
  

Background

• Distributed Key/Value stores provide a simple put/get 

interface

• Great properties: scalability, availability, reliability

• Increasingly popular both within data centers 

Dynamo

Cassandra

Voldemort
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Motivation

 Highly scalable and reliable.
 Tight control over the trade-offs between 

availability, consistency, cost-effectiveness and 
performance.

 Flexible enough to let designer to make trade-
offs.

 Simple primary-key access to data store.
 Best seller list, shopping carts, customer 

preference, session management, sale rank, etc.
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Assumptions and Design 
Consideration

 Query Model

 Simple read and write operations to a data item that is uniquely identified by a key.

 Small objects, ~1MB.

 ACID (Atomicity, Consistency, Isolation, Durability)

 Trade consistency for availability.

 Does not provide any isolation guarantees.

 Efficiency

 Stringent SLA requirement.

 Assumed non-hostile environment.

 No authentication or authorization.

 Conflict resolution is executed during read instead of write.

 Always writable.

 Performed either by data store or application
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Amazon's Platform Architecture
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Techniques

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with 
reconciliation during reads

Version size is decoupled 
from update rates.

Handling temporary failures Sloppy Quorum and hinted 
handoff

Provides high availability 
and durability guarantee 

when some of the replicas 
are not available.

Recovering from permanent 
failures

Anti-entropy using Merkle 
trees

Synchronizes divergent 
replicas in the background.

Membership and failure 
detection

Gossip-based membership 
protocol and failure 

detection.

Preserves symmetry and 
avoids having a centralized 

registry for storing 
membership and node 
liveness information.
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Partitioning

 Consistent hashing: the output 
range of a hash function is treated as a 
fixed circular space or “ring”.

 ”Virtual Nodes”: Each node can be 
responsible for more than one virtual 
node.

 Node fails: load evenly dispersed 
across the rest.

 Node joins: its virtual nodes accept 
a roughly equivalent amount of 
load from the rest.

 Heterogeneity.
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Load Distribution

 Strategy 1: T random tokens per node and and 
partition by token value.
 Ranges vary in size and frequently change. 
 Long bootstrapping.
 Difficult to take a snapshot.
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Load Distribution

 Strategy 2: T random tokens per node, partition by token value.

 Turn out to be the worst, why?
 Strategy 3: Q/S tokens per node, equal-sized partitions.

 Best load balancing configuration.
 Drawback: Changing node membership requires coordination.
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Replication

 Each data item is 
replicated at N hosts.

 “preference list”: The list 
of nodes that is 
responsible for storing a 
particular key.

 Improvement: The 
preference list contains 
only distinct physical 
nodes.
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Data Versioning

 A vector clock is a list of 
(node, counter) pairs.

 Every version of every 
object is associated 
with one vector clock.

 Client perform 
reconciliation when 
system can not.
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Quorum for Consistency

 R: min num of nodes in a successful read.
 W: min num of nodes in a successful write.
 N: Num of machines in System.
 Different combination of R and W results in 

systems for different purpose.
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Quorum for Consistency

Consistenc
y 
Insurance

Writ
e

Read

Consistenc
y 
Insurance

ReadWrite

 Always writable, 
but high risk on 
inconsistency.

Write: 1
Read: ?

 Read Engine
Write: 3
Read: 1

Writ
e

Read

Consistenc
y 
Insurance

 Normally
Write: 2
Read: 2
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Hinted Handoff

 Assume N = 3. When A is 
temporarily down or 
unreachable during a 
write, send replica to D.

 D is hinted that the 
replica is belong to A and 
it will deliver to A when A 
is recovered.

 What if A never 
recovered?

 What if D fails before 
A recovers?
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Replica Synchronization

 Merkle trees:
 Hash tree. 
 Leaves are hashes of individual 

keys.
 Parent nodes are hashes of their 

children.

 Reduce amount of data required 
while checking for consistency.
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Membership and Failure Detection

 Manually signal membership change.
 Gossip-based protocol propagates membership 

changes.
 Some Dynamo nodes as seed nodes for 

external discovery.
 Potential single point of failure?

