Projective Geometry and Camera Models

Computer Vision
CS 543 / ECE 549
University of Illinois

Derek Hoiem

Administrative Stuff

- Office hours
- Derek: Wed 4-5pm + drop by
- Ian: Mon 3-4pm, Thurs 3:30-4:30pm
- HW 1: out Monday
- Prob1: Geometry, today and Tues
- Prob2: Lighting, next Thurs
- Prob3: Filters, following week
- Next Thurs: I'm out, David Forsyth will cover

Last class: intro

- Overview of vision, examples of state of art
- Logistics

Next two classes: Single-view Geometry

Today's class

Mapping between image and world coordinates

- Pinhole camera model
- Projective geometry
- Vanishing points and lines
- Projection matrix

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

Pinhole camera

Camera obscura: the pre-camera

- First idea: Mo-Ti, China (470BC to 390BC)
- First built: Alhacen, Iraq/Egypt (965 to 1039AD)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

First Photograph

Oldest surviving photograph

- Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Dimensionality Reduction Machine (3D to 2D)

3D world
2D image

Point of observation

Projection can be tricky...

Projection can be tricky...

Projective Geometry

What is lost?

- Length

Length is not preserved

Figure by David Forsyth

Projective Geometry

What is lost?

- Length
- Angles

Projective Geometry

What is preserved?

- Straight lines are still straight

Vanishing points and lines

Parallel lines in the world intersect in the image at a "vanishing point"

Vanishing points and lines

Vanishing points and lines

Vanishing points and lines

Note on estimating vanishing points

Use multiple lines for better accuracy
... but lines will not intersect at exactly the same point in practice
One solution: take mean of intersecting pairs
... bad idea!
Instead, minimize angular differences

Vanishing objects

Projection: world coordinates \rightarrow image coordinates

Homogeneous coordinates

Conversion

Converting to homogeneous coordinates

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & (x, y, z) \Rightarrow\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \\
\begin{array}{cc}
\text { homogeneous image } \\
\text { coordinates } & \text { homogeneous scene } \\
\text { coordinates }
\end{array}
\end{array}
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Homogeneous coordinates

Invariant to scaling

$$
\begin{aligned}
& k\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{c}
k x \\
k y \\
k w
\end{array}\right] \Rightarrow\left[\begin{array}{c}
\frac{k x}{k w} \\
\frac{k y}{k w}
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{w} \\
\frac{y}{w}
\end{array}\right] \\
& \text { Homogeneous Cartesian } \\
& \text { Coordinates Coordinates }
\end{aligned}
$$

Point in Cartesian is ray in Homogeneous

Basic geometry in homogeneous coordinates

- Line equation: $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$

$$
\text { line }_{i}=\left[\begin{array}{l}
a_{i} \\
b_{i} \\
c_{i}
\end{array}\right]
$$

- Append 1 to pixel coordinate to get homogeneous coordinate

$$
p_{i}=\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right]
$$

- Line given by cross product of two points

$$
\text { line }_{i j}=p_{i} \times p_{j}
$$

- Intersection of two lines given by cross product of the lines

$$
q_{i j}=\text { line }_{i} \times \text { line }_{j}
$$

Another problem solved by homogeneous coordinates

Intersection of parallel lines

Projection matrix

$$
x=K\left[\begin{array}{ll}
R & t
\end{array}\right] X
$$

x: Image Coordinates: $(u, v, 1)$
K: Intrinsic Matrix (3x3)
R: Rotation (3x3)
t : Translation (3×1)
X: World Coordinates: (X,Y,Z,1)

Interlude: when have I used this stuff?

When have I used this stuff?

Object Recognition (CVPR 2006)

When have I used this stuff?

Single-view reconstruction (SIGGRAPH 2005)

When have I used this stuff?

Getting spatial layout in indoor scenes (ICCV 2009)

When have I used this stuff?

Inserting photographed objects into images
(SIGGRAPH 2007)

Original

Created

When have I used this stuff?

