
Interconnection Network Design

• Interconnection networks: what holds our parallel
machines together - at the core of parallel computer arch.

• Shares basic concept with LAN/WAN, but very different
trade-offs due to very different time scale/requirements

M P

CA

M P

CA

network
interface

Scalable
Interconnection
Network

Interconnection Network Design

• Considerations and trade-offs at many levels
– Topology (elegant mathematical structure)

– Deep relationships to algorithm structure

– Managing many traffic flows
– Electrical / Optical link properties

• Little consensus
– interactions across levels

– Performance metrics?
– Cost metrics?

– Workload?

=> need holistic understanding

Requirements for Interconnect Design

• Communication-to-computation ratio
=> bandwidth that must be sustained for given computational rate

– traffic localized or dispersed?

– bursty or uniform?

• Programming Model
– protocol

– granularity of transfer

=> job of an interconnection network is to transfer
information from source node to dest. node in support of
network transactions that realize the programming model
– latency as small as possible

– as many concurrent transfers as possible

– cost as low as possible

Basic Definitions

• Network interface

• Links
– bundle of wires or fibers that carries a signal

– transmitter converts stream of digital symbols into signal that is driven
down the link

– receiver converts it back -> tran/rcv share physical protocol

– trans + link + rcv form Channel for digital info flow between switches

– link-level protocol segments stream of symbols into larger units: packets
or messages (framing)

– node-level protocol embeds commands for dest communication assist
within packet

• Switches
– connects fixed number of input channels to fixed number of output

channels

Some Formal Definitions

• Interconnection network is a graph V = {switches and
nodes} connected by communication channels C ⊆ V x V

• Channel has width w and signaling rate f = 1/τ
– channel bandwidth b = wf

– phit (physical unit) data transferred per cycle

– flit - basic unit of flow-control

• Number of input (output) channels is switch degree

• Sequence of switches and channel followed by a message
is a route

• Think streets and intersections

What characterizes an interconnection
net?

• Topology (what)
– physical interconnection structure of the network graph

– direct: node connected to every switch

– indirect: nodes connected to specific subset of switches

• Routing Algorithm (which)
– restricts the set of paths that msgs may follow

– many algorithms with different properties (e.g. gridlock avoidance)

• Switching Strategy (how)
– how data in a msg traverses a route
– circuit switching vs. packet switching

• Flow Control Mechanism (when)
– when a msg or portions of it traverse a route

– what happens when traffic is encountered?

Properties of a Topology

• Routing Distance - number of links on route

• Diameter - maximum routing distance

• Average Distance

• A network is partitioned by a set of links if their removal
disconnects the graph

Typical Packet Format

• Two basic mechanisms for abstraction (much shallower
than IP for example)
– encapsulation
– fragmentation

R
outing

and
C

ontrol
H

eader

D
ata

Payload

Error
C

ode

Trailer

digital
symbol

Sequence of symbols transmitted over a channel

Basic Communication Performance:
Latency

• Time(n)s-d = overhead + routing delay + channel
occupancy + contention delay

• occupancy = (n + ne) / b
– where n= size of data, ne= size of packet overhead, b= bandwidth=f*W

• Routing delay
– function of routing distance and switch delay

– depends on topology, routing algorithm, communicating nodes, switching
strategy

• Contention
– Given channel can only be occupied by one message

– Affected by topology, switching strategy, routing algorithm

 Store&Forward vs Cut-Through Routing

• h(n/b + D) vs n/b + h D
– where h= routing distance, D= switch delay or routing delay per hop

• what if message can be fragmented?

• wormhole vs virtual cut-through

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1 0

23 1

023

3 1 0

2 1 0

23 1 0

0

1

2

3

23 1 0
T i m e

Store & Forward Routing Cut-Through Routing

S o u r c e Des t Dest

Contention

• Two packets trying to use the same link at same time
– limited buffering

– drop?

