
CLOUD PROGRAMMING

Andrew Harris & Long Kai

1

MOTIVATION

 Research problem: How to write distributed
data-parallel programs for a compute cluster?

 Drawback of Parallel Databases (SQL): Too
limited for many applications.

 Very restrictive type system

 The declarative query is unnatural.

 Drawback of Map Reduce: Too low-level and
rigid, and leads to a great deal of custom user
code that is hard to maintain, and reuse.

2

Image
Processing

LAYERS

3

Server

Cluster Services

Hadoop Map-Reduce / Dryad

Pig Latin / DryadLINQ

Server Server Server

Other Languages

Machine
Learning

Graph
Analysis

Data
Mining

Applications

…
Other

Applications

PIG LATIN:
A Not-So-Foreign Language
for Data Processing

4

DATAFLOW LANGUAGE

 User specifies a sequence of steps where each
step specifies only a single, high level data
transformation. Similar to relational algebra and
procedural – desirable for programmers.

 With SQL, the user specifies a set of declarative
constraints. Non-procedural and desirable for
non-programmers.

5

AN SAMPLE CODE OF PIG LATIN

6

SELECT category, AVG(pagerank)

FROM urls WHERE pagerank > 0.2

GROUP BY category HAVING COUNT(*) > 10^6

good_urls = FILTER urls BY pagerank > 0.2;

groups = GROUP good_urls BY category;

big_groups = FILTER groups BY
COUNT(good_urls)>10^6;

output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank);

SQL Pig Latin

Pig Latin program
is a sequence of steps,
each of which carries out a
single data transformation.

DATA MODEL

 Atom: Contains a simple atomic value such as a
string or a number, e.g., ‘Joe’.

 Tuple: Sequence of fields, each of which might be any
data type, e.g., (‘Joe’, ‘lakers’)

 Bag: A collection of tuples with possible duplicates.
Schema of a bag is flexible.

 Map: A collection of data items, where each item has
an associated key through which it can be looked up.
Keys must be data atoms.

7

A COMPARISON WITH RELATIONAL ALGEBRA

8

 Everything is a bag.

 Dataflow language.

 FILTER is same as
the Select operator.

 Everything is a table.

 Dataflow language.

 Select operator is same
as the FILTER cmd.

Pig Latin Relational Algebra

Pig Latin has only included a small set of carefully
chosen primitives that can be easily parallelized.

SPECIFYING INPUT DATA: LOAD

queries = LOAD `query_log.txt'

USING myLoad()

AS (userId, queryString, timestamp);

 The input file is “query_log.txt”.

 The input file should be converted into tuples by
using the custom myLoad deserializer.

 The loaded tuples have three fields named userId,
queryString, and timestamp.

9Note that the LOAD command does not imply
database-style loading into tables. It’s only logical.

PER-TUPLE PROCESSING: FOREACH

Expanded_queries = FOREACH queries
GENERATE userId, expandQuery(queryString);

 expandQuery is a User Defined Function.

 Nesting can be eliminated by the use of the
FLATTEN keyword in the GENERATE clause.

 userId, FLETTEN(expandQuery(queryString));

10

DISCARDING UNWANTED DATA: FILTER

real_queries = FILTER queries BY userId neq `bot';

real_queries = FILTER queries BY NOT isBot(userId);

 Again, isBot is a User Defined Function

 Operations might be ==, eq, !=, neq, <, >, <=, >=

 A comparison operation may utilize Boolean
operators (AND, OR, NOT) with several expressions

11

GETTING RELATED DATA TOGETHER: COGROUP

grouped_data = COGROUP results BY queryString,

revenue BY queryString;

 group together tuples from one or more data sets, that
are related in some way, so that they can subsequently
be processed together.

 In general, the output of a COGROUP contains one
tuple for each group.

 The first field of the tuple (named group) is the group
identifier. Each of the next fields is a bag, one for each
input being cogrouped. 12

MORE ABOUT COGROUP

13

COGROUP + FLATTEN = JOIN

EXAMPLE: MAP-REDUCE IN PIG LATIN

map_result = FOREACH input GENERATE
FLATTEN(map(*));

key_groups = GROUP map_result BY $0;

output = FOREACH key_groups GENERATE reduce(*);

 A map function operates on one input tuple at a time,
and outputs a bag of key-value pairs.

 The reduce function operates on all values for a key
at a time to produce the final results.

14

IMPLEMENTATION

 Building a logical plan:

 Pig builds a logical plan for every bag that the user
defines.

 No processing is carried out when the logical plans are
constructed. Processing is triggered only when the user
invokes a STORE command on a bag.

 Compilation of the logical plan into a physical plan.

15

MAP-REDUCE PLAN COMPILATION

 The map-reduce primitive essentially provides
the ability to do a large-scale group by, where the
map tasks assign keys for grouping, and the
reduce tasks process a group at a time.

