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MOTIVATION

 Research problem: How to write distributed 
data-parallel programs for a compute cluster?

 Drawback of Parallel Databases (SQL): Too 
limited for many applications.

 Very restrictive type system

 The declarative query is unnatural.

 Drawback of Map Reduce: Too low-level and 
rigid, and leads to a great deal of custom user 
code that is hard to maintain, and reuse.
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PIG LATIN:
A Not-So-Foreign Language 
for Data Processing
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DATAFLOW LANGUAGE

 User specifies a sequence of steps where each 
step specifies only a single, high level data 
transformation.  Similar to relational algebra and 
procedural – desirable for programmers.

 With SQL, the user specifies a set of declarative 
constraints.  Non-procedural and desirable for 
non-programmers.
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AN SAMPLE CODE OF PIG LATIN

6

SELECT category, AVG(pagerank)

FROM urls WHERE pagerank > 0.2

GROUP BY category HAVING COUNT(*) > 10^6

good_urls = FILTER urls BY pagerank > 0.2;

groups = GROUP good_urls BY category;

big_groups = FILTER groups BY 
COUNT(good_urls)>10^6;

output = FOREACH big_groups GENERATE 
category, AVG(good_urls.pagerank);

SQL Pig Latin

Pig Latin program
is a sequence of steps, 
each of which carries out a 
single data transformation.



DATA MODEL

 Atom:  Contains a simple atomic value such as a 
string or a number, e.g., ‘Joe’.

 Tuple:  Sequence of fields, each of which might be any 
data type, e.g., (‘Joe’, ‘lakers’)

 Bag:  A collection of tuples with possible duplicates.  
Schema of a bag is flexible.

 Map:  A collection of data items, where each item has 
an associated key through which it can be looked up.  
Keys must be data atoms.  
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A COMPARISON WITH RELATIONAL ALGEBRA
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 Everything is a bag.

 Dataflow language.

 FILTER is same as 
the Select operator.

 Everything is a table.

 Dataflow language.

 Select operator is same 
as the FILTER cmd.

Pig  Latin Relational Algebra

Pig Latin has only included a small set of carefully 
chosen primitives that can be easily parallelized.



SPECIFYING INPUT DATA: LOAD

queries = LOAD `query_log.txt'

USING myLoad()

AS (userId, queryString, timestamp);

 The input file is “query_log.txt”.

 The input file should be converted into tuples by 
using the custom myLoad deserializer.

 The loaded tuples have three fields named userId, 
queryString, and timestamp.

9Note that the LOAD command does not imply 
database-style loading into tables. It’s only logical.



PER-TUPLE PROCESSING: FOREACH

Expanded_queries = FOREACH queries 
GENERATE userId, expandQuery(queryString);

 expandQuery is a User Defined Function.

 Nesting can be eliminated by the use of the 
FLATTEN keyword in the GENERATE clause.

 userId, FLETTEN(expandQuery(queryString));
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DISCARDING UNWANTED DATA: FILTER

real_queries = FILTER queries BY userId neq `bot';

real_queries = FILTER queries BY NOT isBot(userId);

 Again, isBot is a User Defined Function

 Operations might be ==, eq, !=, neq, <, >, <=, >=

 A comparison operation may utilize Boolean 
operators (AND, OR, NOT) with several expressions
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GETTING RELATED DATA TOGETHER: COGROUP

grouped_data = COGROUP results BY queryString,

revenue BY queryString;

 group together tuples from one or more data sets, that 
are related in some way, so that they can subsequently 
be processed together.

 In general, the output of a COGROUP contains one 
tuple for each group.

 The first field of the tuple (named group) is the group 
identifier. Each of the next fields is a bag, one for each 
input being cogrouped. 12



MORE ABOUT COGROUP
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COGROUP + FLATTEN = JOIN



EXAMPLE: MAP-REDUCE IN PIG LATIN

map_result = FOREACH input GENERATE 
FLATTEN(map(*));

key_groups = GROUP map_result BY $0;

output = FOREACH key_groups GENERATE reduce(*);

 A map function operates on one input tuple at a time, 
and outputs a bag of key-value pairs.

 The reduce function operates on all values for a key 
at a time to produce the final results.
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IMPLEMENTATION

 Building a logical plan:

 Pig builds a logical plan for every bag that the user 
defines.

 No processing is carried out when the logical plans are 
constructed. Processing is triggered only when the user 
invokes a STORE command on a bag.

 Compilation of the logical plan into a physical plan.
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MAP-REDUCE PLAN COMPILATION

 The map-reduce primitive essentially provides 
the ability to do a large-scale group by, where the 
map tasks assign keys for grouping, and the 
reduce tasks process a group at a time.