• Most parallel mach. networks block in place
– link-level flow control
– tree saturation

• Closed system

Basic Communication Performance:
Bandwidth

• What affects local bandwidth?
– packet density b x n/(n + nE)

– routing delay b x n / (n + nE + w∆)

– contention

• Aggregate bandwidth
– bisection bandwidth

 -> sum of bandwidth of smallest set of links that partition the network

– total bandwidth of all the channels: Cb
– suppose N hosts issue packet every M cycles with average distance h

• each msg occupies h channels for l = n/w cycles each
• link utilization ρ = Cb/(Nhlb/M)= MC/Nhl < 1

• C/N channels available per node

Saturation

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

Delivered Bandwidth

L
at

en
cy

Saturation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2

Offered Bandwidth

D
el

iv
er

ed
 B

an
d

w
id

th

Saturation

Organizational Structure

• Processors
– datapath + control logic

– control logic determined by examining register transfers in the datapath

• Networks
– links
 -> Cable of one or more wires/fibers with connectors at the ends attached

to switches or interfaces

– switches
– network interfaces

Link Considerations

Short:
 - single logical
value at a time

Long:
 - stream of logical
values at a time

Narrow:
 - control, data and timing
multiplexed on wire

Wide:
 - control, data and timing
on separate wires

Synchronous:
- source & dest on same
clock

Asynchronous:
- source encodes clock in
signal

Example: Cray MPPs

• T3D: Short, Wide, Synchronous (300 MB/s)
– 24 bits

• 16 data, 4 control, 4 reverse direction flow control

– single 150 MHz clock (including processor)
– flit = phit = 16 bits

– two control bits identify flit type (idle and framing)
• no-info, routing tag, packet, end-of-packet

• T3E: long, wide, asynchronous (500 MB/s)
– 14 bits, 375 MHz, LVDS
– flit = 5 phits = 70 bits

• 64 bits data + 6 control

– switches operate at 75 MHz
– framed into 1-word and 8-word read/write request packets

• Cost = f(length, width) ?

Switches

• Output ports
– transmitter (typically drives clock

and data)

• Input ports
– synchronizer aligns data signal

with local clock domain

– essentially FIFO buffer

• Crossbar
– connects each input to any output

– degree limited by area or pinout

Cross-bar

Input
Buffer

Control

Output
Ports

Input
Receiver Transmiter

Ports

Routing, Scheduling

Output
Buffer

• Buffering
• Control logic

– complexity depends on routing logic and scheduling algorithm

– determine output port for each incoming packet

– arbitrate among inputs directed at same output

• Details later...

Interconnection Topologies

• Classes of networks scaling with N

• Logical Properties:
– distance, degree

• Physical properties
– length, width

• Fully connected network
– diameter = 1
– degree = N

– cost?
• bus => O(N), but BW is O(1) - actually worse
• crossbar => O(N2) for BW O(N)

• VLSI technology determines switch degree

Linear Arrays and Rings

• Linear Array
– Diameter?

– Average Distance?

– Bisection bandwidth?
– Route A -> B given by relative address R = B-A

• Torus?

• Examples: FDDI, SCI, FiberChannel Arbitrated Loop,
KSR1

Linear Array

Torus

Torus arranged to use short wires

Multidimensional Meshes and Tori

• d-dimensional array
– n = kd-1 X ...X kO nodes

– described by d-vector of coordinates (id-1, ..., iO)

• d-dimensional k-ary mesh: N = kd

– k = d√N
– described by d-vector of radix k coordinate

• d-dimensional k-ary torus (or k-ary d-cube)?

2D Grid 3D Cube

Multidimensional Meshes and Tori:
Properties

• Routing
– relative distance: R = (b d-1 - a d-1, ... , b0 - a0)

– traverse ri = b i - a i hops in each dimension

– dimension-order routing

• Average Distance Wire Length?
– d x 2k/3 for mesh

– dk/2 for cube

• Degree?

• Bisection bandwidth? Partitioning?
– k d-1 bidirectional links

Multidimensional Meshes and Tori:
Embeddings in lesser dimensions

• Embed multiple logical dimension in one physical
dimension using long wires

6 x 3 x 2

Trees

• Diameter and average distance logarithmic
– k-ary tree, height d = logk N

– address specified d-vector of radix k coordinates describing path down from root

• Fixed degree
• Route up to common ancestor and down

– R = B xor A

– let i be position of most significant 1 in R, route up i+1 levels

– down in direction given by low i+1 bits of B

• H-tree space is O(N) with O(√N) long wires
• Bisection BW?

