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Abstract. The Hoare approach to program verification relies on the construction
and discharge of verification conditions (VCs) but offers no support to trace, ana-
lyze, and understand the VCs themselves. We describe a systematic extension of
the Hoare rules by labels so that the calculus itself can be used to build up expla-
nations of the VCs. The labels are maintained through the different processing
steps and rendered as natural language explanations. The explanations can easily
be customized and can capture different aspects of the VCs; here, we focus on la-
belings that explain their structure and purpose. The approach is fully declarative
and the generated explanations are based only on an analysis of the labels rather
than directly on the logical meaning of the underlying VCs or their proofs.
Keywords: program verification, Hoare calculus, software certification, trace-
ability, code generation, Matlab.

1 Introduction

Program verification is easy when automated tools do all the work: a verification con-
dition generator (VCG) takes a program that is “marked-up” with logical annotations
(i.e., pre-/post-conditions and invariants) and produces a number of verification condi-
tions (VCs) that are simplified, augmented with a domain theory, and finally discharged
by an automated theorem prover (ATP). In practice, however, many things can—and
typically do—go wrong: the program may be incorrect or unsafe, the annotations may
be incorrect or incomplete, the simplifier may be too weak, the domain theory may be
incomplete, and the ATP may run out of resources. In each of these cases, users are
typically confronted only with failed VCs (i.e., the failure to prove them automatically)
but receive no additional information about the causes of the failure. They must thus
analyze the VCs, interpret their constituent parts, and relate them through the applied
Hoare rules and simplifications to the corresponding source code locations. Unfortu-
nately, VCs are a very detailed and low-level representation of both the underlying
information and the process used to derive it, so this is often difficult to achieve.

Here we describe an implemented technique that helps users to trace, analyze, and
understand VCs. Our idea is to systematically extend the Hoare rules by “semantic
mark-up” so that we can use the calculus itself to build up explanations of the VCs. This
mark-up takes the form of structured labels that are attached to the meta-variables used
in the Hoare rules, so that the VCG produces labeled versions of the VCs. The labels are
maintained through the different processing steps, in particular the simplification, and
are then extracted from the final VCs and rendered as natural language explanations.



Most verification systems based on Hoare logic offer some basic tracing support
by emitting the current line number whenever a VC is constructed, although this is
still not common with other static analysis techniques. However, this does not provide
any information as to which other parts of the program have contributed to the VC,
how it has been constructed, or what its purpose is, and is therefore insufficient as
a basis for informative explanations. Some systems produce short captions for each
VC (e.g., JACK [1] or Perfect Developer [2]). Other techniques focus on a detailed
linking between source locations and VCs to support program debugging [11, 12]. Our
approach, in contrast, serves as a customizable basis to explain different aspects of
VCs. Here, we focus on explaining the structure and purpose of VCs, helping users
to understand what a VC means and how it contributes to the overall certification of a
program.

In our approach we only explain what has been explicitly declared using labels
to be significant. Hence, the generated explanations are based only on an analysis of
the labels but not of the structure or even logical meaning of the underlying VCs. For
example, we do not try to infer that two formulas are the base and step case of an in-
duction and hence would not generate an explanation to that end unless the formulas
are specifically marked up with this information. Consequently, explanation generation
is compositional and can be implemented using simple text templates. Finally, we re-
strict ourselves to explaining the construction of VCs (which is the essence of the Hoare
approach) rather than their proof. Hence, we maintain, and can also introduce, labels
during simplification, but strip them off before proving the VCs. Although there are
techniques for explaining proofs (e.g., [9]), this would not provide additional insight,
and in fact would be less useful for our purposes since the key information is expressed
in the annotations and VCs.

We developed our technique to support a certifiable code generator, which provides
Hoare-style safety proofs for the generated code. Here, human-readable explanations
of the VCs are particularly important to gain confidence into the large and complex
system. However, the core of our technique is not tied to either code generation or
safety certification and can be used in any Hoare-style verification context.

2 Logical Background

Hoare Logic and Program Verification We follow the usual Hoare-style program
verification approach (see [13] for more details), in which the verification problem is
solved in two separate stages: first, a VCG applies the rules of the underlying Hoare
calculus to the annotated program to produce a number of VCs, then an ATP discharges
the VCs. This splits the decidable (given suitable annotations) construction of the VCs
from their undecidable discharge, but it has the disadvantage that the VCs become re-
moved from the program context, which exacerbates the understanding problem.

