Reducing Memory and Traffic Requirementsfor Scalable
Dir ectory-BasedCache Coherence Schemes

Anoop Gupta, Wolf-Dietrich Weber, and Todd Mowry
Computer Systems Laboratory
Stanford University, CA 94305

Abstract

As multiprocessrs are scaledbeyondsingle bus systems,there
is renewedinterestin directory-basedtachecoherenceschemes.
Theseschemegely on a directory to keeptrack of all processts
cachingamemoryblock. Whena write to thatblock occurs,point-
to-point invalidation messagesare sentto keepthe cachescoher-
ent. A straightforwardwvay of recordingtheidentitiesof processrs
cachinga memoryblock is to usea bit vectorper memoryblock,
with onebit per processarUnfortunately whenthe main memory
growslinearly with the numberof processorsthe total size of the
directorymemorygrowsasthe squareof the numberof processors,
which is prohibitive for large machines.To remedythis problem
severhschemeshatusea limited numberof pointersper directory
entry havebeensuggested Thesescheme®ften causeexcessive
invalidationtraffic.

In this paper we proposetwo simple techniquesthat signifi-
cantly reduceinvalidation traffic and directory memory require-
ments.First, we presenthe coarsevectorasa novelway of keep-
ing directorystateinformation. This schemeusesaslittle memory
asotherlimited pointer schemesbut causessignificantly lessin-
validation traffic. Second,we proposesparsediredories where
one directory entry is associatedvith severalmemoryblocks, as
a techniqe for greatly reducingdirectory memory requirements.
The paperpresentsan evaluationof the proposedechniquesn the
contextof the Stanford DASH multiprocessorarchitecture. Re-
sults indicate that sparsedirectoriescoupledwith coarsevectors
cansaveoneto two ordersof magnitudein storage with only a
slight degradationn performance.

1 Introduction

A critical designissuefor shared-memorynultiprocessorss the
cachecoherencescheme. In contrastto snoopy schemeg?2],
directory-basedchemesgprovide an attractivealternativefor scal-
able high-performancenultiprocessorsin theseschemes direc-
tory keepstrack of which processorsiavecacheda given memory
block. When a processomishesto write into that block, the di-
rectory sendspoint-to-point message$o processts with a copy,
thusinvalidating all cachedcopies. As the numberof processts
is increasd, the amountof statekeptin the directory increases
accordindy. With a large numberof processorsthe memoryre-
quirementdor keepinga full recordof all processorsachingeach
memoryblock becomeprohibitive. Earlier studieq 15 suggesthat
most memoryblocks are sharedby only a few processorsat any
giventime, andthatthe numberof blockssharedby a large num-
ber of processorss very small. Theseobservationgoint towards
directoryorganizationghat are optimizedto keepa small number
of pointersper directoryentry, but arealsoableto accommodtea
few blockswith very many pointers.

We proposetwo methodsfor lowering invalidation traffic and
directory memoryrequirements.Thefirst is the coarsevectordi-
rectoryscheme.n the mostcommoncaseof a block beingshared
betweena small numberof processorsthe directoryis keptin the
form of severalpointers. Eachpoints to a processowhich has
a cachedcopy. Whenthe numberof processorsharinga block
exceedghe numberof pointersavailable,the directory switches
to a differentrepresentationThe samememorythat was usedto
storethe pointersis now treatedasa coarsebit vector, whereeach
bit of the stateindicatesa group of processorsWe term this new
directoryschemeDir;CV,., wherei is the numberof pointersandr
is the sizeof theregionthateachbit in the coarsevectorrepresents.
With all bits set, the equivalentof a broadcasts achieved While
usingthe sameamountof memory the proposedschemas at least
as good asthe limited pointer schemewith broadcast—presged
asDir;B in [1].

The secondmethodwe proposereducesdirectory memoryre-
quirementsy organizingthe directoryasacachejnsteadf having
onedirectoryentry permemoryblock. Sincethe total sizeof main
memoryin machiness muchlargerthanthat of all cachememory
at any giventime mostmemoryblocksarenot cachedby any pro-
cessorandthe correspondinglirectory entriesareempty Theidea
of a sparsedirectoly that only containsthe active entriesis thus
appealing. Furthermore thereis no needto havea backingstore
for thedirectorycache.The stateof ablock cansafelybediscarded
after invalidation messagehavebeensentto all processocaches
with a copy of that block. Our schemeof sparsedirectoriesbrings
down the storagerequirementf main-memory-basedirectories
closeto that of cache-bsedlinked list directory schemesuchas
the SCI schemd8]. However we avoid the longer latenciesand
morecomplicatedprotocolassociateavith cache-baseddirectories.

Note that our two proposalsare orthogonal. Sparsedirectories
apply equallywell to otherdirectoryentryformatsasto the coarse
vectorscheme.

In this paperwe comparethe full bit vectorschemendexisting
limited pointer schemeswith our coarsevector scheme.We also
evaluatethe performanceof sparsedirectories. The performance
resultswere obtainedusingmultiprocessosimulationsof four par-
allel applications. The multiprocessorsimulator is basedon the
StanfordDASH architecturg11]. Our resultsshowthatthe coarse
vector schemealways doesat leastas well as all other limited-
pointer schemesndis muchmorerobustin responseo different
applications.While someapplicationscauseoneor the otherdirec-
tory schemeo degradebadly, coarsevectorperformances always
closeto that of the full bit vectorscheme Using sparsedirectories
addslessthan17%to the traffic while reducingdirectorymemory
overheaddy oneto two ordersof magnitude.

