CLOUD PROGRAMMING

Andrew Harris & Long Kai

MOTIVATION

- **Research problem**: How to write distributed data-parallel programs for a compute cluster?
- Drawback of Parallel Databases (SQL): Too limited for many applications.
 - Very restrictive type system
 - The declarative query is unnatural.
- Drawback of Map Reduce: Too low-level and rigid, and leads to a great deal of custom user code that is hard to maintain, and reuse.

LAYERS

PIG LATIN:

A Not-So-Foreign Language for Data Processing

DATAFLOW LANGUAGE

- User specifies a sequence of steps where each step specifies only a single, high level data transformation. Similar to relational algebra and procedural desirable for programmers.
- With SQL, the user specifies a set of declarative constraints. Non-procedural and desirable for non-programmers.

AN SAMPLE CODE OF PIG LATIN

SQL

Pig Latin

SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 10^6

Pig Latin program is a sequence of steps, each of which carries out a single data transformation. good_urls = FILTER urls BY pagerank > 0.2; groups = GROUP good_urls BY category; big_groups = FILTER groups BY COUNT(good_urls)>10^6; output = FOREACH big_groups GENERATE category, AVG(good_urls.pagerank);

DATA MODEL

- Atom: Contains a simple atomic value such as a string or a number, e.g., 'Joe'.
- Tuple: Sequence of fields, each of which might be any data type, e.g., ('Joe', 'lakers')
- Bag: A collection of tuples with possible duplicates. Schema of a bag is flexible. { ('alice', 'lakers') } ('alice', ('iPod', 'apple')) }
- Map: A collection of data items, where each item has an associated key through which it can be looked up. Keys must be data atoms.

$$\left[\begin{array}{c} \texttt{'fan of'} \rightarrow \left\{\begin{array}{c} \texttt{('lakers')} \\ \texttt{('iPod')} \end{array}\right\} \\ \texttt{'age'} \rightarrow 20 \end{array}\right]_{7}$$

A COMPARISON WITH RELATIONAL ALGEBRA

Pig Latin

- Everything is a bag.
- Dataflow language.
- FILTER is same as the Select operator.

Relational Algebra

- Everything is a table.
- Dataflow language.
- Select operator is same as the FILTER cmd.

Pig Latin has only included a small set of carefully chosen primitives that can be easily **parallelized**.

SPECIFYING INPUT DATA: LOAD

queries = LOAD `query_log.txt'
 USING myLoad()
 AS (userId, queryString, timestamp);

- The input file is "query_log.txt".
- The input file should be converted into tuples by using the custom myLoad deserializer.
- The loaded tuples have three fields named userId, queryString, and timestamp.

Note that the LOAD command does not imply database-style loading into tables. It's only logical.

PER-TUPLE PROCESSING: FOREACH

Expanded_queries = FOREACH queries GENERATE userId, expandQuery(queryString);

- expandQuery is a User Defined Function.
- Nesting can be eliminated by the use of the FLATTEN keyword in the GENERATE clause.
 - userId, FLETTEN(expandQuery(queryString));

DISCARDING UNWANTED DATA: FILTER

real_queries = FILTER queries BY userId neq `bot';

real_queries = FILTER queries BY NOT isBot(userId);

- Again, isBot is a User Defined Function
- Operations might be ==, eq, !=, neq, <, >, <=, >=
- A comparison operation may utilize Boolean operators (AND, OR, NOT) with several expressions

GETTING RELATED DATA TOGETHER: COGROUP

grouped_data = COGROUP results BY queryString, revenue BY queryString;

- group together tuples from one or more data sets, that are related in some way, so that they can subsequently be processed together.
- In general, the output of a COGROUP contains one tuple for each group.
- The first field of the tuple (named group) is the group identifier. Each of the next fields is a bag, one for each input being cogrouped.

MORE ABOUT COGROUP

COGROUP + FLATTEN = JOIN

Example: Map-Reduce in Pig Latin

map_result = FOREACH input GENERATE
FLATTEN(map(*));

key_groups = GROUP map_result BY \$0;
output = FOREACH key_groups GENERATE reduce(*);

- A map function operates on one input tuple at a time, and outputs a bag of key-value pairs.
- The reduce function operates on all values for a key at a time to produce the final results.

IMPLEMENTATION

- Building a *logical plan*:
 - Pig builds a logical plan for every bag that the user defines.
 - No processing is carried out when the logical plans are constructed. Processing is triggered only when the user invokes a STORE command on a bag.
- Compilation of the logical plan into a *physical plan*.