Fat-Trees

• Fatter links (really more of them) as you go up, so
bisection BW scales with N

Fat Tree

Butterflies

• Tree with lots of roots!
• N log N (actually N/2 x logN)
• Exactly one route from any source to any dest
• R = A xor B, at level i use ‘straight’ edge if ri=0, otherwise

cross edge
• Bisection N/2 vs n (d-1)/d (d-mesh) vs 1 (tree)

0
1

2

3

4

0 1 0 1

0 1 0 1

0 1

16 node butterfly building block

Benes network and Fat Tree

• Back-to-back butterfly can route all permutations
– off line

• What if you just pick a random mid point?

16-node Benes Network (Unidirectional)

16-node 2-ary Fat-Tree (Bidirectional)

Hypercubes

• Also called binary n-cubes. # of nodes = N = 2n.

• O(logN) Hops

• Good bisection BW

• Complexity
– Out degree is n = logN

correct dimensions in order
– with random comm. 2 ports per processor

1-D 2-D 3-D 4-D 5-D !
0-D

 ButterFlies & Hypercubes

• Wiring is isomorphic

• Except that Butterfly always takes log n steps

Performance Issues in Topology

• d = 2 or d = 3
– Short wires, easy to build
– Many hops, low bisection bandwidth
– Requires traffic locality

• d >= 4
– Harder to build, more wires, longer average length
– Fewer hops, better bisection bandwidth
– Can handle non-local traffic

• k-ary d-cubes provide a consistent framework for
comparison
– N = kd

– scale dimension (d) or nodes per dimension (k)
– assume cut-through

Traditional Scaling: Latency(P)

• Assumes equal channel width
– independent of node count or dimension

– dominated by average distance

0

20

40

60

80

100

120

140

0 5000 10000

Machine Size (N)

A
ve

 L
at

en
cy

 T
(n

=
40

)

d=2

d=3

d=4

k=2

n/w

0

50

100

150

200

250

0 2000 4000 6000 8000 10000

Machine Size (N)

A
ve

 L
at

en
cy

 T
(n

=
14

0)

Average Distance

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Dimension

A
v

e
D

is
ta

n
ce

256

1024

16384

1048576

ave dist = d (k-1)/2

Latency(d) for P with Equal Width

• but, equal channel width is not equal cost!

• Higher dimension => more channels

0

50

100

150

200

250

0 5 10 15 20 25

Dimension

A
v

e
r

a
g

e
 L

a
t
e

n
c

y
 (

n
 =

 4
0

,
 ∆

 =
 2

)

256

1024

16384

1048576

Latency with Equal Pin Count

• Baseline d=2, has w = 32 (128 wires per node)
• fix 2dw pins => w(d) = 64/d
• distance up with lower d, but channel time down

0

50

100

150

200

250

300

0 5 10 15 20 25

Dimension (d)

A
ve

 L
at

en
cy

 T
(n

=
40

B
)

256 nodes

1024 nodes

16 k nodes

1M nodes

0

50

100

150

200

250

300

0 5 10 15 20 25

Dimension (d)

A
ve

 L
at

en
cy

 T
(n

=
 1

40
 B

)

256 nodes

1024 nodes

16 k nodes

1M nodes

Real Machine Channel Width

Latency with Equal Bisection Width

• N-node hypercube has N
bisection links

• 2d torus has 2N 1/2

• Fixed bisection => w(d) =
N 1/d / 2 = k/2

• 1 M nodes, d=2 has
w=512!

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25

Dimension (d)

A
ve

 L
at

en
cy

 T
(n

=
40

)

256 nodes

1024 nodes

16 k nodes

1M nodes

Larger Routing Delay (w/ equal pin)

• If routing delay=20, optimal point shifts to higher
dimension

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25

Dimension (d)

A
ve

 L
at

en
cy

 T
(n

=
 1

40
 B

)

256 nodes

1024 nodes

16 k nodes

1M nodes

Latency under Contention

• Dimension has no effect?