The next sectionbriefly introducesthe DASH multiprocessor
architecturecurrently being developedat Stanford. It will be used
as a basearchitecturefor our studiesthroughoutthe paper The
DASH architecturesectionis followed by backgroundnformation
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Figure1: DASH architecture.

ondirectory-basedachecoherencachemeswith emphasionthe
memory requirementof eachscheme. Section4 introducesthe
directory schemegproposedn this paper Section5 describeghe
experimentaénvironmentandthe parallelapplicationausedfor our
performanceesvaluationstudies. Section6 presentghe resultsof
thesestudies.Sections? and8 containa discussiorof the results,
future work, and conclusions

2 The DASH Architecture

The performanceanalysisof the different directory schemede-
pendson the implementationdetailsof a given multiprocessoir-
chitecture. In this paperwe havemadeour schemesoncreteby
evaluatingthem in the contextof the DASH multiprocessorcur-
rently beingbuilt at Stanford. This sectiongivesa brief overview
of DASH [11].

TheDASH architectureconsistof severaprocessingiodegre-
ferredto asclusters, interconnectedby a meshnetwork (seeFig-
urel). Eachprocessingnodecontainsseveraprocessorsith their
cachesa portion of the global memoryandthe correspondingli-
rectorymemoryandcontroller Cacheswithin the clustersarekept
consisentusingabus-baseésnoopyschemg13]. Inter-clustercon-
sistencyis assuredvith a directory-basedachecoherencescheme
[10]. The DASH prototypecurrently beingbuilt will havea total
of 64 processorsarrangedn 16 clustersof 4. The prototypeim-
plementatiorusesa full bit vector for eachdirectory entry. With
one statebit per clusterand a singledirty bit, the corresponding
directory memory overheadis 17 bits per 16 byte main memory
block, i.e., 13.3%.

Whatfollows is a brief descriptionof the protocolmessagesent
for typical read and write operations. This information is useful
for understanishg the messageraffic resultspresentedn Section
6. For a read,the clusterfrom which the readis initiated (local
cluster)sendsa messagéo the clusterwhich containghe portion of
main memorythat holdsthe block (homecluster). If the directory
determineghe block to be cleanor shared,t sendsthe response
to the local cluster If the block is dirty, the requestis sentto the
owningcluster which repliesdirectly to the original requestar For
awrite, thelocal clusteragainsendsa messagéo the homecluster
A directory look-up occursand the appropriateinvalidationsare

sentto clustershavingcachedtopies(remoteclusters).At thesame
time, anownershipreply is returnedto the local cluster This reply
alsocontainsthe countof invalidationssentout, which equalsthe
numberof acknowledgmen messaget expect. As eachof the
invalidationsreachedts destinationjnvalidationacknowledgemen
messageare sentto thelocal cluster Whenall acknowledgments
arereceivedby the local cluster the write is complete.

3 Directory Schemes for Cache Coher-
ence

Existing cachecoherentmultiprocessorsre built usingbus-based
snoopy coherenceprotocols [12, 7]. Snoopy cache coherence
schemegely on the bus as a broadcastmedium and the caches
snoopon the busto keepthemselvesoherent.Unfortunately the
buscanonly accommodata small numberof processorandsuch
machinesare not scalable. For scalablemultiprocessorsve re-
quire a generalinterconnectiometwork with scalablebandwidth,
which makes snoopingimpossible. Directoly-bagd cache co-
herenceschemed4, 14] offer an attractive alternative. In these
schemesa directory keepstrack of the processorgachingeach
memoryblock in the system.This informationis thenusedto se-
lectively sendinvalidations/updatewhena memoryblock is writ-
ten.

For directory schemedo be successl for scalablemultipro-
cessorsthey must satisfy two requirements.The first is that the
bandwidthto accesglirectoryinformation mustscalelinearly with
the numberof processorsThis canbe achieveddy distributingthe
physicalmemoryandthe correspondinglirectory memoryamong
the processingrodesand by using a scalableinterconnectiomet-
work [11]. The secondrequiremenis that the hardwareoverhead
of usinga directory schememust scalelinearly with the number
of processts. The critical componenbf the hardwareoverheads
the amountof memoryneededo storethe directory information.
It is this secondaspectof directory schemeghat we focuson in
this paper

Variousdirectory schemeshat havebeenproposedall into the
following threebroadclasses{i) thefull bit vectorscheme(ii) lim-
ited pointerschemesand(iii) cache-basklinked-list schemesWe
now examinedirectory schemesn eachof thesethreeclassesand
qualitatively discusstheir scalability and performanceadvantage
anddisadvantage Quantitativecomparisorresultsare presented
in Section6.

3.1 Full Bit Vector Scheme (Dir p)

This schemeassociatea completebit vector, onebit perprocessn

with eachblock of main memory The directory also containsa

dirty-bit for eachmemoryblock to indicateif someprocessohas
beengivenexclusiveaccesso modify thatblockin its cache.Each
bit indicateswhetherthat memory block is being cachedby the

correspondingrocessarandthusthe directoryhasfull knowledge
of the processorgachinga given block. When a block hasto

be invalidated, messageare sentto all processorsvhosecaches
havea copy. In termsof messagéraffic neededo keepthe caches
coherentthisis the bestthataninvalidation-basedirectoryscheme
cando.

Unfortunately for a multiprocessomwith P processorsM bytes
of main memory per processoand a block size of B bytes,the
directory memory requirementsare P2 - M /B bits, which grows
asthe squareof the numberof processts. This fact makesfull
bit vector schemesunaccegable for machineswith a very large



numberof processors.

