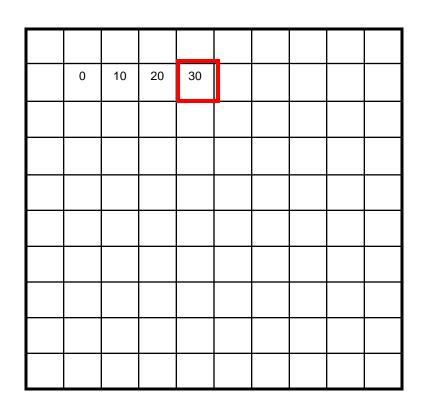




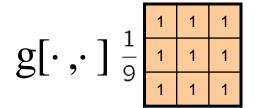
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

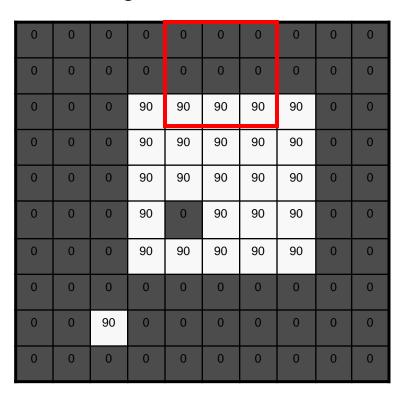


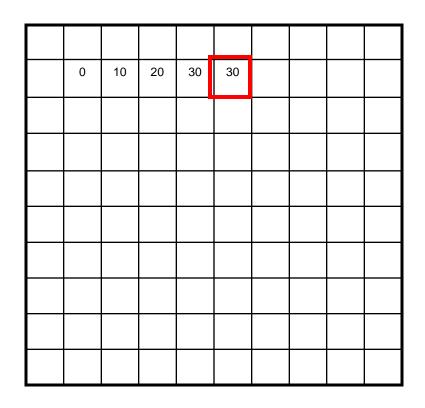




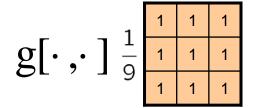
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$



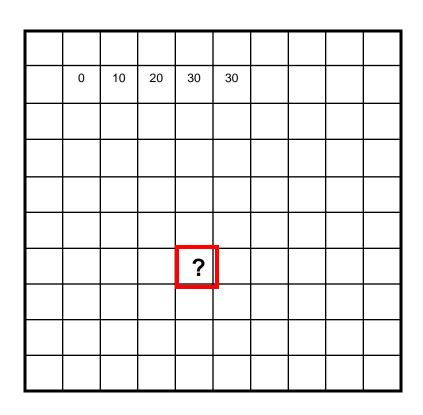




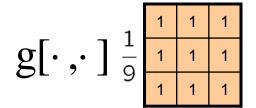
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$



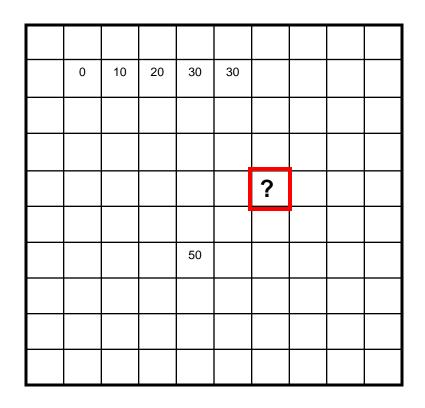
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$



0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

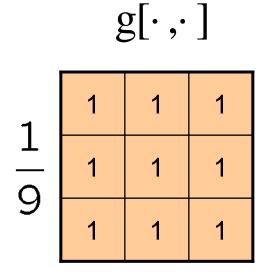
0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)



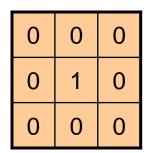
Smoothing with box filter

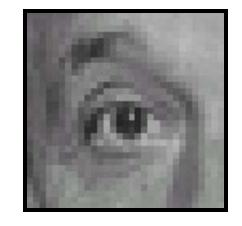


Original

0	0	0
0	1	0
0	0	0

Original



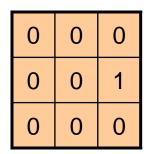


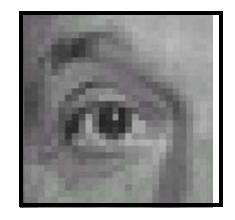
Filtered (no change)

Orig	ginal
------	-------

0	0	0
0	0	1
0	0	0

Original





Shifted left By 1 pixel



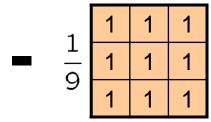
Original

0	0	0	1	1	1	1
0	2	0	\blacksquare $\frac{1}{0}$	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

