

Background

• Distributed Key/Value stores provide a simple put/get

interface

• Great properties: scalability, availability, reliability

• Increasingly popular both within data centers

Dynamo

Cassandra

Voldemort

 2

Dynamo: Amazon's Highly Available
Key-value Store

Giuseppe DeCandia etc.

Presented by:
Tony Huang

 3

Motivation

 Highly scalable and reliable.
 Tight control over the trade-offs between

availability, consistency, cost-effectiveness and
performance.

 Flexible enough to let designer to make trade-
offs.

 Simple primary-key access to data store.
 Best seller list, shopping carts, customer

preference, session management, sale rank, etc.

 4

Assumptions and Design
Consideration

 Query Model

 Simple read and write operations to a data item that is uniquely identified by a key.

 Small objects, ~1MB.

 ACID (Atomicity, Consistency, Isolation, Durability)

 Trade consistency for availability.

 Does not provide any isolation guarantees.

 Efficiency

 Stringent SLA requirement.

 Assumed non-hostile environment.

 No authentication or authorization.

 Conflict resolution is executed during read instead of write.

 Always writable.

 Performed either by data store or application

 5

Amazon's Platform Architecture

 6

Techniques

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with
reconciliation during reads

Version size is decoupled
from update rates.

Handling temporary failures Sloppy Quorum and hinted
handoff

Provides high availability
and durability guarantee

when some of the replicas
are not available.

Recovering from permanent
failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas in the background.

Membership and failure
detection

Gossip-based membership
protocol and failure

detection.

Preserves symmetry and
avoids having a centralized

registry for storing
membership and node
liveness information.

 7

Partitioning

 Consistent hashing: the output
range of a hash function is treated as a
fixed circular space or “ring”.

 ”Virtual Nodes”: Each node can be
responsible for more than one virtual
node.

 Node fails: load evenly dispersed
across the rest.

 Node joins: its virtual nodes accept
a roughly equivalent amount of
load from the rest.

 Heterogeneity.

 8

Load Distribution

 Strategy 1: T random tokens per node and and
partition by token value.
 Ranges vary in size and frequently change.
 Long bootstrapping.
 Difficult to take a snapshot.

 9

Load Distribution

 Strategy 2: T random tokens per node, partition by token value.

 Turn out to be the worst, why?
 Strategy 3: Q/S tokens per node, equal-sized partitions.

 Best load balancing configuration.
 Drawback: Changing node membership requires coordination.

 10

Replication

 Each data item is
replicated at N hosts.

 “preference list”: The list
of nodes that is
responsible for storing a
particular key.

 Improvement: The
preference list contains
only distinct physical
nodes.

 11

Data Versioning

 A vector clock is a list of
(node, counter) pairs.

 Every version of every
object is associated
with one vector clock.

 Client perform
reconciliation when
system can not.

 12

Quorum for Consistency

 R: min num of nodes in a successful read.
 W: min num of nodes in a successful write.
 N: Num of machines in System.
 Different combination of R and W results in

systems for different purpose.

 13

Quorum for Consistency

Consistenc
y
Insurance

Writ
e

Read

Consistenc
y
Insurance

ReadWrite

 Always writable,
but high risk on
inconsistency.

Write: 1
Read: ?

 Read Engine
Write: 3
Read: 1

Writ
e

Read

Consistenc
y
Insurance

 Normally
Write: 2
Read: 2

 14

Hinted Handoff

 Assume N = 3. When A is
temporarily down or
unreachable during a
write, send replica to D.

 D is hinted that the
replica is belong to A and
it will deliver to A when A
is recovered.

 What if A never
recovered?

 What if D fails before
A recovers?

 15

Replica Synchronization

 Merkle trees:
 Hash tree.
 Leaves are hashes of individual

keys.
 Parent nodes are hashes of their

children.

 Reduce amount of data required
while checking for consistency.

 16

Membership and Failure Detection

 Manually signal membership change.
 Gossip-based protocol propagates membership

changes.
 Some Dynamo nodes as seed nodes for

external discovery.
 Potential single point of failure?

 Local detection of neighbor failure
 Gossip style protocol to propagate failure

information.