Althoughthe asymptotionemoryrequirementsook formidable,
full bit vectordirectoriescanbe quiteattractivefor machinewith a
moderatenumberof processorsFor example the prototypeof the
StanfordDASH multiprocessof11] will consistof 64 processts
organizd as 16 clustersof 4 processoreach. While a snoopy
schene is usedfor intra-clustercachecoherencea full bit vector
directory schemeis usedfor inter-cluster cachecoherence. The
blocksizeis 16 bytesandwe needa 16-bit vectorperblock to keep
track of all the clusters. Thusthe overheadf directory memory
as a fraction of the total main memoryis 13.3%, which is quite
tolerablefor the DASH multiprocessar

We observethat oneway of reducingthe overheadf directory
memoryis to increasehe cacheblock size. Beyonda certainpoint,
this is not a very practicalapproachbecauséncreasingthe cache
block size can have other undesirableside effects. For example,
increasinghe block sizeincreaseshe chance of false-sharing6]
andmaysignificantlyincreasahe coherencéraffic anddegradehe
performanceof the machine.

3.2 Limited Pointer Schemes

Our study of parallel applicationshasshownthat for most kinds
of dataobjectsthe correspondingnemorylocationsare cachedby
only a small numberof processorsat any giventime [15. One
can exploit this knowledgeto reducedirectory memory overhead
by restrictingeachdirectoryentryto a smallfixed numberof point-
ers, eachpointing to a processp cachingthat memoryblock. An
importantimplication of limited pointerschemess that theremust
exist somemechanisnto handleblocksthat are cachedby more
procesersthanthe numberof pointersin the directoryentry. Sev-
eralalternative®xistto dealwith this pointeroverflow andwe will
discus threeof thembelow Dependingon the alternativechosen,
the coherege anddatatraffic generatednay vary greatly

In the limited pointer schemesve needlog, P bits per pointer,
while only one bit sufficed to point to a processoin the full bit
vector scheme. Thus the full bit vector schememakesmore ef-
fective useof eachof the bits. If we ignore the single dirty bit,
the directory memory requiredfor a limited pointer schemewith
1 pointersis (z - log, P) - (P - M /B), which growsas (P log, P)
with the numberof processors.

3.21 Limited Pointers with Broadcast Scheme (Dir;B)

The Dir;B scheme[1] solvesthe pointer overflow problem by

adding a broadcas bit to the state information for each block.

When pointer overflow occurs, the broadcastit is set. A sub-

sequehwrite to this block will causdnvalidationsto be broadcast
to all caches.Someof theseinvalidationmessagewill go to pro-

cessosthatdo not havea copy of the block andthusreduceoverall

performanceby delayingthe completionof writes and by wasting
communic#on bandwidth.

TheDir; B schemés expectedo do poorlyif thetypical number
of procesers sharinga block is just larger than the number of
pointers. In thatcasenumerousnvalidationbroadcastsiill result,
with mostinvalidationsgoingto cacheghat do not havea copy of
the block.

3.2.2 Limited Pointers without Broadcast Scheme
(Dir;NB)

Oneway to avoid broadcats is to disallow pointeroverflowsalto-
gether In the Dir;NB schemd1], we makeroom for anadditional

requestorby invalidating one of the cachesalready sharingthe
block. In this mannera block can neverbe presentin more than
i cachesat any onetime, andthus a write can nevercausemore
thani invalidations.

The most seriousdegradatiorin performancewith this scheme
occurswhenthe applicationhasread-onlyor mostly-readdataob-
jectsthatareactivelysharedvy a largenumberof processorsEven
if the datais read-only a continuousstreamof invalidationswill
result asthe objectsare shuttledfrom one cacheto anotherin an
attemptto sharethembetweemmorethani cachesWithout special
provisionsto handlesuchwidely shareddata,performancecanbe
severelydegradedSection6 presentsanexample).

3.23 Superset Scheme (Dir;X)

Yetanothemway of dealingwith pointeroverflowis the superseor
Dir; X schemgour terminology)suggestedh [1]. In this scheme,
two pointersare kept per entry. Oncethe pointersare exhausted
the samememoryis usedto keepa single compositepointer Each
bit of this compositepointer can assumethree states: 0, 1, and
X—where X denoteshoth Whenan entry is to be added,its bit
patternis comparedwith that of the existing pointer For eachbit
that the patternsdisagreethe pointerbit is flippedto the X state.

Whena write occursandinvalidationshaveto be sentout, each
X in the compositepointeris expandedo boththe 0 and1 states.
A setof pointersto processocachegesult, which is a supersebf
the cacheawhich actually havecopiesof the block. Unfortunately
the compositepointer representatioproducesa lot of extraneous
invalidations.In Sectiord.1we will showthatthe supersescheme
is only mamginally betterthan the broadcasschemeat accurately
capturingthe identitiesof processorsachingcopiesof the block.

3.3 Cache-Based Linked List Schemes

A differentway of addressinghe scalabilityproblemof full vector
directory schemess to keepthe list of pointersin the processors
cachednsteadof a directory nextto memory[9, 16]. One such
schemes currently beingformalizedasthe ScalableCoherentin-
terface[8]. Eachdirectory entry is madeup of a doubly-linked
list. Theheadandtail pointerto thelist arekeptin memory Each
cachewith a copyof theblockis oneitem of thelist with a forward
andbackpointerto the remainderof the list. Whena cachewants
to reada sharedtem, it simply addsitself to the headof thelinked
list. Shoulda write to a sharedblock occur, the list is unraveled
oneby oneasall the copiesin the cachesareinvalidatedoneafter
another

The advantagef this schemas thatit scalesmaturallywith the
numberof processors.As more processorsare added,the total
cachespacencreasesndso doesthe spacein which to keepthe
directory information. Unfortunately there are severaldisadvan-
tages.For onething, the protocolrequiredto maintaina linked list
for eachdirectoryentryis morecomplicatedhanthe protocolfor a
memory-basedirectory schemebecauselirectory updatesannot
be performedatomically Secondly eachwrite producesa serial
string of invalidationsin the linked list schemegauseddy having
to walk throughthe list, cache-by-cdue. In contrastthe memory-
baseddirectory schemecan sendinvalidation messageas fast as
the networkcanaccepthem. Thirdly, while amemory-basedirec-
tory canoperateat main memoryspeedsandcanthusbe madeof
cheapanddenseDRAM, the linked list needso be maintainedn
expensivehigh-speedcachememory The explorationof tradeofs
betweermemory-basedndcache-basedirectoriesis currentlyan
active areaof research.In this paper however we only focuson
memory-basedirectoriesasusedin DASH-like architectures.
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Figure2: Averageinvalidation messagesentas a function of the numberof sharers.