Here, we restrict our attention to an imperative core language which is sufficient for
the programs generated by NASA’s certifiable code generators AUTOBAYES [10] and
AUTOFILTER [18] and by Real-Time Workshop (RTW), a commercial code generator
for Matlab. Extensions to other language constructs are straightforward, as long as the
appropriate (unlabeled) Hoare rules have been formulated.
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Fig. 1. Core Hoare rules for initialization safety

Source-Level Safety Certification The purpose of safety certification is to demon-
strate that a program does not violate during its execution certain conditions, which
are formalized as a safety property. A safety policy is a set of Hoare rules designed
to show that safe programs satisfy the safety property of interest. Most approaches to
safety certification, in particular proof-carrying code [14], operate on object code but
since our goal is to explain VCs in relation to the original program, we follow a source-
level approach. From this perspective, the important aspect of safety certification is that
the formulas in the rules have more internal structure. This can be exploited by our
approach to produce more detailed explanations.

Figure 1 shows the initialization safety policy, which we will use as our main ex-
ample here; we omit the rules for functions and procedures, which are not required for
the examples. The rules are formalized using the usual Hoare triples P {c} Q, i.e., if
the condition P holds and the command ¢ terminates, then () holds afterwards. Initial-
ization safety ensures that each variable or individual array element has been explicitly
assigned a value before it is used. It uses a “shadow” environment which records safety
information related to the program variables. Here, each shadow variable x;,, contains
the value INIT after the corresponding variable x has been assigned a value. Arrays are
represented by shadow arrays to capture the status of the individual elements. All state-
ments accessing lvars affect the value of a shadow variable, and each corresponding rule
(the assign-, update-, and for rules) is responsible for updating the shadow environment
accordingly. In addition, all rules also add the appropriate safety predicates safe, , (e) for
all immediate subexpressions e of the statements. Here, the safety property defines an
expression to be safe if all corresponding shadow variables have the value INIT, so that
safe . («[ 7] ) for example translates to 7, = INIT A x;;[i] = INIT. Safety certification
then starts with the safety requirements on the output variables and computes the weak-
est safety precondition (WSPC), which contains all applied safety predicates and safety



substitutions. If the program is safe then the WSPC will follow from the assumptions,
and all VCs will be provable. Rules for other policies can be given by modifying the
shadow variables and safety predicate.
Annotation Construction A certifiable code generator [3, 17] derives not only code
from high-level specifications but also the detailed annotations required to certify a
given safety property. The annotations can either be made part of the templates used in
the generator and then instantiated and refined in parallel with the code fragments, or
they can be constructed in a post-generation inference phase that exploits the idiomatic
structure of automatically generated code [5]. The annotations focus on locally relevant
information, without describing all the global information that may later be necessary
for the proofs. An annotation propagation step pushes the local annotations along the
edges of the control flow graph. The VCG then processes the code after propagation.
This ensures that all loops have the required invariant; typically, however, they consist
mainly of assertions which have been propagated from elsewhere in the program.
Human-readable explanations provide and communicate insight into the VCs. For
us, this is particularly important because the underlying annotations have been derived
automatically: the explanations help us to gain confidence into the (large and complex)
generator and the certifier. However, our approach is not tied to code generation; we
only use the generator as a convenient source of the annotations that allow the con-
struction of the VCs and thus the Hoare-style proofs.

3 Explaining the Purpose and Structure of VCs

After simplification, the VCs usually have a form that is reminiscent of Horn clauses
(i.e., Hy A ...\ H, = C). Here, the unique conclusion C of the VC can be considered
its purpose. However, for a meaningful explanation of the structure, we need a more de-
tailed characterization of the sub-formulas. This information cannot be recovered from
the VCs or the code but must be specified explicitly. The key insight of our approach is
that the different sub-formulas stem from specific positions in the Hoare rules, and that
the VCG can thus add the appropriate labels to the VCs.

3.1 Explanation Examples

Figure 2 shows a fragment of a Kalman filter algorithm with Bierman updates that
has been generated by AUTOFILTER from a simplified model of the Crew Exploration
Vehicle (CEV) dynamics; the entire program comprises about 800 lines of code. The
program initializes some of the vectors and matrices (such as h and r) with model-
specific values before they are used and potentially updated in the main while-loop.
It also uses two additional matrices U and d that are repeatedly zeroed out and then
partially recomputed before they are used in each iteration of the main loop (lines 728—
731). We will focus on these double-nested for-loops.