 17

Discussion

 What applications are suitable Dynamo
(shopping cart, what else?)

 What applications are NOT suitable for
Dynamo.

 How can you adapt Dynamo to store large
data?

 How can you make Dynamo secure?

1

Comet: An Active Comet: An Active Comet: An Active Comet: An Active
Distributed Key-Value StoreDistributed Key-Value StoreDistributed Key-Value StoreDistributed Key-Value Store

Roxana Geambasu, Amit Levy, Yoshi Kohno,
Arvind Krishnamurthy, and Hank Levy

OSDI'10OSDI'10OSDI'10OSDI'10

Presented by Shen Li

2

Outline

• Background

• Motivation

• Design

• Application

3

Background

• Distributed Key/Value stores provide a simple putputputput////getgetgetget

interface

• Great properties: scalability, availability, reliability

• Widely used in P2P systems and is becoming increasingly

popular in data centers

DynamoDynamoDynamoDynamo

CassandraCassandraCassandraCassandra

VoldemortVoldemortVoldemortVoldemort

4

Background

• Many applications may share the same key/value

storage system.

amazon S3amazon S3amazon S3amazon S3

5

Outline

• Background

• Motivation

• Design

• Application

6

Motivation

• Increasingly, key/value stores are shared by many
apps
– Avoids per-app storage system deployment

• Applications have different (even conflicting) needs:
– Availability, security, performance, functionality

• But today’s key/value stores are one-size-fits-all

7

Motivating Example
• Vanish is a self-destructing data system above Vuze

• Vuze problems for Vanish:
– Fixed 8-hour data timeout
– Overly aggressive replication, which hurts security

• Changes were simple, but deploying them was
difficult:
– Need Vuze engineer
– Long deployment cycle
– Hard to evaluate before

deployment

Vuze Vanis
h

Vuze DHT

Vuze Vanis
h

Vuze DHT

Vuze Vanis
h

Vuze DHT

Vuze Vanis
h

Vuze DHT

Futur
e app

Vuze Vuze Vuze Vuze
AppAppAppApp VanishVanishVanishVanish Future Future Future Future

appappappapp

Vuze DHT

Vanish: Enhancing the Privacy of the Web with Self-Destructing DataVanish: Enhancing the Privacy of the Web with Self-Destructing DataVanish: Enhancing the Privacy of the Web with Self-Destructing DataVanish: Enhancing the Privacy of the Web with Self-Destructing Data . USENIX Security . USENIX Security . USENIX Security . USENIX Security ‘‘‘‘09090909

8

Solution
• Build Extensible Key/Value Stores
• Allow apps to customize store’s functions

– Different data lifetimes
– Different numbers of replicas
– Different replication intervals

• Allow apps to define new functions
– Tracking popularity: data item counts the number of

reads
– Access logging: data item logs readers’ IPs
– Adapting to context: data item returns different values to

different requestors

9

Solution
• It should also be simple!

– Allow apps to inject tiny code fragments (10s of lines of
code)

– Adding even a tiny amount of programmability into
key/value stores can be extremely powerful

10

Outline

• Background

• Motivation

• Design

• Application

11

Design
• DHT that supports application-specific customizations

• Applications store active objects instead of passive
values
– Active objects contain
 small code snippets that
 control their behavior in
 the DHT

App 1 App 2 App 3

CometCometCometComet

Active object Comet node

12

Active Storage Objects

• The ASO consists of data and code
– The data is the value
– The code is a set of handlers and user defined functions

App 1 App 2 App 3

CometCometCometComet

ASO

data
code

function onGet()function onGet()function onGet()function onGet()
 [[[[…………]]]]
endendendend

13

ASO Example
• Each replica keeps track of number of gets on an

object.