4 New Proposals

We proposeawo techniquego reducememoryrequirement®f di-
rectory schemeswithout significantly compromisingperformance
and commurication requirements. The first is the coarsevector
schene, which combinesthe bestfeaturesof the limited pointer
andfull bit vector schemes.The secondtechniqueis the sparse
diredory, which usesa cachewithout a backingstore.

4.1 Coarse Vector Scheme (Dir;CV,)

To overcomehedisadvantageof thelimited pointerschemewith-
outlosingthe advantagef reducednemoryrequirementsye pro-
posethe coarsevectorschemgDir ; CV,). In this notation,i is the
numberof pointersandr is thesizeof theregionthateachbit in the
coarsevectorrepresentsDir; CV, is identicalto the otherlimited
pointerschemesvhenthereare no morethani processorsharing
a block. Eachof the i pointersstoresthe identity of a processor
thatis cachinga copy of the block. However when pointer over-
flow occus, the semanticsare switched,so that the memoryused
for storingthe pointersis now usedto storea coarsebit vector
Eachbit of this bit vectorstandsfor a groupof r processorsThe
regionsizer is determinedby the numberof directory memory
bits available.While someaccuracyis lost overthe full bit vector
representationwe are neither forced to throw out entries (as in
Dir;NB) nor to go to broadcastmmediately(asin Dir;B).

Figure 2 makesthe different behaviourof the broadcastand
coarsevectorschemespparent.In the graph,we assumehat the
limited pointerschemegachhavethreepointers. The graphshows
the averag numberof invalidationssentout on a write to a shared
block as the numberof processts sharingthat block is varied.
For eachinvalidationevent,the sharersvererandomlychoserand
the numberof invalidationsrequiredwas recorded. After a very
large numberof events,theseinvalidation figures were averaged
andplotted.

In the ideal caseof the full bit vector (stipple line) the number
of invalidationsis identicalto the numberof sharers.For the other
schenes,we do not havefull knowledgeof who the sharersare,
and extraneaus invalidationsneedto be sent. The areasbetween
the stippleline of the full bit vector schemeandthe lines of the
othersclremegepresenthe numberof extraneousnvalidationsfor
that schene. For the Dir;B schemewe go to broadcasassoonas
the threepointersare exhausted.This resultsin many extraneous

invalidations. The DirsX schemeusesa compositepointer once
pointer overflow occurs,and the graph showsthat its behaviour
is almostasbad asthat of the broadcasscheme.The composite
vector soon containsmostly Xs andis thus closeto a broadcas
bit. The coarsevectorschemepn the otherhand,retainsa rough
idea of which processs have cachedcopies. It is thus able to

sendinvalidationsto the regiors of processorgontainingcached
copies,without havingto resortto broadcastHencethe numberof

extraneousnvalidationsis muchsmaller

The coarsevectorschemealsohasadvantagsin multiprogram-
ming environmentswherea large machinemight be divided be-
tweenseveralusers.Eachuserwill havea setof processoregions
assignedo his application. Writes in one usets processp space
will nevercausenvalidationmessageto be sentto cacheof other
users.Evenin singleapplicationenvironmentsve cantakeadvan-
tageof datalocality by placing processts that sharea given data
setinto the sameprocessoregion.

4.2 Sparse Directories

Typically the total amountof cachememoryin a multiprocessois
muchlessthanthe total amountof main memory If the directory
stateis keptin its entirety we haveone entry for eachmemory
block. Most blockswill not be cachedanywhereand the corre-
spondingdirectory entrieswill thus be empty To reducesucha
wasteof memory we proposethe spar® directory. This is a di-

rectorycache but it needso back-upstorebecauseve cansafely
replacean entry of the sparsedirectory after invalidating all pro-
cessorcachesvhich that entry pointsto.

As anexamplejf agivenmachinehas16 MBytesof mainmem-
ory perprocesspnand 256 KBytes of cachememoryper processn
no more than 1/64 or about1.5% of all directory entrieswill be
usedat any onetime. By usinga directory cacheof suitablesize,
we areableto drasticallyreducethe directorymemory Thuseither
the machinecostis lowered, or the designercan chooseto spend
the savedmemoryby making eachentry wider. For example,if
the Dir; CV,. schemeavereusedwith a sparsealirectory morepoint-
ersi andsmallerregionsr would result. The directory cachesize
should be chosento be at least as large as the total number of
cacheblocks. An additionalfactor of 2 or 4 will reducethe proba-
bility of contentionover sparsealirectory entriesif memoryaccess
patternsare skewedto load one directory more heavily than the
others. This contentionoccurswhen severalmemoryblocks map-
ping to the samedirectoryentry existin processocachesandthus



Table1: Samplemachineconfigurations.

numberof | numberof total main total processp | block directory directory
clusters | processts | memoryspace| cachespace size scheme overhead
(MBytes) (MBytes) (Bytes)
16 64 1024 16 16 Dirss 13.3%
64 256 4096 64 16 sparseDires 13.1%
256 1024 16384 256 16 sparseDirgCVa 13.3%

keepknockingeachotherout of the sparsedirectory Similar rea-
soningalso providesa motivation for making the sparsedirectory
set-assaiative. Sincesparsedirectoriescontaina large fraction of
main memoryblocks, tagsneedonly be a few bits wide. Sparse
directoriesare expectedo do particularly well with a DASH-style
architecture.ln DASH, no directoryentriesareusedif datafrom a
givenmemorymoduleis cachedonly by processorin thatcluster
Sincewe expectprocesses$o allocatetheir non-sharedatafrom
memoryon the samecluster no directory entrieswill be usedfor
suchdata. Furthermorewith increasindocality in programsfewer
dataitemswill be remotelyallocatedandthusfewer directory en-
tries will be needed.