Inserting synthetic objects into images

Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- Optical center at $(0,0)$
- No skew

$$
\mathbf{X}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc:c}
f & f & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Remove assumption: known optical center

Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- No skew
- No rotation
- Camera at (0,0,0)

$$
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc:c}
1 f & 0 & u_{0} & 0 \\
10 & f & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Remove assumption: square pixels

$$
\begin{array}{ll}
\begin{array}{l}
\text { Intrinsic Assumptions } \\
\bullet \text { - No skew }
\end{array} & \begin{array}{l}
\text { Extrinsic Assumptions } \\
\bullet \\
\\
\bullet
\end{array} \\
\mathbf{\bullet} \text { No rotation }
\end{array}
$$

Remove assumption: non-skewed pixels

> Intrinsic Assumptions Extrinsic Assumptions
> - No rotation
> - Camera at ($0,0,0$)

Note: different books use different notation for parameters

Oriented and Translated Camera

Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions

- No rotation

$$
\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{t}
\end{array}\right] \mathbf{X} \Rightarrow w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
\alpha & 0 & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

Allow camera rotation

$$
\begin{aligned}
& \mathbf{x}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right] \mathbf{X} \\
& w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
\alpha & s & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
\end{aligned}
$$

Degrees of freedom

$\mathbf{x}=\mathbf{K}\left[\begin{array}{ll}\mathrm{R} & \mathbf{t}\end{array}\right] \mathbf{X}$
\downarrow

$$
w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\alpha & s & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Vanishing Point $=$ Projection from Infinity

$$
\mathbf{p}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
0
\end{array}\right] \Rightarrow \mathbf{p}=\mathbf{K} \mathbf{R}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \Rightarrow \mathbf{p}=\mathbf{K}\left[\begin{array}{l}
x_{R} \\
y_{R} \\
z_{R}
\end{array}\right]
$$

$$
w\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{ccc}
f & 0 & u_{0} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{R} \\
y_{R} \\
z_{R}
\end{array}\right] \Rightarrow \begin{gathered}
u=\frac{f x_{R}}{z_{R}}+u_{0} \\
v=\frac{f y_{R}}{z_{R}}+v_{0}
\end{gathered}
$$

Orthographic Projection

- Special case of perspective projection
- Distance from the COP to the image plane is infinite

- Also called "parallel projection"
- What's the projection matrix?

$$
w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Scaled Orthographic Projection

- Special case of perspective projection
- Object dimensions are small compared to distance to camera

- Also called "weak perspective" $\quad w\left[\begin{array}{c}u \\ v \\ 1\end{array}\right]=\left[\begin{array}{cccc}f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 0 & s\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]$

Suppose we have two 3D cubes on the ground facing the viewer, one near, one far.

1. What would they look like in perspective?
2. What would they look like in weak perspective?

Beyond Pinholes: Radial Distortion

No Distortion

Barrel Distortion

Pincushion Distortion

Corrected Barrel Distortion

Things to remember

- Vanishing points and vanishing lines

- Pinhole camera model and camera projection matrix

$$
x=K\left[\begin{array}{ll}
R & t
\end{array}\right] X
$$

- Homogeneous coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Next class

- Applications of camera model and projective geometry
- Recovering the camera intrinsic and extrinsic parameters from an image
- Recovering size in the world
- Projecting from one plane to another

Questions

What about focus, aperture, DOF, FOV, etc?

Adding a lens

- A lens focuses light onto the film
- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

Focal length, aperture, depth of field

A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens
- Aperture of diameter D restricts the range of rays

The eye

- The human eye is a camera
- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

f/32
Changing the aperture size or focal length affects depth of field

Varying the aperture

copyright 1997 phílgenait + edu

Small aperture = large DOF

Shrinking the aperture

- Why not make the aperture as small as possible?
- Less light gets through
- Diffraction effects

Shrinking the aperture

Relation between field of view and focal length

Field of view (angle width)

$$
\text { fov }=\tan ^{-1} \frac{d}{2 f} \quad \text { Focal length }
$$

Dolly Zoom or "Vertigo Effect"

 http://www.youtube.com/watch?v=Y48R6-ilYHs

How is this done?

Zoom in while moving away