ASO
data
code

aso.value = aso.value = aso.value = aso.value = ““““Hello world!Hello world!Hello world!Hello world!””””
aso.getCount = 0aso.getCount = 0aso.getCount = 0aso.getCount = 0

function onGet()function onGet()function onGet()function onGet()
 self.getCount = self.getCount + 1 self.getCount = self.getCount + 1 self.getCount = self.getCount + 1 self.getCount = self.getCount + 1
 return {self.value, self.getCount} return {self.value, self.getCount} return {self.value, self.getCount} return {self.value, self.getCount}
endendendend

14

15

ASO Extension API

Intercept Intercept Intercept Intercept
accessesaccessesaccessesaccesses

Periodic Periodic Periodic Periodic
TasksTasksTasksTasks

Host Host Host Host
InteractionInteractionInteractionInteraction

DHT DHT DHT DHT
 Interaction Interaction Interaction Interaction

onPutonPutonPutonPut(caller) onTimeronTimeronTimeronTimer() getSystemTimegetSystemTimegetSystemTimegetSystemTime() getgetgetget(key, nodes)
onGetonGetonGetonGet(caller) getNodeIPgetNodeIPgetNodeIPgetNodeIP() putputputput(key, data, nodes)
onUpdateonUpdateonUpdateonUpdate(caller) getNodeIDgetNodeIDgetNodeIDgetNodeID() lookuplookuplookuplookup(key)

getASOKeygetASOKeygetASOKeygetASOKey()
deleteSelfdeleteSelfdeleteSelfdeleteSelf()

• Both local and remote recourses are restricted

16

Local Restriction
• Runtime library

– Only math packet, string manipulation, and table
manipulation.

• CPU
– 100K bytecode instructions per handler invocation

• memory
– 100KB per ASO

17

Remote Restriction

• ASO can only interact specific nodes
– neighbors responsible for its replication
– remote node, once per previous interaction

• ASO can only communication with specific ASOs
– ASOs under the same key

• Message generating rate is limited

18

Outline

• Background

• Motivation

• Design

• Application

19

Application

• Three example
– Application-specific DHT customization

– Proximity-based distributed tracker

– Self-monitoring DHT

20

Application-Specific DHT

• Example: customize the replication scheme

function aso:selectReplicas(neighbors)function aso:selectReplicas(neighbors)function aso:selectReplicas(neighbors)function aso:selectReplicas(neighbors)
 [...] [...] [...] [...]
endendendend

function aso:onTimer()function aso:onTimer()function aso:onTimer()function aso:onTimer()
 neighbors = comet.lookup() neighbors = comet.lookup() neighbors = comet.lookup() neighbors = comet.lookup()
 replicas = self.selectReplicas(neighbors) replicas = self.selectReplicas(neighbors) replicas = self.selectReplicas(neighbors) replicas = self.selectReplicas(neighbors)
 comet.put(self, replicas) comet.put(self, replicas) comet.put(self, replicas) comet.put(self, replicas)
endendendend

21

Distributed Tracker
• Traditional distributed trackers return a randomized

subset of the nodes

• Comet: a proximity-based distributed tracker
– Peers putputputput their IPs and Vivaldi coordinates at
torrentIDtorrentIDtorrentIDtorrentID

– On getgetgetget, the ASO computes and returns the set of
closest peers to the requestor

22

distributed tracker

Comet tracker

Random tracker

23

Self-Monitoring DHT
• Example: monitor a remote node’s neighbors

– PutPutPutPut a monitoring ASO that “pings” its neighbors
periodically

• Useful for internal measurements of DHTs
– Provides additional visibility over external measurement

(e.g., NAT/firewall traversal)

aso.neighbors = {}aso.neighbors = {}aso.neighbors = {}aso.neighbors = {}

function aso:onTimer()function aso:onTimer()function aso:onTimer()function aso:onTimer()
 neighbors = comet.lookup() neighbors = comet.lookup() neighbors = comet.lookup() neighbors = comet.lookup()
 self.neighbors[comet.systemTime()] = neighbors self.neighbors[comet.systemTime()] = neighbors self.neighbors[comet.systemTime()] = neighbors self.neighbors[comet.systemTime()] = neighbors
endendendend

24

Self-Monitoring DHT

Vuze Node Lifetime (hours)

25

Discusion

1. Is Comet safe enough? Can you come up with an
idea to bring it down?

2. Do you agree with the point that Comet trades too
much performance for security? Why?

3. If you are service provider of one DHT, would you
like to embed Comet into your network? Why?

4. Can you come up with some practical applications
that can benefits from Comet?

	Amazon Dynamo
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

	Comet1