MAP-REDUCE PLAN COMPILATION

- The map-reduce primitive essentially provides the ability to do a large-scale group by, where the map tasks assign keys for grouping, and the reduce tasks process a group at a time.
- Converting each (CO)GROUP command in the logical plan into a distinct map-reduce job with its own map and reduce functions.

OTHER FEATURES

- Fully nested data model.
- Extensive support for user-defined functions.
- Manages plain input files without any schema information.
- A novel debugging environment.

DISCUSSION: PIG LATIN MEETS MAP-REDUCE

- Is it necessary to run Pig Latin on Map-Reduce platform?
- Is Map-Reduce a perfect platform for Pig Latin? Any drawbacks?
 - Data must be materialized and replicated on the distributed file system between successive mapreduce jobs.
 - Not flexible enough.
- Well, it does work fine. parallelism, load-balancing, and fault-tolerance.....

DRYADLINQ A SYSTEM FOR GENERAL-PURPOSE DISTRIBUTED DATA-PARALLEL COMPUTING

19

DRYAD EXECUTION PLATFORM

- Job execution plan is a dataflow graph.
- A Dryad application combines computational "vertices" with communication "channels" to form a dataflow graph.

MAP-REDUCE IN DRYADLINQ

IMPLEMENTATION - OPTIMIZATIONS

Static Optimizations

- **Pipelining**: Multiple operators may be executed in a single process.
- Removing redundancy: DryadLINQ removes unnecessary partitioning steps.
- **Eager Aggregation**: Aggregations are moved in front of partitioning operators where possible.
- I/O reduction: Where possible, uses TCP-pipe and in-memory FIFO channels instead of persisting temporary data to files.

Dynamic Optimizations

- Dynamically sets the number of vertices in each stage at run time based on the size of its input data.
- Dynamically mutate the execution graph as information from the running job becomes available.

MAP-REDUCE IN DRYADLINQ

Incremental Processing with Percolator

Long Kai and Andrew Harris

We optimized the flow of processing... Now what?

Make it update faster!

Incremental

- Processing
 Instead of processing the entire dataset,
 only process what needs to be updated
- Requires random read/write access to data
- Suitable for data that is independent (data pieces do not depend on other data pieces) or only marginally dependent
- Reduces seeking time, processing overhead, insertion/update costs

Google Percolator

- Introduced at OSDI '10
- Core tech behind Google Caffeine search platform - driving app: Google's indexer
- Allows random access and incremental updates to petabyte-scale data sets
- Dramatically reduces cost of updates, allowing for "fresher" search results

Previous Google System

- Same number of documents (billions per day)
- 100 MapReduces to compile web index for these documents
- Each document spent 2-3 days being indexed

How It Works

All communication handled via RPCs
Single lines of code in observer
Google indexing system uses ~10 observers

Transactions

- Observer-Bigtable communication is handled as an ACID transaction
- Observer nodes themselves handle deadlock resolution
- Simple lock cleanup synchronization
- All writes are increasingly timestamped via coordinated timestamp oracle

Fault Tolerance

Result of dropping 33% of tablet servers in use

Pushing Updates

- Percolator clients open a write-only connection with Bigtable
- Obtain write lock for specific table location
 - If locked, determine if lock is from a previously failed transaction
- Overhead:

	Bigtable	Percolator	Relative
Read/s	15513	14590	0.94
Write/s	31003	7232	0.23

Figure 8: The overhead of Percolator operations relative to Bigtable. Write overhead is due to additional operations Percolator needs to check for conflicts.

Notifying the Observers

- Handled separately from writes (data connections are unidirectional)
- Otherwise similar to database triggers
- Multiple Bigtable changes may produce only one notification

Notifying the Observers

Bigtable

observed column is changed one or more times

NOTIFY

new update transaction

Observer

observer receives most recent column data

Keeping Clean

Benefits!

- Closer to DBMS performance
 - "Only" 30x processing overhead against comparison DBMS (TPC-E, a stock market trading backend)
- Fresher data pushed for lower costs
 - 100x faster document movement
 - 1000x faster document processing
 - Data set is also 3x larger than previous!
 - Fixes stragglers₁₃- everything updates

Discussion

- Transactions introduce read/write overhead relative to Bigtable size when does scaling break down?
- Not suitable for updating heavily dependent or rapidly mutating data sets
 - how do you adapt for these?
- In lightly dependent data sets, causally linked children may report updates before their parents - implications?