For initialization safety the annotations need to formalize that each of the vectors
and matrices is fully initialized after the respective code blocks. For the loops initializ-
ing U and d, invariants formalizing their partial initialization are required to prove that



sconst ME6, N=12;
<init h>
183post VO <i<M,0<j<N- hint, j] =INIT
<init r>
525post V 0<4,5 < M- i, j] =INIT

683 whilet <Tmax
inVV0<i<M,0<j<N-huli, J]=INITA...AV0<4,j < M- ri[i, j]J=INITA... do

728 fork:=0toN-1
invV0<i<M,0<j<N-hwli,j]]=INITA...AV0<4,j <M - riu[t, j]=INIT A. ..
AV 0<i,j<N-i <k = tni, j]=INIT A di([i, 7] =INIT dO
729 forl:=0toN-1
invV0<i<M,0<j<N-hwli,j]]=INITA.. .AV0<4,5 < M- rifi, j]=INIT A. ..
AVO<i,j<N-(i<kVi=kAj<l)= twnlt, j]=INIT A di([i, j] =INIT dO
730 u[k, I]:=0;
731 d[ k, 1]:=0;
post VO<i<M,0<j<N- hi[i, j]=INIT A. . .AV0<4,j <M - rine[i, j| =INIT A. ..
AV 0<i,j<N-i<k= twpnli,j]=INIT A dine[¢, j]=INIT
post VO<i<M,0<j<N- himli, j]=INIT A...AV0<4,j < M- rin[i, j]=INIT A...
AV 0<4,J<N- Ui, j]=INIT A diw[2, j] = INIT

<use u, d>
<use h,..., r>
end;

Fig. 2. Example code fragment and annotations generated by AutoFilter

the postcondition holds. However, since these loops precede the use of vectors and ma-
trices initialized outside the main loop, the invariants become cluttered with propagated
annotations that are required to discharge the safety conditions from the later uses.
Simple Structural Explanations The certification of the entire program generates 71
VCs; 12 of these are related to lines 728-731 which shows that location information
alone is insufficient as a basis for explaining VCs. Here, we focus on one VC

0<k,I<11AV0<i,j<12: hyi,j]=INITA.. . AV0<i<6,0<5 <12 ryli,j] = INIT
AV0<i,j <120 < k = d[i,j]=INITAV0<i,j<12-i=k A j < | = di[i,j]=INIT
AV0<4,j<12 4 < k = U [8,]]=INITAVO0<4,j<12-i=k A j <l = WUm([i,j] =INIT
=>V0<i,j<12- (i =kANj<INJ#I1) = wm[i,j]=INIT (1)

that emerges from showing that the invariant is preserved through one iteration of the
inner loop. Note that the full VC is substantially larger and contains many irrelevant
hypotheses, which makes it actually easier to prove than to understand. However, we
can see that its hypotheses are either constraints that originate from the loop bounds
(0<E,1<11), post-conditions that have originally been established before the loop and
then been propagated into the invariant (e.g., V0 <4,j < 12-h,,[i,j] =INIT), or the actual
“local” invariant as hypotheses. The conclusion comprises parts of the invariant (where



[ has been replaced by [+ 1), but due to simplification this is difficult to see. In addition,
all constants have been replaced by their values. The VC is marked up with labels that
represent this information in order to generate the explanation shown below. Note that
the explanation also spells out the verification context, which is the VCs “secondary”

purpose.

The purpose of this VC is to show that the loop invariant at line 729 (#1) under the sub-
stitutions originating in line 5 and line 730 is still true after each iteration to line 731; it is
also used to show the preservation of the loop invariants at line 729, which in turn is used
to show the preservation of the loop invariants at line 728, which in turn is used to show the
preservation of the loop invariants at line 683. Hence, given

- the loop bounds at line 728 under the substitution originating in line 5,

- the invariant at line 729 (#1) under the substitution originating in line 5,

- the invariant at line 729 (#2) under the substitution originating in line 5,

- the invariant at line 729 (#15) under the substitution originating in line 5,

- the loop bounds at line 729 under the substitution originating in line 5,
show that the loop invariant at line 729 (#1) under the substitutions originating in line 5 and
line 730 is still true after each iteration to line 731.