Source: D. Lowe

0	0	0
0	2	0
0	0	0

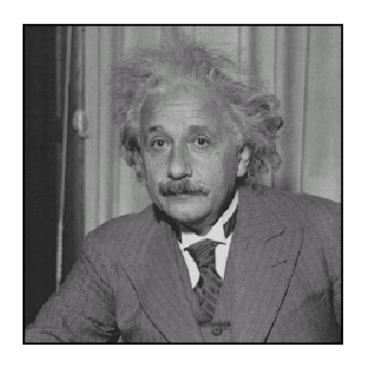


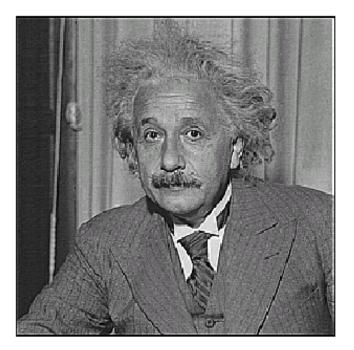
Original

Sharpening filter

- Accentuates differences with local average

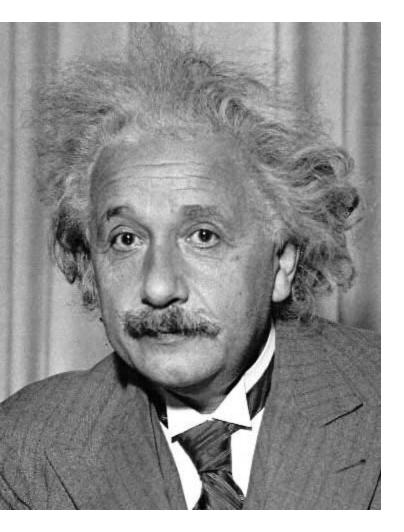
Sharpening





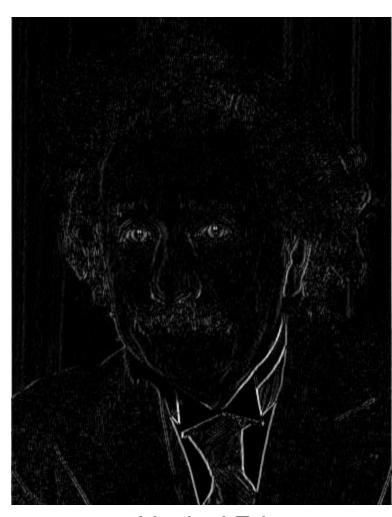
before after

Other filters



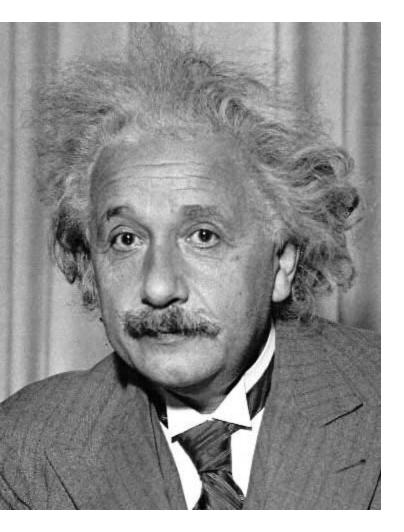
1	0	-1
2	0	-2
1	0	-1

Sobel



Vertical Edge (absolute value)

Other filters



1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

How could we synthesize motion blur?

```
theta = 30; len = 20;
fil = imrotate(ones(1, len), theta, 'bilinear');
fil = fil / sum(fil(:));
figure(2), imshow(imfilter(im, fil));
```

Filtering vs. Convolution

2d filtering
 -h=filter2(g,f); or h=imfilter(f,g);

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

2d convolution

$$-h=conv2(g,f);$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m-k,n-l]$$

Key properties of linear filters

Linearity:

```
filter(f_1 + f_2) = filter(f_1) + filter(f_2)
```

Shift invariance: same behavior regardless of pixel location

```
filter(shift(f)) = shift(filter(f))
```

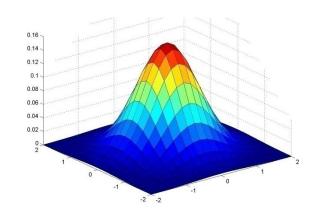
Any linear, shift-invariant operator can be represented as a convolution