 Converting each (CO)GROUP command in the 
logical plan into a distinct map-reduce job with 
its own map and reduce functions.
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OTHER FEATURES

 Fully nested data model.

 Extensive support for user-defined functions.

 Manages plain input files without any schema 
information.

 A novel debugging environment.
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DISCUSSION: 
PIG LATIN MEETS MAP-REDUCE

 Is it necessary to run Pig Latin on Map-Reduce 
platform?

 Is Map-Reduce a perfect platform for Pig Latin? 
Any drawbacks? 

 Data must be materialized and replicated on the 
distributed file system between successive map-
reduce jobs.

 Not flexible enough.

 Well, it does work fine. parallelism, load-
balancing, and fault-tolerance……
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DRYADLINQ
A SYSTEM FOR GENERAL-PURPOSE

DISTRIBUTED DATA-PARALLEL

COMPUTING
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DRYAD EXECUTION PLATFORM

 Job execution plan is a dataflow 
graph.

 A Dryad application combines 
computational “vertices” with 
communication “channels” to form 
a dataflow graph.
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MAP-REDUCE IN DRYADLINQ
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IMPLEMENTATION - OPTIMIZATIONS

 Static Optimizations
 Pipelining: Multiple operators may be executed in a single 

process.

 Removing redundancy: DryadLINQ removes unnecessary 
partitioning steps.

 Eager Aggregation: Aggregations are moved in front of 
partitioning operators where possible.

 I/O reduction: Where possible, uses TCP-pipe and in-memory 
FIFO channels instead of persisting temporary data to files.

 Dynamic Optimizations
 Dynamically sets the number of vertices in each stage at run 

time based on the size of its input data.

 Dynamically mutate the execution graph as information from 
the running job becomes available. 22



MAP-REDUCE IN DRYADLINQ
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Step (1) is static, (2) and (3) are 
dynamic based on the volume and 
location of the data in the inputs.
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We optimized the 
flow of processing...

Now what?

Make it update faster!
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Incremental 
Processing• Instead of processing the entire dataset, 

only process what needs to be updated

• Requires random read/write access to 
data

• Suitable for data that is independent 
(data pieces do not depend on other 
data pieces) or only marginally 
dependent

• Reduces seeking time, processing 
overhead, insertion/update costs



4

Google Percolator
• Introduced at OSDI ’10

• Core tech behind Google Caffeine 
search platform - driving app: Google’s 
indexer

• Allows random access and incremental 
updates to petabyte-scale data sets

• Dramatically reduces cost of updates, 
allowing for “fresher” search results
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Previous Google 
System• Same number of 

documents (billions 
per day)

• 100 MapReduces to 
compile web index 
for these documents

• Each document 
spent 2-3 days being 
indexed
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How It Works

observer

Bigtable Bigtable 
TabletserverTabletserver

ChunkserverChunkserver

database

App with App with 
Percolator Percolator 

LibraryLibrary

documents

All communication handled via RPCs
Single lines of code in observer

Google indexing system uses ~10 observers
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Transactions

• Observer-Bigtable communication is 
handled as an ACID transaction

• Observer nodes themselves handle 
deadlock resolution

• Simple lock cleanup synchronization

• All writes are increasingly timestamped 
via coordinated timestamp oracle
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Fault Tolerance

Result of dropping 33% of tablet servers in use
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Pushing Updates

• Percolator clients open a write-only 
connection with Bigtable

• Obtain write lock for specific table 
location

• If locked, determine if lock is from a 
previously failed transaction

• Overhead:
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Notifying the 
Observers

• Handled separately from writes (data 
connections are unidirectional)

• Otherwise similar to database triggers

• Multiple Bigtable changes may produce 
only one notification
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Notifying the 
Observers

BigtableBigtable

observed 
column is 

changed one 
or more times

NOTIFYNOTIFY ObserverObserver

new update 
transaction

observer 
receives most 
recent column 

data
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Keeping Clean

ObserverObserver

Key Value Notify

SearchSearch
ThreadThread

SearchSearch
ThreadThread

SearchSearch
ThreadThread

Percolator 
workers spawn 
threads which 

search 
randomly, report 
changed cells to 

observer

(sequential search)

(transactions)
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Benefits!
• Closer to DBMS performance

• “Only” 30x processing overhead 
against comparison DBMS (TPC-E, a 
stock market trading backend)

• Fresher data pushed for lower costs

• 100x faster document movement

• 1000x faster document processing

• Data set is also 3x larger than 
previous!

• Fixes stragglers - everything updates
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Discussion

• Transactions introduce read/write 
overhead relative to Bigtable size -
when does scaling break down?

• Not suitable for updating heavily 
dependent or rapidly mutating data sets 
- how do you adapt for these?

• In lightly dependent data sets, causally 
linked children may report updates 
before their parents - implications?