 Local detection of neighbor failure
 Gossip style protocol to propagate failure 

information.
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Discussion

 What applications are suitable Dynamo 
(shopping cart, what else?)

 What applications are NOT suitable for 
Dynamo.

 How can you adapt Dynamo to store large 
data?

 How can you make Dynamo secure?
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Outline

• Background

• Motivation

• Design

• Application
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Background

• Distributed Key/Value stores provide a simple putputputput////getgetgetget 

interface

• Great properties: scalability, availability, reliability

• Widely used in P2P systems and is becoming increasingly 

popular in data centers

DynamoDynamoDynamoDynamo

CassandraCassandraCassandraCassandra

VoldemortVoldemortVoldemortVoldemort
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Background

• Many applications may share the same key/value 

storage system.

amazon S3amazon S3amazon S3amazon S3
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Outline

• Background

• Motivation

• Design

• Application
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Motivation

• Increasingly, key/value stores are shared by many 
apps
– Avoids per-app storage system deployment

• Applications have different (even conflicting) needs:
– Availability, security, performance, functionality

• But today’s key/value stores are one-size-fits-all
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Motivating Example
• Vanish is a self-destructing data system above Vuze

• Vuze problems for Vanish:
– Fixed 8-hour data timeout
– Overly aggressive replication, which hurts security

• Changes were simple, but deploying them was 
difficult:
– Need Vuze engineer
– Long deployment cycle
– Hard to evaluate before                                                                

deployment

Vuze Vanis
h

Vuze DHT

Vuze Vanis
h

Vuze DHT

Vuze Vanis
h

Vuze DHT

Vuze Vanis
h

Vuze DHT

Futur
e app

Vuze Vuze Vuze Vuze 
AppAppAppApp VanishVanishVanishVanish Future Future Future Future 

appappappapp

Vuze DHT

Vanish: Enhancing the Privacy of the Web with Self-Destructing DataVanish: Enhancing the Privacy of the Web with Self-Destructing DataVanish: Enhancing the Privacy of the Web with Self-Destructing DataVanish: Enhancing the Privacy of the Web with Self-Destructing Data . USENIX Security . USENIX Security . USENIX Security . USENIX Security ‘‘‘‘09090909



8

Solution
• Build Extensible Key/Value Stores
• Allow apps to customize store’s functions

– Different data lifetimes
– Different numbers of replicas
– Different replication intervals

• Allow apps to define new functions
– Tracking popularity: data item counts the number of 

reads
– Access logging: data item logs readers’ IPs
– Adapting to context: data item returns different values to 

different requestors
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Solution
• It should also be simple!

– Allow apps to inject tiny code fragments (10s of lines of 
code)

– Adding even a tiny amount of programmability into 
key/value stores can be extremely powerful
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Outline

• Background

• Motivation

• Design

• Application
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Design
• DHT that supports application-specific customizations

• Applications store active objects instead of passive 
values
– Active objects contain 
   small code snippets that 
   control their behavior in 
   the DHT

App 1 App 2 App 3

CometCometCometComet

Active object Comet node
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Active Storage Objects

• The ASO consists of data and code
– The data is the value
– The code is a set of handlers and user defined functions

App 1 App 2 App 3

CometCometCometComet

ASO

data
code

function onGet()function onGet()function onGet()function onGet()
  [  [  [  […………]]]]
endendendend
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ASO Example
• Each replica keeps track of number of gets on an 

object.

ASO
data
code

aso.value = aso.value = aso.value = aso.value = ““““Hello world!Hello world!Hello world!Hello world!””””
aso.getCount = 0aso.getCount = 0aso.getCount = 0aso.getCount = 0

function onGet()function onGet()function onGet()function onGet()
  self.getCount = self.getCount + 1  self.getCount = self.getCount + 1  self.getCount = self.getCount + 1  self.getCount = self.getCount + 1
  return {self.value, self.getCount}  return {self.value, self.getCount}  return {self.value, self.getCount}  return {self.value, self.getCount}
endendendend
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ASO Extension API