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

Channel Utilization

L
at

en
cy

n40,d2,k32

n40,d3,k10

n16,d2,k32

n16,d3,k10

n8,d2,k32

n8,d3,k10

n4,d2,k32

n4,d3,k10

Phits per Cycle (Delivered Bandwidth)

• higher degree network has larger available bandwidth

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25

Flits per cycle per processor

L
at

en
cy

n8, d3, k10

n8, d2, k32

Summary of Performance/Topology

• Rich set of topological alternatives with deep relationships

• Design point depends heavily on cost model
– nodes, pins, area, ...

• Also, wire delay comes into effect
– Wire length or wire delay metrics favor small dimension

– Long (pipelined) links increase optimal dimension

• Optimal point changes with technology

Routing

• Recall: routing algorithm determines
– which of the possible paths are used as routes

– how the route is determined

– R: N x N -> C, which at each switch maps the destination node nd to the
next channel on the route

• Issues:
– Routing mechanism

• arithmetic
• source-based port select
• table driven
• general computation

– Properties of the routes

– Deadlock feee

Routing Mechanism

• need to select output port for each input packet
– in a few cycles

• Simple arithmetic in regular topologies
– ex: ∆x, ∆y routing in a grid

• west (-x) ∆x < 0
• east (+x) ∆x > 0
• south (-y) ∆x = 0, ∆y < 0
• north (+y) ∆x = 0, ∆y > 0
• processor ∆x = 0, ∆y = 0

• Reduce relative address of each dimension in order
– Dimension-order routing in k-ary d-cubes
– e-cube routing in n-cube

Routing Mechanism (cont)

• Source-based
– message header carries series of port selects

– used and stripped en route

– All route computation in the host nodes. Disadv.?
– CS-2, Myrinet, MIT Artic

• Table-driven
– message header carried index for next port at next switch

• o = R[i]

– table also gives index for following hop
• o, I’ = R[i]

– ATM, HPPI

P0P1P2P3

Properties of Routing Algorithms

• Deterministic
– route determined by (source, dest), not intermediate state (i.e. traffic)

• Adaptive
– route influenced by traffic along the way

• Minimal
– only selects shortest paths

• Deadlock free
– no traffic pattern can lead to a situation where no packets mover forward

Deadlock Freedom

• How can it arise?
– necessary conditions:

• shared resource
• incrementally allocated
• non-preemptible

– think of a channel as a shared
resource that is acquired incrementally

• source buffer then dest. buffer
• channels along a route

• How do you avoid it?
– constrain how channel resources are allocated
– ex: dimension order

• How do you prove that a routing algorithm is deadlock free

Proof Technique

• Resources are logically associated with channels

• Messages introduce dependences between resources as
they move forward

• Need to articulate the possible dependences that can arise
between channels

• Show that there are no cycles in Channel Dependence
Graph
– find a numbering of channel resources such that every legal route follows

a monotonic sequence

 => no traffic pattern can lead to deadlock

• network need not be acyclic, on channel dependence graph

Example: k-ary 2D array

• The ∆x,∆y routing is deadlock free

• Numbering
– +x channel (i,y) -> (i+1,y) gets i

– similarly for -x with 0 as most positive edge

– +y channel (x,j) -> (x,j+1) gets N+j
– similary for -y channels

• any routing sequence: x direction,
turn, y direction is increasing

1 2 3

012
00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

17

18

1916

17

18

Channel Dependence Graph

1 2 3

012
00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

17

18

1916

17

18

1 2 3

012

1718 1718 1718 1718

1 2 3

012

1817 1817 1817 1817

1 2 3

012

1916 1916 1916 1916

1 2 3

012

More Examples

• Why is the obvious routing on X deadlock free?
– butterfly?

– tree?

– fat tree?

• Any assumptions about routing mechanism? amount of
buffering?

• What about wormhole routing on a ring?