Nested Propositions and Simultaneous Conclusions If the VCs contain existential
quantifiers, which can be introduced by the annotations or by the rule for procedure
calls, they might no longer have a unique conclusion that denotes their primary pur-
pose. Hence, we must modify our notion of conclusion to allow multiple conclusions
that must be satisfied simultaneously for an existentially quantified witness, and explic-
itly represent and render conclusions from local assumptions (i.e., nested implications).
Consider, for example, the VC

. Ao(T)=0Ahi(T)=8 AT[0]+T'[4]+T[8] > 0 A frame(T, decm(eci, ned))
= Vqo : real,v : vec - 3d : dem-
tr(d)=T[0]+T[4]+T[8] A tr(d) > 0 A rep_dem(d, T[5], T[7], T[2], T[6], T[1], T[3])
A(3q : quat - eq_dem_quat(d, g) A rep_quat(q, go, v[0], v[1], v[2])
= frame(vupd(upd(M, 0, qo), 1, 3, v), quat(eci, ned))) (2)

that arises in certifying frame safety (i.e., consistent use of coordinate frames [16])
in navigation software generated from a Simulink model. The purpose of this VC is
to show the correctness of a procedure call, i.e., to show that all its preconditions are
satisfied and that the function postcondition implies the required postcondition. Hence,
we need to show existence of a quaternion ¢ (represented by the four scalars ¢g, v[0],
v[1], and v[2] and equivalent to a previously given direction cosine matrix d), such that
if the term M (which does not matter here) is updated first with the scalar gy and then
with the vector v, this gives a term in the frame ECI to NED. Our system explains this
VC as follows:

... Hence, given
- the precondition at line 794 (#1),
- the condition at line 798 under the substitution originating in line 794,
show that there exists a dcm-value that will simultaneously
- establish the function precondition at line 799 (#1),
- establish the function precondition at line 799 (#2),
- establish the function precondition at line 799 (#3) under the substitution originating in
line 794,
- establish the postcondition at line 798 (#1) assuming the function postcondition at line
799 (#1).



Note that the explanation only reflects the VC’s structure, not the detailed interpretation
we have given above; for that, we would need to mark it up with additional policy-
specific detail (see Section 4.3).

3.2 Mark-Up Structure

Concepts The basic information for explanation generation is a set of underlying con-
cepts, which depends of course on the particular aspect of the VCs to be explained.
In the case of the structural explanations, most concepts characterize a proposition ei-
ther as hypotheses or conclusions, reflecting their eventual position in the VC. Other
concepts capture information about origin and secondary purpose of the propositions.

Hypotheses consist of assertions and control flow predicates. Assertions refer to sub-
formulas that occur as annotations in the program, either originally or after propagation.
They include asserted pre- and post-conditions (labels ass_pre and ass_post), function
pre- and post-conditions (ass_fpre and ass_fpost), and loop invariants. Since the loop
rules use the loop invariant as hypothesis in two different positions and instantiations,
we distinguish ass_inv and ass_inv_exit. Control flow predicates refer to sub-formulas
that reflect the program’s control flow. For both if -statements and while-loops, the con-
trol flow predicates occurring in the program are required by the rules in both their
original and negated forms, so that we get four different concepts: if_tt, if_ff, while_tt, and
while_ff. For for-loops, the control flow predicate does not directly occur in the program
but is derived from the given loop bounds.

Conclusions capture the primary purpose of a VC, which includes establishing (i.e.,
showing to hold at the given location) the different types of assertions. As in the case of
the hypotheses, invariants are used in two different forms, the entry form (or base case)
est_inv and the step form est_inv_iter. Note that an assertion can be used both as hypoth-
esis and as conclusion, even in the same VC. Our approach allows the explanations to
distinguish these two bits of information from the same source. For safety verification,
we additionally have the safety conditions safety that have to be demonstrated.

Qualifiers further characterize both hypotheses and conclusions by recording the
origin of a sub-formula. The different substitution concepts reflect the substitutions of
the underlying Hoare calculus. The assignment concept sub captures the origin and ef-
fect of assignments and array updates on the form of the resulting VCs; for the shadow
environment, we additionally get safety substitutions safety_sub. Origin labels (origin)
denote formulae that result from annotations that have been propagated from their orig-
inal location. They are specific to the way the code generator produces the annotations.

Contributors capture the secondary purpose of a VC; this arises when a recursive
call to the VCG produces VCs that are conceptually connected to the purpose of the
larger structure. In general, contributors arise for nested program structures which result
in “nested” VCs (e.g., loops within loops). For example, all VCs emerging from the
premise P {c} I of the while rule (cf. Figure 1) contribute to showing the preservation
of the invariant I over the loop body, ¢, independent of their primary purpose.

