
Reducing Costs of Spot Instances via
Checkpointing in the Amazon Elastic

Compute Cloud

- Qingxi Li

1

Outline

• Amazon Elastic Compute Cloud

• Checkpointing

2

Cloud Computing

• Cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction.

NIST Sep 2010

3

EC2: Instance Type - Hardware

• Standard instance

instance CPU Memory Disk

Small 1 core 1.7 GB 160 GB

Large 4 cores 7.5 GB 850 GB

Extra-large 8 cores 15 GB 1650 GB

4

• Standard instance

• Micro instance

– Lower throughput applications need significant
compute cycles

• High-Memory instance

• High-CPU instance

• Cluster compute instance

• Cluster GPU instance

EC2: Instance Type - Hardware

5

EC2: Instance Type - Software

• Operating System

• Database

• Batch processing

• Web hosting

• Application development environment

• Application server

• Video encoding & streaming

6

Pricing Models

• On-Demand Instance

– Pay by hour and without long-term commitment

7

Price – On-Demand

8

Pricing Models

• On-Demand Instance

• Reserved Instance

– One-time payment for reserved capacity

– May have discount

– Long-term commitment

9

Price - Reserved

10

Pricing Models

• On-Demand Instance

• Reserved Instance

• Spot Instance

– Bid the capacity unused

– Cheaper than on-demand instance

– Can be cut at any time

11

Spot Price fluctuation

• Rising edges

– More bidders

– Less resource

– High bids from users

12

Spot Instance Model -Detail

13

Spot Instance Model -Detail

14

CheckPointing - Hourly

• One hour is the smallest unit of pricing

15

CheckPointing – Rising edge

• Rising edges:

– The aborting possibility is rising

16

CheckPointing - Adaptive

• Taking hourly checkpointing if Hskip(t)>Htake(t)

– Hskip(t): Expected recovery time if we skip the
hourly checkpointing.

– Htake(t): Expected recovery time if we take the
hourly checkpointing.

– t: this checking point is t time units after the
previous checkingpoint.

• Taking edge rising checkpointing if
Eskip(t)>Etake(t)

17

Hskip(t)

Recovery time when failure
happened after k time units

18

Hskip(t)

The possibility that failure happened
with k time units & bid price as ub

19

Hskip(t)

Expected execution time from the last
checkpointing to now

r: restart time
k: re-execute time of the k time units

T(t) k

20

T(t)

Failure happened after this t time units

21

T(t)

Failure happened during this t time units

22

T(t)

23

Htake(t)

Overhead of taking
checkpointing

24

Htake(t)

Failure happened when we are making the
checkpointing.

25

Htake(t)

Failure happened after taking
checkpointing.

26

Result – Completion Time

27

Result – Total Price

28

Discussion Questions

• Besides taking checkpointing, are there any
other ways can save the completion time or
cost of the tasks?

• Compared with on-demand price model, what
applications will prefer spot price model?

29

Optimizing Cost and Performance in
Online Service Provider Networks

Ming Zhang

Microsoft Research

Based on slides by Ming Zhang

30

Online Service Provider (OSP) network

OSP

31

OSP network

DC1

DC3

DC2

OSP

32

OSP network

DC1

DC3

DC2

OSP

33

OSP network

ISP6

ISP5

ISP3

ISP1

ISP4

ISP2
DC1

DC3

DC2

OSP

34

OSP network

ISP6

ISP5

ISP3

ISP1

ISP4

ISP2
DC1

DC3

DC2

User (IP prefix)

OSP

35

OSP network

ISP6

ISP5

ISP3

ISP1

ISP4

ISP2
DC1

DC3

DC2

User (IP prefix)

OSP

36

OSP network

ISP6

ISP5

ISP3

ISP1

ISP4

ISP2
DC1

DC3

DC2

User (IP prefix)

OSP

37

Key factors in OSP traffic engineering

• Cost

– Google Search: 5B queries/month

– MSN Messenger: 330M users/month

– Traffic volume exceeding a PB/day

• Performance

– Directly impacts user experience and revenue

•Purchases, search queries, ad click-through rates

38

Current TE solution is limited

• Current practice is mostly manual

– Incoming: DNS redirection, nearby DC

– Outgoing: BGP, manually configured

• Complex TE strategy space

– (~300K prefixes) x (~10 DC) x(~10 routes/prefix)