Theratio of mainmemoryblocksto directoryentriesis calledthe
sparsty of thedirectory Thusif thedirectoryonly containsl/16as
manyentriesasthereare main memoryblocks, it hassparsity16.
Tablel showssomepossibledirectory configurationgor machines
of differentsizes.For thesemachines16 MBytes of mainmemory
and256 KBytes of cachewereallocatedper processn A directory
memory overheadof around13% has beenallowed throughout.
Processrshavebeenclusterednto processingnodesof 4—similar
to DASH. Thefirst line of thetableis closeto the DASH prototype
configuration. Thereare 64 processorsrrangedas 16 clustersof
4 processrs. For this machine the full bit vectorschemeDir i6 is
easilyfeasible.As themachinds scaledo 256 processts, we keep
the directory memoryoverheadat the samelevel by switchingto
sparsdlirectories. The sparsalirectoriescontainentriesfor 1/4 of
themainmemoryblocks(sparsity4). As we shallseein Section6,
evenmuchsparsedirectoriesstill performverywell. Forthe 1024
proceser machine the directorymemoryoverheads keptconstant
and the entry size is kept manageble by using a coarsevector
schene (DirgCV.) in additionto usinga directory with sparsity4.
Notethatthis is achievedvithout havingto resortto alargercache
block size.

5 Evaluation Methodology

We evaluatedhe directory schemesliscusedin the previoussec-
tions usinganevent-driversimulatorof the StanfordDASH archi-
tecture. Besidesstudyingoverall executiontime of variousappli-
cations,we alsolookedat the amountandtype of messagéraffic
producel by the differentdirectory schemes.

Our simulationsutilized Tango[5] to generatemultiprocessor
references Tangoallows a parallel applicationto be executedbn
a uniprocessa while keepingthe correctglobal eventinterleaving
intact. Globaleventsarereferences$o sharediataandsynchroniza-
tion eventssuchaslock and unlock requests.Tangocanbe used
to generatemultiprocessorreferencetraces,or it canbe coupled
with a memorysystemsimulatorto yield accuratemultiprocessor
simulations. In the latter casethe memory systemsimulator re-
turnstiming informationto the referencegeneratarthuspreserving
avalid interleavingof referencesWe usedthis secondmethodfor
our simulations.

Our study usesfour benchmarkapplicationsderivedfrom four
different applicationdomains. LU comesfrom the numericaldo-
main and computesthe L-U factorizationof a matrix. DWF is
from the medicaldomainandis a string matchingprogramused
to searchgenedatabasesMP3D comesfrom aeronautics.t is a
3-dimensionaparticle simulatorusedto studyairflow in the upper
atmosphereFinally, LocusRote is a commercialquality standard
cell routing tool from the VLSI-CAD domain.

Table2: Generalapplicationcharacteristics.

shared| shared shared sync shared

refs | reads writes ops space

Application | (mill) | (mill)  (mill) (thou) | (MBytes)
LU 8.9 6.0 2.9 13 0.65
DWF 17.5 16.2 1.0 277 3.89
MP3D 13.5 8.8 4.7 1 3.46
LocusRaite 213 20.2 11 24 0.72

Table 2 presentssome generaldataaboutthe applications. It
showsthe total numberof sharedreferencesn the applicationrun
and the breakdowninto readsand writes. Sharedreferencesre
definedas referencego the globally shareddata sectionsin the
applications.The numberof sharedeferencesariedslightly from
run to run for the non-deterministi@applicationsg(LocusRouteand
MP3D). We showthe valuesfor thefull cache hon-sparsefull bit
vectorruns. Thetablealsogivesthe amountof shareddatatouched
during execution,which is an estimateof the datasetsize of the
program.

All runsweredonewith 32 processoranda cacheblock sizeof
16 bytes. We did not usemore processordecaus currently few
of our applicationsachievegood speedupbeyond32 processts.
For our evaluationstudies,we assumedhat a directory memory
overheadaround13% was tolerable, which allowed us about17
bits of directorymemoryperentry. Thisrestrictsthelimited pointer
schemedo threepointersandthe coarsevectorschemeo regions
of sizetwo. Theschemegxaminedn this studyarethusDir sCV5,
DirsB andDirsNB. We alsousedDir 3, the full bit vectorscheme,
for comparisompurposes.Once sparsedirectoriesare introduced,
the overheadhaturally drops dramatically—byone to two orders
of magnitudedependingon sparsity For example a full bit vector
directory with sparsity 64 requires32 bits to keeptrack of the
processorcaches] dirty bit, and6 bits of tag. Insteadof 33 bits
per 16-byte block we now have 39 bits for every 64 blocks, a
savingsfactor of 54.

The DASH simulatoris configuredwith parametershat corre-
spondto thoseof the DASH prototypehardware. The processors
have64 KByte primary and 256 KByte secondry caches Local
bus requestgake on the order of 23 processorcycles. Remote
requestsnvolving two clusterstake about60 cyclesand remote
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requestswith three clustershavea latency of about80 processor
cycles In the simulator main memoryis evenlydistributedacross
all clusteraandallocatedo theclusterausingaround-robinscheme.