Label Structure and Labeled Terms We use labeled terms ¢V, where each term ¢ can
be adorned with a label I. Labels of the form c(o, n) are called plain. Here the concept
c describes the role the labeled term plays and thus determines how it is rendered. The



location o records where it originated; it refers either to an individual position or to
a range. We use file names and line numbers for locations. The optional list of labels
n nested inside contains further qualifying information, which applies either directly
to the top-level term, or has been extracted from sub-terms during normalization and
extraction. To represent nested implications and and simultaneous goals, we use the
meta-labels nested and sim, respectively. This gives us the labeled version of the VC

2):

A TT[0]4+T[4]+T[8] > 0F-H(sub(794))) A Tframe (T, dem(eci, ned))!ass-Pre(794)
= Vqo : real,v : vec - 3d : dcm-
”tr(d):T[()]—|—T[4}—|—T[8]1esnfpre(799' (sub(794))) A [tr(d) > O1est,fpre(799)
Alrep_dem(d, T'[5], T[7], T[2], T'[6], T[1], T'[3])1est-fPre(799)
A'(3q : quat - eq_dem_quat(d, q) A rep_quat(q, go, v[0], v[1], v[2])125S-POst(799)
= Iframe(vupd(upd(M, 0, go), 1,3, v), quat(eci, ned))) ! est-post(798)Inested Isim

3.3 Modified Hoare Rules

In general, it is not sufficient to just output explanations as the VCs are constructed. In-
stead, the VCG must add the right labels at the right positions; it must also pass mark-up
back through the program by attaching it to the WSPC, so that information from one
point in the program can be used at any other point. Modified Hoare rules concisely
capture the semantic mark-up (i.e., label types and positions) required for any given ex-
planation aspect. Labels can be added in three places: to the “incoming” postcondition
of a recursive VCG call in the premise of an inference rule, to the WSPC, or to a gener-
ated VC. Figure 3 shows the core rules of the initialization safety policy marked-up for
explaining the structural aspect of VCs. The rules derive the usual triples, P {c} @, but
now all elements can be labeled. For clarity, we omit the location information in the rule
formulation but assume that the VCG obtains it from the statements and annotations and
appropriately incorporates it into the labels.

The assign- and update rules only require mark-up in the WSPC. The safety pred-
icate can be a complex sub-formula, depending on the property to be certified and the
structure of the expression(s), but the mark-up is not dependent on the specific safety
property—all we need to know for an explanation is that this is in fact the safety pred-
icate. The substitutions need mark-up to record their type and the origin of the substi-
tuted expressions. By labeling only the expressions and not the variables we can use the
normal substitution mechanisms.

While labeling the if rule is straightforward, the loop rules are more complicated;
we focus on the while rule but the for rule has a similar structure. The WSPC com-
prises the safety predicate, which is labeled as before, and the invariant, which has to
be established for loop entry and is thus labeled with est_inv. In the premise, individual
sub-formulas of both the exit-condition I A —~b = @ and the step-condition / A b = P
are labeled appropriately; in addition, the entire step-condition is labeled with its sec-
ondary purpose, namely to contribute to showing the preservation of the invariant. In
the triple P {c} I, the incoming postcondition I must be labeled with its purpose (i.e.,
re-establish the invariant after one loop iteration) for the recursive call; moreover, all
emerging VCs must be marked up with the secondary purpose pres_inv. We indicate
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Fig. 3. Hoare rules for initialization safety with semantic markup

this by labeling the entire triple. Note how the same formula I is used in four differ-
ent roles and consequently labeled in four different ways. This contextual knowledge is
only available at the point of rule application and can not be easily recovered by a post
hoc analysis of the generated VCs.

Finally, the assert rule is straightforward to mark up. The asserted pre- and post-
conditions are labeled according to their use either as hypotheses (in the VCs) or as
conclusions (in the WSPC and recursion).

3.4 Labeled Rewriting

The VCs (whether labeled or unlabeled) become quite complex and need to be sim-
plified aggressively before they can be proven by an ATP (see [6] for experimental
evidence). Unfortunately, the unlabeled simplification rules cannot be reused “as is” for
the labeled case because (¢) the labeling changes the term structure and thus the appli-
cability of the rules and (¢7) the labels need careful handling—on the one hand, they
cannot simply be distributed over all operators because this can destroy their proper
scope, while on the other, they cannot just be pushed to the top of the VC because this
would result in redundant and imprecise explanations. The purpose of the rules is thus
(2) to remove redundant labels, (i¢) to minimize the scope of the remaining labels, and
(247) to keep enough labels to explain any unexpected failures, based on the assumption
that the majority of the VCs can be rewritten to true. For the formulation of the rules,
we use the auxiliary functions | - | to remove labels from terms, and [ -] to extract the



labels of a term. [-] is defined by

[£(t1, ... t)®] =lab ® ([t1] & . .. & [tn])
[fts,....ta)] =[t]®...®[ta]

where @ is list concatenation and the label composition operator ® appends the inner
labels [ to the list of labels nested in the outer label ¢(o, n), i.e., ¢(0,n) @1 = ¢(o, n®1).