012

3

4
5

6

7

Deadlock free wormhole networks?

• Basic dimension order routing techniques don’t work for
k-ary d-cubes
– only for k-ary d-arrays (bi-directional)

• Idea: add channels!
– provide multiple “virtual channels” to break the dependence cycle
– good for BW too!

– Do not need to add links, or xbar, only buffer resources

• This adds nodes the the CDG, remove edges?

Output
Ports

Input
Ports

Cross-Bar

Breaking deadlock with virtual channels

Packet switches
from lo to hi channel

Up*-Down* routing

• Given any bidirectional network

• Construct a spanning tree

• Number of the nodes increasing from leaves to roots

• UP increase node numbers

• Any Source -> Dest by UP*-DOWN* route
– up edges, single turn, down edges

Turn Restrictions in ∆X, ∆Y

• XY routing forbids 4 of 8 turns and leaves no room for
adaptive routing

• Can you allow more turns and still be deadlock free

+Y

-Y

+X-X

Minimal turn restrictions in 2D

West-first

north-last negative first

-x +x

+y

-y

Example legal west-first routes

• Can route around failures or congestion

• Can combine turn restrictions with virtual channels

Adaptive Routing

• R: C x N x Σ -> C
• Essential for fault tolerance

– at least multipath

• Can improve utilization of the network
• Simple deterministic algorithms easily run into bad permutations

• fully/partially adaptive, minimal/non-minimal

• can introduce complexity or anomolies
• little adaptation goes a long way!

Switch Design

Cross-bar

Input
Buffer

Control

Output
Ports

Input
Receiver Transmiter

Ports

Routing, Scheduling

Output
Buffer

How do you build a crossbar

I
o

I 1

I
2

I
3

Io I 1 I2 I3

O0

Oi

O2

O3

RAM
phase

O0

Oi

O2

O
3

DoutDin

Io

I
1

I2

I
3

addr

Input buffered switch

• Independent routing logic per input
– FSM

• Scheduler logic arbitrates each output
– priority, FIFO, random

• Head-of-line blocking problem -> output buffering

Cross-bar

Output
Ports

Input
Ports

 Scheduling

R0

R1

R2

R3

Output Buffered Switch

• Added cost of multiplexers/wires -> shared pool?

Control

Output
Ports

Input
Ports

Output
Ports

Output
Ports

Output
Ports

R0

R1

R2

R3

Output scheduling

• n independent arbitration problems?
– static priority, random, round-robin

• simplifications due to routing algorithm?

• general case is max bipartite matching

Cross-bar

Output
Ports

R0

R1

R2

R3

O0

O1

O2

Input
Buffers

Stacked Dimension Switches

• Dimension order on 3D
cube

Host Out

Host In

Xin

Yin

Zin

Xout

Yout

Zout

2x2

2x2

2x2

Flow Control

• Comparison with LAN/WAN
– Must be delivered more reliably, large concurrent flow, small timescale

– ethernet: collision detection and retry after delay

– FDDI, token ring: arbitration token
– TCP/WAN: buffer, drop, adjust rate

– any solution must adjust to output rate

• Link-level flow control

Data

Ready

Examples

• Short Links

• Long links
– several flits on the wire

So
ur

ce

D
es

tin
at

io
n

Data

Req

Ready/AckF/E F/E

Smoothing the flow

• How much slack do you need to maximize bandwidth?

Low
Mark

High
Mark

Empty

Full

Stop

Go

Incoming Phits

Outgoing Phits

Flow-control Symbols

End-to-End flow control

• Hot Spots

• Global communication operations

• Natural parallel program dependences

Routing/Switching/Flow Control
Summary

• Routing Algorithms restrict the set of routes within the
topology

– simple mechanism selects turn at each hop

– arithmetic, selection, lookup

• Deadlock-free if channel dependence graph is acyclic
– limit turns to eliminate dependences

– add separate channel resources to break dependences

– combination of topology, algorithm, and switch design

• Deterministic vs adaptive routing

• Switch design issues
– input/output/pooled buffering, routing logic, selection logic

• Flow control

