HW 1 - Truth and Proof in Propositional Logic
 CS 477 - Spring 2013
 Revision 1.0

Assigned January 23, 2013
Due January 30, 2013, 11:59 pm
Extension 48 hours (20% penalty)

1 Change Log

1.0 Initial Release.

2 Objectives and Background

The purpose of this HW is to test your understanding of

- validity of propositions in the standard model of propositional logic
- Natural Deduction proofs of propositions in propositional logic

Another purpose of HWs is to provide you with experience answering non-programming written questions of the kind you may experience on the midterm and final.

3 Turn-In Procedure

The pdf for this assignment (hw1.pdf) should be found in the mps/hw1/ subdirectory of your svn directory for this course. Your solution should be put in that same directory. Using your favorite tool(s), you should put your solution in a file named hw1-sol.pdf. If you have problems generating a pdf, please seek help from the course staff. Your answers to the following questions are to be submitted electronically from within $\mathrm{mps} / \mathrm{hw} 1 /$ subdirectory by commiting the file as follows:

```
svn add hw1-sol.pdf
svn commit -m "Turning in hw1"
```


4 Problem

For each of the following propositions, give both all possible valuations of every subformula of the proposition in the form of a truth table, and given a Natural Deduction proof of the proposition. For the Natural Deduction proof, you may use the pure style first indtruced in class, but it must be accompanied by a discription of how each assumption is discharged. Alternatively, you may use the sequent encoding of Natural Deduction proofs.

1. $(5 \mathrm{pts}+5 \mathrm{pts})(A \wedge B) \Rightarrow(A \vee B)$
2. $(4 \mathrm{pts}+6 \mathrm{pts})(A \vee A) \Rightarrow(A \wedge A)$
3. $(3 \mathrm{pts}+5 \mathrm{pts}) A \Rightarrow \neg \neg A$
4. $(16 \mathrm{pts}+10 \mathrm{pts})(A \Rightarrow(B \Rightarrow C)) \Rightarrow((A \wedge B) \Rightarrow C)$
5. $(16 \mathrm{pts}+8 \mathrm{pts})((A \wedge B) \wedge C) \Rightarrow(A \wedge(B \wedge C))$

5 Extra Credit

6. (10 pts) Given a detailed, rigorous proof that the sequent encoding of Natural Deduction proof is sound with respect to the standard model for propositional logic. That is, prove that every proposition having a closed Natural Deduction proof is valid in the standard model.
Hint: What proposition corresponds to a sequent?