 Converting each (CO)GROUP command in the
logical plan into a distinct map-reduce job with
its own map and reduce functions.

16

OTHER FEATURES

 Fully nested data model.

 Extensive support for user-defined functions.

 Manages plain input files without any schema
information.

 A novel debugging environment.

17

DISCUSSION:
PIG LATIN MEETS MAP-REDUCE

 Is it necessary to run Pig Latin on Map-Reduce
platform?

 Is Map-Reduce a perfect platform for Pig Latin?
Any drawbacks?

 Data must be materialized and replicated on the
distributed file system between successive map-
reduce jobs.

 Not flexible enough.

 Well, it does work fine. parallelism, load-
balancing, and fault-tolerance……

18

DRYADLINQ
A SYSTEM FOR GENERAL-PURPOSE

DISTRIBUTED DATA-PARALLEL

COMPUTING

19

DRYAD EXECUTION PLATFORM

 Job execution plan is a dataflow
graph.

 A Dryad application combines
computational “vertices” with
communication “channels” to form
a dataflow graph.

20

MAP-REDUCE IN DRYADLINQ

21

IMPLEMENTATION - OPTIMIZATIONS

 Static Optimizations
 Pipelining: Multiple operators may be executed in a single

process.

 Removing redundancy: DryadLINQ removes unnecessary
partitioning steps.

 Eager Aggregation: Aggregations are moved in front of
partitioning operators where possible.

 I/O reduction: Where possible, uses TCP-pipe and in-memory
FIFO channels instead of persisting temporary data to files.

 Dynamic Optimizations
 Dynamically sets the number of vertices in each stage at run

time based on the size of its input data.

 Dynamically mutate the execution graph as information from
the running job becomes available. 22

MAP-REDUCE IN DRYADLINQ

23

Step (1) is static, (2) and (3) are
dynamic based on the volume and
location of the data in the inputs.

1

Incremental
Processing with

Percolator
Long Kai and Andrew Harris

2

We optimized the
flow of processing...

Now what?

Make it update faster!

3

Incremental
Processing• Instead of processing the entire dataset,

only process what needs to be updated

• Requires random read/write access to
data

• Suitable for data that is independent
(data pieces do not depend on other
data pieces) or only marginally
dependent

• Reduces seeking time, processing
overhead, insertion/update costs

4

Google Percolator
• Introduced at OSDI ’10

• Core tech behind Google Caffeine
search platform - driving app: Google’s
indexer

• Allows random access and incremental
updates to petabyte-scale data sets

• Dramatically reduces cost of updates,
allowing for “fresher” search results

5

Previous Google
System• Same number of

documents (billions
per day)

• 100 MapReduces to
compile web index
for these documents

• Each document
spent 2-3 days being
indexed

6

How It Works

observer

Bigtable Bigtable
TabletserverTabletserver

ChunkserverChunkserver

database

App with App with
Percolator Percolator

LibraryLibrary

documents

All communication handled via RPCs
Single lines of code in observer

Google indexing system uses ~10 observers

7

Transactions

• Observer-Bigtable communication is
handled as an ACID transaction

• Observer nodes themselves handle
deadlock resolution

• Simple lock cleanup synchronization

• All writes are increasingly timestamped
via coordinated timestamp oracle

8

Fault Tolerance

Result of dropping 33% of tablet servers in use

9

Pushing Updates

• Percolator clients open a write-only
connection with Bigtable

• Obtain write lock for specific table
location

• If locked, determine if lock is from a
previously failed transaction

• Overhead:

10

Notifying the
Observers

• Handled separately from writes (data
connections are unidirectional)

• Otherwise similar to database triggers

• Multiple Bigtable changes may produce
only one notification

11

Notifying the
Observers

BigtableBigtable

observed
column is

changed one
or more times

NOTIFYNOTIFY ObserverObserver

new update
transaction

observer
receives most
recent column

data

12

Keeping Clean

ObserverObserver

Key Value Notify

SearchSearch
ThreadThread

SearchSearch
ThreadThread

SearchSearch
ThreadThread

Percolator
workers spawn
threads which

search
randomly, report
changed cells to

observer

(sequential search)

(transactions)

13

Benefits!
• Closer to DBMS performance

• “Only” 30x processing overhead
against comparison DBMS (TPC-E, a
stock market trading backend)

• Fresher data pushed for lower costs

• 100x faster document movement

• 1000x faster document processing

• Data set is also 3x larger than
previous!

• Fixes stragglers - everything updates

14

Discussion

• Transactions introduce read/write
overhead relative to Bigtable size -
when does scaling break down?

• Not suitable for updating heavily
dependent or rapidly mutating data sets
- how do you adapt for these?

• In lightly dependent data sets, causally
linked children may report updates
before their parents - implications?