Thefollowing messageclassesare usedby the simulator:
¢ Requst messageare sentby the cachego requestdataor
ownership.

¢ Replymessagearesentby the directoriesto grantownership
and/orsenddata.

¢ Invalidationmessageare sentby the directoriesto invalidate
ablock.

¢ Acknowledyement messageare sentby cachesn response
to invalidations.

The simulator also collects statisticson the distribution of the
numberof invalidationsthathaveto be sentfor eachwrite request.
The invalidation distribution helps explain the behaviou of the
differentdirectory schemes

6 Simulation Results

The resultspresentedn this section are subdividedas follows.
The first subsetion givesinvalidation distributionsfor the differ-
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ent directory schemes.Theseimpart an intuitive feel for how the
different schemesehaveand discusse their advantagesind dis-
advantages The next two subsectiongpresentthe resultsof our
main study The first one contrastghe performanceof our coarse
vectorschemewith thatof otherlimited-pointerschemesThe sec-
ondsubsetion presentsesultsregardinghe effectivenessf sparse
directories.

6.1 Invalidation Distributions

Figures3-6 give the invalidation distributions of shareddatafor

the LocusRouteapplication. We do not presentresultsfor other
applicationsfor spacereasonsAlso, the LocusRaute distributions
illustrate the trendsof the differentschemesvell. In Figure3 we

seethe distribution for the full bit vector schemgDirs;) which is

the intrinsic invalidation distribution and is the bestthat can be

achieved. In the caseof the Dirsz schemepnly writes that miss
or hit a cleanblock are invalidation events. We note that most
writes causevery few invalidations,but that there are also some
writes that causea large numberof invalidations. The numberof

invalidationeventds 0.26million andeacheventonaverageauses
0.98invalidationsfor a total of 0.25million invalidations.

Figure 4 showsthe invalidation distribution for DirsNB. Since
no broadcastsare allowed, no more thanthree cachesansharea
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given block at any onetime. This also meansthat we neversee
more than three invalidationsper write. Unfortunately there are
alsomanynew singleinvalidations,causedy replacementsthen
a blockwantsto be sharedby morethanthreecachesFor Dir sNB
it is posgble for readsto causeinvalidations,andthis is why the
numberof invalidation eventsis so much larger. Although the
averagenumberof invalidationsper eventhasdecreasg to 0.88,
the total numberof invalidationshasincreasedo 0.37 million.

The distribution for DirzB is shownin Figure 5. We seethat
the numberof smallerinvalidationsgoesbackto the level seenfor
thefull vectorschemeHowever anywrites thatcausednorethan
threeinvalidationsin thefull vectorschemenow haveto broadcast
invalidations. For mostbroadcasts30 clustershaveto be invali-
dated,sincethe home clusterand the new owning clusterdo not
requirean invalidation. This servesto drive the averagenvalida-
tions pereventup to 3.9 andthetotal to 1.01million invalidations.

In the DirsCV, schemeshownin Figure 6, we are ableto re-
spondo thelargerinvalidationswithout resortingto broadcastThe
peaksat odd numbersof invalidationsare causeddy the granular-
ity of the bit vector Also notethe absencedf the large peakof
invalidationsat the right edgethat was presentfor the broadcast
schene. Thereare an averageof 1.41 invalidationsper eventand
0.36million total invalidations.

In conclusion,we see that the both the broadcastand non-

300~ exec. time . . invals + acks
280+ replies
260 requests

240+
2204
200
180
160
140
120 +
100
80+
60
101
20+

100.0100.1 100.1100.3 100.4 102.6

118 11.9 13.2
39.5 39.5 40.1
48.8 48.8 49.3

Full Vector  Coarse Vector  Broadcast Non Broadcast

Figure9: Performancdor MP3D.

100.0100.0

Normalized Execution Time and Traffic

300~ exec. time . invals + acks
280+ replies

260 1~

requests

174.8
120.2
108.8
| 100.0100.0 100.5 I I 100.1
Full Vector  Coarse Vector

Figure 10: Performancedor LocusRoute.

Normalized Execution Time and Traffic

Broadcast Non Broadcast

broadcastschemescan causeinvalidation traffic to increase. In
the caseof the broadcasschemehis increasds dueto the broad-
castinvalidations which canberelatively frequentif thereareonly
a small numberof pointers.For the non-broadcst schemethe ex-
tra invalidationsare causedy replacingentrieswhenmorecaches
are sharinga block than there are pointersavailable. The coarse
vector schemestrikes a good balanceby avoiding both of these
drawbacksand is thus able to achieveperformancecloserto the
full bit vectorscheme.

6.2 Performance of Different

Schemes

Directory

Figures7-10 show the performanceachievedand data/coherere
messageproducedby the different directory schemedor eachof
the four applications. All runs use 32 processorst4 KByte pri-
mary and 256 KByte secondarycaches,and a cacheblock size
of 16 bytes. The total humber of messagess broken down
into requests(which include writebacks), replies, and invalida-
tion+acknowledgenrd message

Observethat the numberof requestandreply messageis about
the samefor the first three schemegDir p, Dir;CV, and Dir;B)
for a given application. This is expectedsinceall threeschemes
havesimilar requestand reply behaviour Dir;CV, andDir;B oc-



casiorally sendout extraneoudnvalidations,but that is the only
differencecomparedo the full bit vectorscheme.For Dir;NB, on
the other hand, invalidationssometimeshaveto be sentevenfor
read requestswhen pointer overflow occurs. Theseinvalidations
canlater causeadditionalreadmisseswith the associatedihcrease
in request andreply messages.

Let us now look at eachof the applicationsindividually and
discus the results. LU exhibitsthe problemdiscussedn the pre-
viousparagraphln Figure7, we seea greatlyincreasechumberof
requestandreply messageaswell asa very large numberof in-
validationandacknowledgment messagefor the Dir ;NB scheme.
In LU eachmatrix columnis readby all processts just after the
pivot step. This datais actively sharedbetweenmany processts
andDir;NB doesvery poorly.