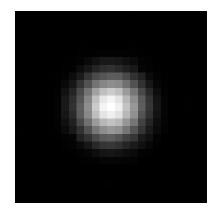
More properties

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [0, 0, 1, 0, 0],
 a * e = a

Important filter: Gaussian

Weight contributions of neighboring pixels by nearness



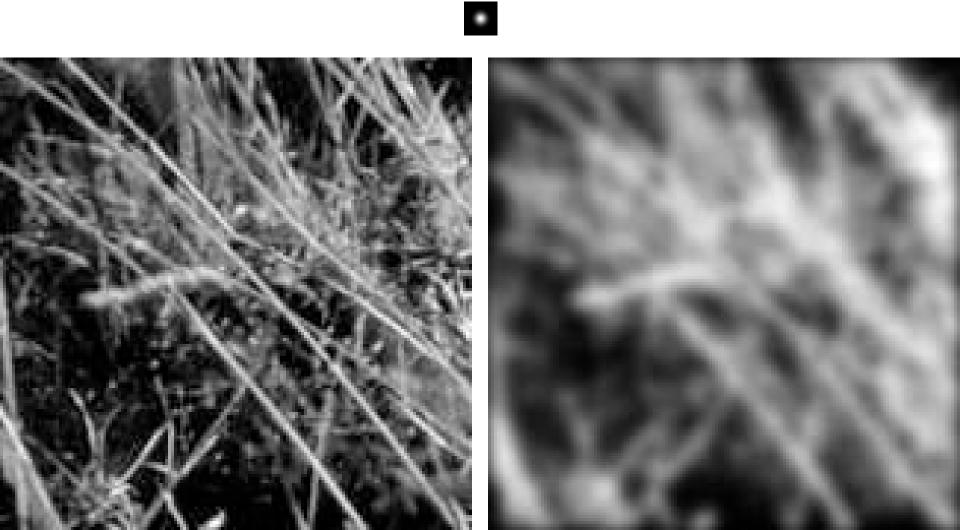


0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Smoothing with Gaussian filter



Smoothing with box filter

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width σ V2
- Separable kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

1	2	1		2	3	3
2	4	2	*	3	5	5
1	2	1		4	4	6

The filter factors into a product of 1D filters:

1	2	1	
2	4	2	=
1	2	1	

Perform convolution along rows:

Followed by convolution along the remaining column:

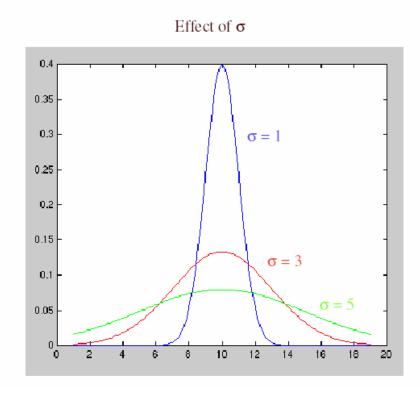
Separability

Why is separability useful in practice?

Some practical matters

Practical matters How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian: set filter half-width to about 3 σ



Practical matters

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Practical matters

```
– methods (MATLAB):
```

```
• clip filter (black): imfilter(f, g, 0)
```

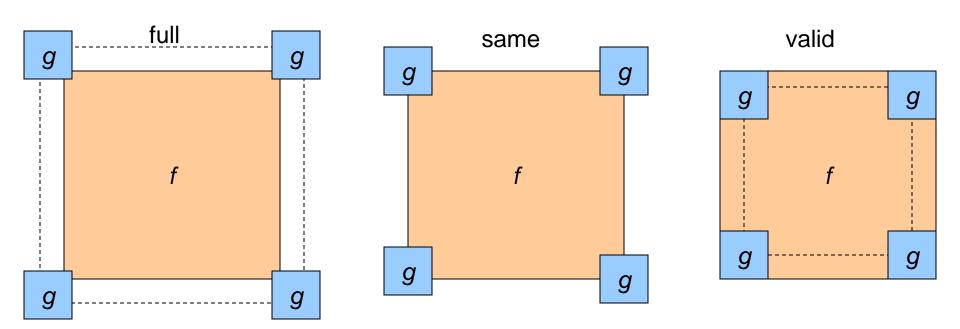
wrap around: imfilter(f, g, 'circular')

copy edge: imfilter(f, g, 'replicate')

reflect across edge: imfilter(f, g, 'symmetric')

Practical matters

- What is the size of the output?
- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g



Take-home messages

Image is a matrix of numbers

- Linear filtering is sum of dot product at each position
 - Can smooth, sharpen, translate (among many other uses)

$\frac{1}{9}$	1	1	1
	1	1	1
	1	1	1

 Be aware of details for filter size, extrapolation, cropping

Practice questions

1. Write down a 3x3 filter that returns a positive value if the average value of the 4-adjacent neighbors is less than the center and a negative value otherwise

2. Write down a filter that will compute the gradient in the x-direction:

```
gradx(y,x) = im(y,x+1)-im(y,x) for each x, y
```

Practice questions

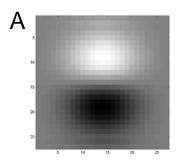
Filtering Operator

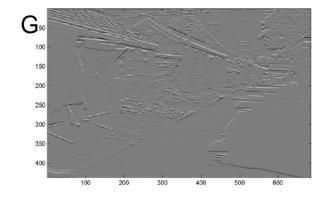
3. Fill in the blanks:

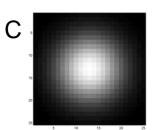
a)
$$_{-}$$
 = D * E

$$C) F = D * _$$

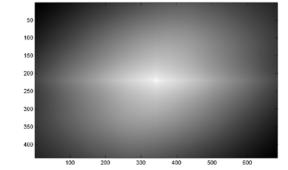
$$d) = D * D$$







F



Next class: Thinking in Frequency

