Single-view Metrology and Camera Calibration

Computer Vision
Derek Hoiem, University of Illinois

Some questions about course philosophy

- Why is there no required book?
- Why is the reading different from the lectures?
- Why are the lectures going so fast... or so slow?
- Why is there no exam?

Announcements

- HW 1 is out
- I won't be able to make office hours tomorrow (a prelim was already scheduled)
- David Forsyth will teach on Thurs

Last Class: Pinhole Camera

Last Class: Projection Matrix

Last class: Vanishing Points

This class

- How can we calibrate the camera?
- How can we measure the size of objects in the world from an image?
- What about other camera properties: focal length, field of view, depth of field, aperture, f-number?

How to calibrate the camera?

$$
\left.\begin{array}{l}
\mathbf{X}=\mathbf{K}[\mathbf{R} \\
\mathbf{t}
\end{array}\right] \mathbf{X},\left[\begin{array}{c}
w u \\
w v \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] .
$$

Calibrating the Camera

Method 1: Use an object (calibration grid) with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)

$$
\left[\begin{array}{c}
w u \\
w v \\
w
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Linear method

- Solve using linear least squares
$\left[\begin{array}{cccccccccccc}X_{1} & Y_{1} & Z_{1} & 1 & 0 & 0 & 0 & 0 & -u_{1} X_{1} & -u_{1} Y_{1} & -u_{1} Z_{1} & -u_{1} \\ 0 & 0 & 0 & 0 & X_{1} & Y_{1} & Z_{1} & 1 & -v_{1} X_{1} & -v_{1} Y_{1} & -v_{1} Z_{1} & -v_{1} \\ & & & & & & \vdots & & & & \\ X_{n} & Y_{n} & Z_{n} & 1 & 0 & 0 & 0 & 0 & -u_{n} X_{n} & -u_{n} Y_{n} & -u_{n} Z_{n} & -u_{n} \\ 0 & 0 & 0 & 0 & X_{n} & Y_{n} & Z_{n} & 1 & -v_{n} X_{n} & -v_{n} Y_{n} & -v_{n} Z_{n} & -v_{n}\end{array}\right]\left[\begin{array}{c}m_{11} \\ m_{12} \\ m_{13} \\ m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{24} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right] \quad \mathbf{A X}=\mathbf{0}$ form

Calibration with linear method

- Advantages: easy to formulate and solve
- Disadvantages
- Doesn't tell you camera parameters
- Doesn't model radial distortion
- Can't impose constraints, such as known focal length
- Doesn't minimize right error function (see HZ p. 181)
- Non-linear methods are preferred
- Define error as difference between projected points and measured points
- Minimize error using Newton's method or other nonlinear optimization

Calibrating the Camera

Method 2: Use vanishing points

- Find vanishing points corresponding to orthogonal directions

Vanishing

 point

Vertical vanishing point (at infinity)

Vanishing point

Calibration by orthogonal vanishing points

- Intrinsic camera matrix
- Use orthogonality as a constraint
- Model K with only f, u_{0}, v_{0}

$\mathbf{p}_{i}=\mathbf{K R X}_{i}$

For vanishing points

$$
\mathbf{X}_{i}{ }^{T} \mathbf{X}_{j}=0
$$

- What if you don't have three finite vanishing points?
- Two finite VP: solve f, get valid u_{0}, v_{0} closest to image center
- One finite VP: u_{0}, v_{0} is at vanishing point; can't solve for f

Calibration by vanishing points

- Intrinsic camera matrix

$$
\mathbf{p}_{i}=\mathbf{K R} X_{i}
$$

- Rotation matrix
- Set directions of vanishing points
- e.g., $X_{1}=[1,0,0]$
- Each VP provides one column of \mathbf{R}
- Special properties of \mathbf{R}
- $\operatorname{inv}(\mathbf{R})=\mathbf{R}^{\boldsymbol{\top}}$
- Each row and column of \mathbf{R} has unit length

How can we measure the size of 3D objects from an image?

Perspective cues

Perspective cues

Perspective cues

Ames Room

Comparing heights

Measuring height

Which is higher - the camera or the man in the parachute?

Measuring height without a ruler

Compute Z from image measurements

The cross ratio

A Projective Invariant

- Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

$$
\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|}
$$

$$
\mathbf{P}_{i}=\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Can permute the point ordering

$$
\frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|}
$$

- $4!=24$ different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

Measuring height

$$
\begin{aligned}
& \frac{\|\mathbf{T}-\mathbf{B}\|\|\infty-\mathbf{R}\|}{\|\mathbf{R}-\mathbf{B}\|\|\infty-\mathbf{T}\|}=\frac{H}{R} \\
& \text { scene cross ratio }
\end{aligned}
$$

$$
\begin{aligned}
& \|\mathbf{t}-\mathbf{b}\|\left\|\mathbf{v}_{Z}-\mathbf{r}\right\| \\
& \|\mathbf{r}-\mathbf{b}\|\left\|\mathbf{v}_{Z}-\mathbf{t}\right\| \\
& \text { image cross ratio }
\end{aligned}=\frac{H}{R}
$$

Measuring height

Slide by Steve Seitz

Measuring height

What if the point on the ground plane \mathbf{b}_{0} is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find \mathbf{b}_{0} as shown above

What about focus, aperture, DOF, FOV, etc?

Adding a lens

- A lens focuses light onto the film
- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Focal length, aperture, depth of field

A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens
- Aperture of diameter D restricts the range of rays

The eye

- The human eye is a camera
- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

f/32
Changing the aperture size or focal length affects depth of field

Varying the aperture

copyright 1997 phílgenait + edu

Small aperture = large DOF

Shrinking the aperture

- Why not make the aperture as small as possible?
- Less light gets through
- Diffraction effects

Shrinking the aperture

Relation between field of view and focal length

Field of view (angle width)

$$
\text { fov }=\tan ^{-1} \frac{d}{2 f} \quad \text { Focal length }
$$

Dolly Zoom or "Vertigo Effect"

 http://www.youtube.com/watch?v=Y48R6-ilYHs

How is this done?

Zoom in while moving away

Review

Next class

- David Forsyth talks about lighting

Thank you!

Questions?