Readshareddatais also the causeof the poorer performance
of Dir;NB for DWF. The patternandlibrary arraysare constantly
readby all the processesluring the run. The other schemesare
virtually indistinguishable.

In MP3D (Figure 9) most of the datais sharedbetweenjust
one or two processrs at any given time. This sharing pattern
causesninvalidationdistributionthatall schemesanhandlewell.
The coarsevectorandbroadcasschemeshowalmostno increase
in exection time or messageéraffic, and eventhe non-broadcst
schene takesonly 0.4%longerto run.

LocusRaute (Figure 10) is interestingin thatit is the only appli-
cationin whichthe Dir;NB schemeutperformsDir;B. The central
datastructureof LocusRoutds sharedamongsiseveralprocessts
working on the samegeographicategion. Wheneverthe number
of shaers exceed the numberof pointersin Dir;B, a broadcast
resultson a write. The Dir;NB schemedoesbetterwith this kind
of object, becausehe invalidationsdueto pointer overflow often
do not causere-reads.

Throudhout this section the messagdraffic numbersdiverge
morethanthe executiontimes for the variousschemes Sincewe
simulatea 32 cluster multiprocessomvith 32 processorsthereis
only oneprocessoper cluster The local clusterbusis thusunder-
utilized. In areal DASH system,with four processorso a cluster
the clusterbuswill be muchbusier We conseqartly expectthe
performancelegradatiordueto anincreasechumberof messages
to be largerthanshownhere.

Compaing the performancef the differentschemesor the var-
ious applications we seethat the Dir;NB doesmuch worsethan
the otherschemedor mostapplications.Only in LocusRote does
it perform betterthanone of the other schemes Secondly while
we expet the Dir;CV, schemeto alwaysperformaswell asthe
broadcatschemewe seethatit candosignificantlybetterfor some
applications. Finally, we note that the coarsebit vector scheme
sendsvery few extraneousnessagesFor the worst caseapplica-
tion (LocusRaute) Dir; CV, only sendsabout12% more messages
thantheideal full bit vectorscheme.

6.3 Performance of Sparse Directories

Themethodusedfor evaluatingsparselirectorieswasvery similar
to thatusedto evaluatehedifferentdirectoryschemesTherewere
two key differences Firstly, the simulatorwasconfiguredto usea
sparselirectoryinsteadof keepinga completedirectory Secondly
we usedscaledprocessorcacheso achievea more realistic size
relationshipof the sparsedirectoriesand processorcaches. The
slow speedf thesimulatorlimited usto relatively smallapplication
datasets. As a result, if we hadusedthe regular256 KBytes of
cacheper processn the whole data set would havefit into the
caches In sucha casewe would havebeenunableto experiment

with sparsalirectorieslargerthanthe processocachesut smaller
than the total memoryblocksin the system. Instead,the caches
were scaledto keepthe ratio of datasetsizeto cachesize of our
runssimilar to that of datasetsizeto cachesizefor a full blown
applicationproblemon a real DASH multiprocessarFor example,
for DWF a full blown problemon a 64-processoDASH would
occupyall of the 1 Ghyte of main memory (seeTable1). This
is 64 times the total cachespace. In our simulation, the dataset
sizewas 3.9 MBytes. So to preservethe datasetto cacheratio,
the total cachespacefor our 32-processosimulationwasreduced
to 64 KBytes, which is 2 KBytes per processarWe experimented
with sparsalirectoriesthat haveentriesfrom oneto four timesthe
total numberof cachelines in the system(shownassizefactor 1
to 4 in the graphs).

Whenan entry needsto be allocatedin the sparsedirectory, we
first look to seewhetherthe slot it mapsto is empty If so, it is
filled. Otherwisewe haveto replaceanexistingentry. Invalidations
aresentout andthe now emptysilotis filled. Empty slotsare also
createdwhen a processorcachereplacesand writes back a dirty
line.

6.3.1 Effect of Sparsity

Figuresl1-12showthe effect of directorysparsityon performance.
We choseto presentesultsfor LU andDWF only. The resultsfor
MP3D were very similar to thoseof DWF, so for lack of space
we omit them here. For LocusRote, evenfor full-scale runsthe
datasetis expectedo be small enoughthat sparsedirectorieswill
perform aswell asnon-sparselirectories. So againwe omit the
resultsin this subsection.

In Figures11 and12 we showexecutiontimesfor LU andDWF
as the directory sparsityis varied. We considerthe caseswhere
the numberof directory entriesin the systemis a factor of 1, 2,
or 4 times the total numberof cacheblocksin the system. For
theseruns we usedsparsedirectoriesof associativity4 and usea
randomreplacemenpolicy (seebelow). The resultssuggesthat
evendirectorieswith the samesizeasthe processocachegperform
well. Theworstcaseapplication(LU) showsonly a10.4%increase
in executiontime when going from a non-sparsefull bit vector
directoryto a sparselirectoryequalin sizeto the processocaches
Whenthe directorysizeis increasedo 2 or 4 timesthe cachesize,
the performancedegradatiorof sparseadirectoriesis very small.
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Figure 11: Sparsedirectoryperformanceor LU.

For thesizefactor 1 directoryin LU we seea large performance
differencebetweenthe coarsevector and the broadcas schemes
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In LU, the pivot columnis sharedbetweenall processorsWhen
directory replacementsre more frequent,asis the casefor very
sparsedirectories,only someof the processesnay get a chance
to accesthis databetweenreplacements When the replacement
doesocaur, enoughsharersexistto causea broadcasfor the Dir ;B
schene while the Dir; CV, only needgo senda few invalidations.