– Link capacity creates dependencies among prefixes

39

Prior work on TE

• Intra-domain TE for transit ISPs

– Balancing load across internal paths

– Not considering end-to-end performance

• Route selection for multi-homed stub
networks

– Single site

– Small number of ISPs

40

Contributions of this work

• Formulation of OSP TE problem

• Design & implementation of Entact
– A route-injection-based measurement

– An online TE optimization framework

• Extensive evaluations in MSN
– 40% cost reduction

– Low operational overheads

41

Problem formulation

• INPUT: user prefixes, DCs, external links

• OUTPUT: TE strategy, user prefix  (DC, external link)

• CONSTRAINTS: link capacity, route availability

42

Performance & cost measures

• Use RTT as the performance measure

– Many latency-sensitive apps: search, email, maps

– Apps are chatty: N x RTT quickly gets to 100+ms

• Transit cost: F(v)= price x v

– Ignore internal traffic cost

43

Measuring alternative paths with
route injection

• Minimal impact on
current traffic

• Existing approaches
are inapplicable

OSP

AS3

IP3

AS2

IP2

AS1

Route injection daemon

5.6.7.0/24

44

Measuring alternative paths with
route injection

• Minimal impact on
current traffic

• Existing approaches
are inapplicable

OSP

AS3

IP3

AS2

IP2

AS1

Route injection daemon

5.6.7.8/32 next-hop=IP3

5.6.7.0/24

Routing table
Prefix next-hop AS Path

*5.6.7.0/24 IP2 AS2 AS1
IP3 AS3 AS1

*5.6.7.8/32 IP3

45

Selecting desirable strategy

• MN strategies for N prefixes
and M alternative
paths/prefix

– Only consider optimal
strategies

Optimal strategy curve

Weighted RTT

Cost

Sweet spot, slope= -K

• Finding “sweet spot”
based on desirable cost-
performance tradeoff

– K extra cost for unit
latency decrease

46

Computing optimal strategy

• P95 cost optimization is complex

– Optimize short-term cost online

– Evaluate using P95 cost

• An ILP problem

– STEP1: Find a fractional solution

– STEP2: Convert to an integer solution

47

Finding optimal strategy curve

Cost

Weighted RTT

Optimal strategy curve

48

Entact architecture

Netflow data Routing tables

Capacity & price of external links, slope K

49

Experimental setup

• MSN: one of the largest OSP networks
– 11 DCs, 1,000+ external links

• Assumptions in evaluation
– Traffic and performance do not change with TE strategies

• 6K destination prefixes from 2,791 ASes
– High-volume, single-location, representative

50

Results

• 40% cost reduction

• Cost/perf tradeoff
Default

Entact

BestPerf

LowestCost

0

50

100

150

200

250

300

350

25 30 35 40 45 50 55 60 65 70

Cost (per unit traffic)

wRTT (msec)
51

Where does cost reduction come from?

• Entact makes “intelligent” performance-cost tradeoff

• Automation is crucial for handling complexity & dynamics

Path chosen by
Entact

Prefixes (%) wRTT difference
(msec)

Short-term cost
difference

Same 88.2 0 0

Cheaper & shorter 1.7 -8 -309

Cheaper & longer 5.5 +12 -560

Pricier & shorter 4.6 -15 +42

Pricier & longer 0.1 0 0

52

Overhead

• Route injection
– 30k routes, 51sec, 4.84MB in RIB, 4.64MB in FIB

• Traffic shift

• Computation time
– STEP1: O(n3.5)

– STEP2: O(n2log(n))

– 20K prefix ~ 9 sec; 300K prefix ~ 171 sec

• Bandwidth
– 30K x 2 x 2 x 5 x 80bytes/3600sec = 0.1Mbps

53

Conclusions

• TE automation is crucial for large OSP network

– Multiple DCs

– Many external links

– Dependencies between prefixes

• Entact – first online TE scheme for OSP network

– 40% cost reduction w/o performance degradation

– Low operational overhead

54

Discussion

• The cost concerned in the paper doesn’t cover
energy cost on data centers. Should this be part
of the optimization object?

• Can OSPs do anything to reduce the user request
ingoing latency besides the outgoing one?

• Is the computation complexity too high? If so, can
you think of any way to decrease it?

• They probe the same number of alternative paths
to one prefix, no matter how many IPs in that
prefix. Is this a fair way to implement Entact

55

56