Intercept  Intercept  Intercept  Intercept  
accessesaccessesaccessesaccesses

Periodic Periodic Periodic Periodic 
TasksTasksTasksTasks

Host Host Host Host 
InteractionInteractionInteractionInteraction

DHT DHT DHT DHT 
 Interaction Interaction Interaction Interaction

onPutonPutonPutonPut(caller) onTimeronTimeronTimeronTimer() getSystemTimegetSystemTimegetSystemTimegetSystemTime() getgetgetget(key, nodes)
onGetonGetonGetonGet(caller) getNodeIPgetNodeIPgetNodeIPgetNodeIP() putputputput(key, data, nodes)
onUpdateonUpdateonUpdateonUpdate(caller) getNodeIDgetNodeIDgetNodeIDgetNodeID() lookuplookuplookuplookup(key)

getASOKeygetASOKeygetASOKeygetASOKey()
deleteSelfdeleteSelfdeleteSelfdeleteSelf()

• Both local and remote recourses are restricted
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Local Restriction
• Runtime library

– Only math packet, string manipulation, and table 
manipulation.

• CPU
– 100K bytecode instructions per handler invocation

• memory
– 100KB per ASO
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Remote Restriction

• ASO can only interact specific nodes
– neighbors responsible for its replication
– remote node, once per previous interaction

• ASO can only communication with specific ASOs
– ASOs under the same key

• Message generating rate is limited
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Outline

• Background

• Motivation

• Design

• Application
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Application

• Three example
– Application-specific DHT customization

– Proximity-based distributed tracker

– Self-monitoring DHT
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Application-Specific DHT 

• Example: customize the replication scheme

function aso:selectReplicas(neighbors)function aso:selectReplicas(neighbors)function aso:selectReplicas(neighbors)function aso:selectReplicas(neighbors)
  [...]  [...]  [...]  [...]
endendendend

function aso:onTimer()function aso:onTimer()function aso:onTimer()function aso:onTimer()
  neighbors = comet.lookup()  neighbors = comet.lookup()  neighbors = comet.lookup()  neighbors = comet.lookup()
  replicas = self.selectReplicas(neighbors)  replicas = self.selectReplicas(neighbors)  replicas = self.selectReplicas(neighbors)  replicas = self.selectReplicas(neighbors)
  comet.put(self, replicas)  comet.put(self, replicas)  comet.put(self, replicas)  comet.put(self, replicas)
endendendend
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Distributed Tracker 
• Traditional distributed trackers return a randomized  

subset of the nodes

• Comet: a proximity-based distributed tracker 
– Peers putputputput their IPs and Vivaldi coordinates at 
torrentIDtorrentIDtorrentIDtorrentID

– On getgetgetget, the ASO computes and returns the set of          
closest peers to the requestor
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distributed tracker 

Comet tracker 

Random tracker
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Self-Monitoring DHT
• Example: monitor a remote node’s neighbors

– PutPutPutPut a monitoring ASO that “pings” its neighbors 
periodically

• Useful for internal measurements of DHTs
– Provides additional visibility over external measurement 

(e.g., NAT/firewall traversal)

aso.neighbors = {}aso.neighbors = {}aso.neighbors = {}aso.neighbors = {}

function aso:onTimer()function aso:onTimer()function aso:onTimer()function aso:onTimer()
  neighbors = comet.lookup()  neighbors = comet.lookup()  neighbors = comet.lookup()  neighbors = comet.lookup()
  self.neighbors[comet.systemTime()] = neighbors  self.neighbors[comet.systemTime()] = neighbors  self.neighbors[comet.systemTime()] = neighbors  self.neighbors[comet.systemTime()] = neighbors
endendendend
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Self-Monitoring DHT

Vuze Node Lifetime (hours)
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Discusion

1. Is Comet safe enough? Can you come up with an 
idea to bring it down?

2. Do you agree with the point that Comet trades too 
much performance for security? Why?

3. If you are service provider of one DHT, would you 
like to embed Comet into your network? Why?

4. Can you come up with some practical applications 
that can benefits from Comet?
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