The rules themselves then fall into five different groups. The first group contains
rules such as 'true!' — true or P = P’ — true if | P|=| P’| that remove labels from
trivially true (sub-) formulas because these require no explanations. The next group
consists of rules such as 'false!' v P — P that selectively remove trivially false labeled
sub-formulas. The remaining context then provides the information for the explana-
tions. However, the labels obviously need to be retained if the underlying unlabeled
rule version rewrite the entire formula into false, since there is no remaining context
to explain the failure, e.g., 'false!’ A P — false!. The rules 'P A Q"' — P! A Q"
and P = Q= R'" - P A'Q" = 'R comprise the fourth group; they distribute
labels over conjunction and (nested) implication, respectively, so that the label scopes
are minimized in the final simplified VCs. The last group encodes knowledge about
how the labels will be interpreted in the underlying domain. For example, the rule
sel(fupd(z,i1, )", ig) — liy =iy 2 ' : sel(x,is) specifies the effect of selecting
into an updated array: in order to explain the resulting term we need to know that the
disappearing upd-functor is conceptually reflected in the guard and the success-branch
of the conditional, but not in the failure-branch, and that the label must thus be attached
to these two only. This group also contains an unnesting rule "1™ — #1N®M that “bub-
bles” nested labels to the top term, and so enables other labeled and unlabeled rules to
apply, but keeps the nesting structure on the labels itself. This ensures that qualifiers
remain nested properly, and apply to the originally qualified term.

The rewrite system is not confluent modulo labels, in the sense that terms such as
'false! A —'false!™ can be rewritten into differently labeled normal forms (in this case
false!!, false'™ (using commutativity of A), and 'false'l'™)). However, the system is
confluent after label stripping | - |, and since the rules are labeled versions of rules in
the underlying unlabeled rewrite system, labeling does not interfere with the underlying
unlabeled normalization.

3.5 Rendering

We define the underlying structure and actual textual representation of the explanations
via a BNF-grammar, where the right-hand side of each rule is an explanation template
that is similar to a format string in C. These templates allow an easy customization and
fine-grained control of the textual explanations.

The final generation of the actual explanations, i.e., turning the (labeled) VCs into
human-readable text, is called rendering. It is independent of the actual aspect that
is explained, and can thus be reused. It relies on the building blocks described so far
and comprises four steps: (¢) VC normalization, using the labeled rewrite system; (i)
label extraction, using [-]; (¢4¢) label normalization, to fit the labels to the explanation
templates; (4v) text generation, using the explanation templates.



The third step flattens nested qualifiers, so that for example sub(p, sub(q, sub(r))) is
rewritten into the list (sub(p), sub(g), sub(r)). It also merges back together conclusions
from the same line which have been split over different literals during the first step. This
is realized by an additional rewrite system (omitted here) that is defined together with
the explanation templates.

The renderer contains code to interpret the templates as well as some glue code
(e.g., sorting label lists by line numbers) that is spliced in to support the text generation.
It also provides default templates for concepts that are useful for different explanation
aspects, for example substitutions and the meta-labels.

4 Refi ned Explanations

Even though the explanations constructed so far relate primarily to the structure of the
VCs, they already provide some “semantic flavor”, since they distinguish the multiple
roles a single annotation can take. However, for structurally complex programs, the la-
bels do not yet convey enough semantic information to allow users to understand the
VCs in detail. For example, a double-nested for-loop can produce a variety of VCs that
will all refer to “the invariant”, without further explaining whether it is the invariant
of the inner or the outer loop, leaving the user to trace through the exact program lo-
cations to resolve this ambiguity. We can produce refined explanations that verbalize
such semantic concept distinctions by introducing additional qualification labels that
are wrapped inside the existing structural labels. We chose this solution over extending
the structural labels because it allows us to handle orthogonal aspects independently or
only for specific program constructs, and makes it easier to treat the qualifiers uniformly
in different structural contexts.