For DWF the performancas fairly flat acrossschemesndsize
factors. The performancedoesnot vary much from schemeto
schene becausethe invalidation behaviourof DWF is handled
equallywell by all schemes.The performanceis flat acrosssize
factorsbecaus DWF is awave-frontalgorithmthathasarelatively
small working setat any momentin time. This ensureghat even
very sparsalirectoriesdo not suffer from exceswe replacements.

6.3.2 Effect of Associativity and Replacement Policy

Sincea sparsadirectory hasfewer entriesthan main memoryhas
blocks,it is possiblefor severalactive blocksto mapto the same
directoryentry. While a set-associativeparsedirectorycanhandle
this situation, entriesin a direct mappedsparsedirectory would
keep bumping eachother out, leadingto poor directory perfor-
mance.
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Figure13: Effect of associativityin sparsedirectory(LU).

WeusedLU asa sampleapplicationto studythe effect of sparse

directory associativityand replacemenpolicy. The full bit vector
schemewvasusedin thesestudies.Figure 13 showsmessagéraffic
numberdor associativitie®f 1, 2 and4 with directorysizefactors
1, 2 and4. We showtraffic numbersbecausehey showthetrends
betterthanthe executiontime results. For eachof the sizefactors,
associativity4 is equalto or slightly better than associativity2,
which in turn is betterthandirect-mappedy alarger mamgin. The
benefitsfrom set-associativityseemto be small, but we do expect
associativityto make sparsedirectoriesmore robustto different
applicationbehaviours.
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Figure 14: Effect of replacemenpoliciesin sparsedirectory
(LV).

For set-assdative directories,thereis a choiceof replacement
policies. We exploredrandom |east-recently-used RU) andleast-
recently-allocatedLRA) schemesLRU keepghe differentsetsin
eachentry orderedby time of accessandreplaceghe leastrecently
usedone. LRA only keepstrack of the allocationtime of each
setin the entry andreplaceghe onethat was allocatedfirst. The
resultsfor anLU run usinga sparsalirectorywith set-associativity
4 anda full bit vector schemeare shownin Figure 14. LRU is
the mostdifficult to implement,and also performsthe best. Even
thoughrandomis the easiesto implementin hardwarejt actually
doesbetterthanLRA. With LRA the possibility of replacingentries
that wereallocatedearly, yet are usedfrequentlyexists. This soon
leadsto more replacementsvhen the frequently usedentriesare
accessg again.

7 Discussion

The questionariseswhether our proposalsintroduce additional
complexitiesinto the architecture. The answeris very few. The
coarsevectorschemealoesnot requireany modificationto the pro-
tocol usedfor thefull bit vectorschemelt merelyendsup sending
someextraneousnvalidations. For sparsalirectories,on the other
hand, some protocol modificationis required. When an entry is
being replacedin the sparsedirectory andis thus effectively re-
moved from the system,we haveto invalidateall copiesof the
correspondingnemory block cachedin processorcaches Some
entity hasto keeptrack of when all the acknowledemaents for
theseinvalidationshave beenreceived. Suchan entity must al-
readyexistin systemghat implementweak consistencyin order
to keeptrack of outstandingnvalidations.In DASH, we havethe
RemoteAccessCache(RAC). Whena block is to be replacedin
the sparsedirectory, the RAC allocatesan entry for that block and
invalidationsare sentout to all cachedccopies. The RAC receives



the acknavledgenert messagesentin responseo theseinvalida-
tions. The operationis completewhenall acknowledgmerts have
beenreceived.

Anothea hardwareissue concernssynchronizéon. In DASH,
the directorybit vectorsare also usedto keeptrack of processrs
queuedfor a lock. In the caseof the full bit vector we have
enoudn spaceto keeptrack of all nodes. Consequetty, whena
lock is releasedit is grantedto exactlyone of the waiting nodes.
Oncewe switch to a coarsevector schemethat is no longer the
case. We areonly ableto keeptrack of which processoregions
arequetedfor alock. Whenthe lock is releasedandwe wish to
grantit to anothernode,we haveto releaseall processts in that
regionandlet themtry to regainthe lock. While this mechanism
is slightly lessefficient, it still avoidshavingto releaseall waiting
procesers and causinga hot spotwhenthey all try to obtainthe
lock.

Thereare many othertechniqueghat canbe usedto reducethe
memoryrequirement®f directory-basedachecoherencechemes.
For exampleassuggetedin [3], we canassociatesmall directory
entrieswith eachmemoryblock andallow theseto overflowinto a
smallcacheof muchwider entries. Similarly, we canmakemultiple
memoryblocksshareonewide entry. We planto evaluatesomeof
thesealternativeschemesn the future.

8 Conclusions

We have presentedtwo techniquesfor reducing the memory
overhed and data/coherencwaffic of directory cachecoherence
schenes—thecoarsevector schemeand sparsedirectory scheme.
The performanceof the new schemesvasanalysedand compared
to existingdirectory schemes Our resultsshow that the savings
achievel in memory overheadand the traffic reductionare sig-
nificant. Dependingon the application,the coarsevector scheme
producs up to 8% lessmemorymessagéraffic thanthe nextbest
limited pointer schemeandseverafactorslessthanthe worst lim-
ited pointerscheme The coarsevectorschemeds alsomorerobust
thanthe otherlimited pointer schemes-its performances always
closes to the full bit vectorscheme.While sparsedirectoriesadd
up to 17%to the memorycoherenceraffic, they cansignificantly
reducethe directory memoryoverhead—byone to two ordersof
magnitude dependingon sparsity We believethat a combination
of thetwo techniquepresentedavill allow machinego be scaledo
hundred of processorsvhile keepingthe directory memoryover-
headreasoable.
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