4.1 Adding Index Information to Loop Explanations

We can tie the explanations of VCs emerging from for-loops more closely to the pro-
gram, and thus make them easier to understand, if we add more detailed information
about the index variables and bounds as qualifiers to the loop invariants. These quali-
fiers are then used to augment the text generated for the qualified structural label. In our
running example we thus get a refined explanation of the VC’s purpose, while the rest
of the explanation remains unchanged:
The purpose of this VC is to show that the loop invariant at line 729 (#1) under the substitu-
tions originating in line 5 and line 730 is still true after each iteration to line 731 (i.e., in the
form with [+1 replacing 0); it is also used to show the preservation of the loop invariants at
line 729, which in turn ...
Note that the way the qualifier is rendered depends on the enclosing label, to properly
reflect the different substitutions that are applied to the invariant in the different cases
(see Figure 1); in particular, the qualifier is ignored when the invariant is used as asserted
hypothesis (i.e., for the ass_inv-label).

Since the complete index information required for the qualifier is contained in the
for-loop itself, the VCG can easily extract it and add the qualifiers in the respective
positions of the for-rule. This information is almost impossible to recreate with a post
hoc analysis of the formula.



4.2 Adding Relative Positions to Loop Explanations

We can further improve the explanations for VCs emerging from nested loops by refer-
ring to the underlying loops not only via their absolute source locations (which are often
very close to each other, and thus easily confused), but also by their relative position,
distinguishing, for example, the inner from the outer invariant:

The purpose of this VC is to show that the loop invariant at line 729 (#1) (i.e., the inner
invariant) under the substitutions originating in line 5 and line 730 is still true after each
iteration to line 731 (i.e., in the form with [+1 replacing [); it is also used to show the
preservation of the loop invariants at line 729, which in turn ...

However, the VCG has no built-in notion of “outer” and “inner” loops, so it cannot add
the respective qualifiers automatically. Rather than extending the VCG, these qualifiers
can be added directly to the annotations by the annotation generator.

4.3 Adding Domain-Specific Semantic Explanations

We can construct semantically “richer” explanations if we further expand the idea out-
lined in the previous section, and add more semantic labels to the annotations, which
represent domain-specific interpretations of the labeled sub-formulae. For example, in
initialization safety the VCs usually contain sub-formulae of the form VO < 7,5 <
N - A,.[i, j] = INIT, which expresses the fact that the array A is fully initialized (e.g,
most postconditions in Figure 2). By labeling this formula, or more precisely, the anno-
tation from which it is taken, we can produce an appropriate explanation without any
need to analyze the formula structure: !

The purpose of this VC is to show that the loop invariant at line 729 (#1) under the sub-
stitutions originating in line 5 and line 730 is still true after each iteration to line 731; it is
also used to show the preservation of the loop invariants at line 729, which in turn is used
to show the preservation of the loop invariants at line 728, which in turn is used to show the
preservation of the loop invariants at line 683. Hence, given

- the loop bounds at line 728 under the substitution originating in line 5,

- the invariant at line 729 (#1) (i.e., the array h is fully initialized, which is established at

line 183) under the substitution originating in line 5,

- the invariant at line 729 (#11) (i.e., the array r is fully initialized, which is established
at line 525) under the substitution originating in line 5,

- the invariant at line 729 (#15) under the substitution originating in line 5,

- the loop bounds at line 729 under the substitution originating in line 5,
show that the loop invariant at line 729 (#1) under the substitutions originating in line 5 and
line 730 is still true after each iteration to line 731 (i.e., the array u is initialized up to position
(&1).

Note that the labels also include origin information, explaining where the semantic
concepts have originally been established. Again, we can encapsulate the necessary
extensions in the annotation generator.

! Note that the formulae expressing the domain-specific concepts can become arbitrarily com-
plex, and make any post hoc analysis practically infeasible. For example, to express the row-
major, partial initialization of an array up to position (k, [), we would already need to identify
a formula equivalent to V0 < 4,j < N - (i < kVi=kAj <l) = Aili,j] = INIT.



We can go further and use the domain-specific information to give a semantic ex-
planation of the hierarchical relations between the VCs which complements the purely
structural view provided by the pres_inv labels. In order to reflect this, we need to ex-
plain the appropriate VCs in terms of establishing a definition, while all VCs produced
within the definition block should be labeled as contributing to that definition, similar to
the structural case of nested loops. Likewise, whenever the final postcondition is used
as a hypothesis, e.g., to show the safety of a later use, it must be labeled as originating
from the definition.

Domain-specific labels are only introduced at annotations. For pre- and postcondi-
tions we need to generalize the assert rule to use contributor labels since the enclosed
statements correspond to blocks which are used in the explanation:

[ prass_pre(l) = [ picontrib(l) (P {C} (Qlwest_post(l)Wcontrib(I) (Qmass_post(l) = Q
(Pnest_pre(l) {pre P c post (Qlwl} Q

(label)

The label rule “plucks” the label off the postcondition and passes it into the appropri-
ate positions. Labels in positions that are already labeled by the assert rule need to be
modified to take the domain-specific labels as an additional argument. For example,
ass_post(lab) then refers to an asserted postcondition (i.e., a postcondition used as a
hypothesis) for a lab-block. In addition, we also introduce a new contribution label con-
trib(lab), similar to the invariant preservation in the structural concept hierarchy. This is
added to the WSPC recursively computed for the block, and to all VCs emerging during
that process. These more refined labels let the renderer determine when a hypothesis is
actually the postcondition of a domain-specific block, or when a VC is just a contributor
to the block.

5 Redated Work

Most VCGs link VCs to source locations, i.e., the actual position in the code where the
respective rule was applied and hence where the VC originated. Usually, the systems
only deal with line numbers but Fraer [11] describes a system that supports a “deep
linking” to detailed term positions. JACK [1] and Perfect Developer [2] classify the VCs
on the top-level and produce short captions like “precondition satisfied”, “return value
satisfies specification”, etc. In general, however, none of these approaches maintain
more non-local information (e.g., substitution applications).

Our work grew out of the earlier work by Denney and Venkatesan [8] which used
information from a particular a subset of VCs (in the current terminology: where the
purpose is to establish a safety condition) in order to give a textual account for why
the code complies with a safety policy. It soon became clear, however, that a full un-
derstanding of the certification process requires the VCs themselves to be explained (as
does any debugging of failed VCs). The current work extends the explanations to ar-
bitrarily constructed formulas, that is, VCs where the labels on constituent parts come
from different sources. This allows formulas to be interpreted in different ways.

Leino et al. [12] use explanations for traces to safety conditions. This is sufficient
for debugging programs, which is their main motivation. Like our work, Leino’s ap-
proach is based on extending an underlying logic with labels to represent explanatory



semantic information. Both approaches use essentially the same types of structural la-
bels, and Leino’s use of two different polarities (Iblpos and lblneg) corresponds to our
distinction between asserting and establishing an annotation. However, Leino does not
represent the origin of substitutions nor the secondary purpose of the VCs. Moreover,
both approaches differ in how these labels are used by the verification architectures.
Leino’s system introduces the labels by first desugaring the language into a lower-level
form. Labels are treated as uninterpreted predicate symbols and labeled formulas are
therefore just ordinary formulas. This labeled language is then processed by a standard
VCG which is “label-blind”. In contrast, we do not have a desugaring stage, and mainly
use the VCG to insert the labels. Consequently, our simplifier needs to be label-aware,
but since we strip labels off the final VCs after the explanation has been constructed,
we do not suffer any performance problems with the ATP, nor do we place special re-
quirements on the prover like they do.

6 Conclusonsand Future Work

The explanation mechanism which we have described here has been successfully im-
plemented and incorporated into our certification browser [4, 7]. This tool is used to
navigate the artifacts produced during certifiable code generation, and it uses the system
described in this paper to successfully explain all the VCs produced by AUTOFILTER,
AUTOBAYES, and Real-Time Workshop for all safety policies.

In addition to its use in debugging, the explainer can also be used as a means of
gaining assurance that the verification is itself trustworthy. This complements our pre-
vious work on proof checking [15]: there a machine checks one formal artifact (the
proof), here we support human checking of another (the VCs). With this role in mind,
we are currently extending the tool to be useful for code reviews.

Much more work can be done to improve and extend the actual explanations them-
selves. More generally, we would like to allow explanations to be based on entirely
different explanation structures or ontologies. Our approach can, for example, also be
used to explain the provenance of a VC (i.e., the tools and people involved in its con-
struction) or to link it together with supporting information such as code reviews, test
suites, or off-line proofs.

Finally, there are also interesting theoretical issues. The renderer relies on the exis-
tence of an Explanation Normal Form, which states intuitively that each VC is labeled
with a unique conclusion. This is essentially a rudimentary soundness result, which can
be shown in two steps, first by induction over the marked-up Hoare rules in Figure 3
and then by induction over the labeled rewrite rules. We are currently developing a the-
oretical basis for the explanation of VCs that is generic in the aspect that is explained,
with appropriate notions of soundness and completeness.
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