CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs477

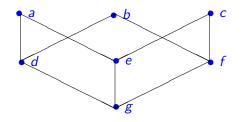
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

April 26, 2013

Partial orders and Complete Lattices

A partial order on a set S is a binary relation \leq on S such that

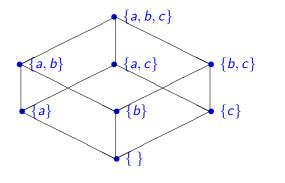
- [Refl] $s \le s$ for all $s \in S$
- [Antisym] $s \le t$ and $t \le s$ impilies s = t, for all $s, t \in S$
- [Trans] $s \le t$ and $t \le u$ impilies $s \le u$, for all $s, t, \in S$

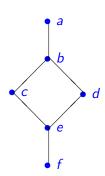


Upper Bounds and Complete Latices

- In a partial order (S, \leq) , given $X \subseteq S$, y is an upper bound for X if for all $x \in X$ we have $x \leq y$.
- y is a least upper bound of X, y is an upper bound of X and whenever z is an upper bound of X, $y \le z$.
- Note: Least upper bounds are unique.
- A complete lattice is a partial order (L, \leq) such that for all $X \subseteq S$ there exists a (unique) least upper bound.
- Write lub(X) or $\bigvee X$ for the least upper bound of X.
- Write $x \vee y$ for $\bigvee \{x, y\}$
- Note: $x \lor y = x \iff y \le x$
- **Note:** Given a set S, $(\mathcal{P}(S), \subseteq)$ is a complete lattice.
- Write $\bot = \bigvee \{ \}$ and $\top = bigveeS$

Example Complete Lattices





Control-Flow Graphs

A Control-Flow Graph is a tuple (N, E, I, k) where

- N is a finite set of nodes
- $I: N \rightarrow \{\text{Entry}, \text{Exit}, i := e, ifb, }\}$
- E ⊆ NtimesN such that
 - for all $m \in N$ we have $|\{n \cdot (m, n) \in E\}| \le 2$
 - if $m \in N$ and $I(m) = \text{Exit then } |\{n \cdot (m, n) \in E\}| = 0$
 - if $m \in N$ and I(m) = Entry or I(m) = i := e for some identifier i and expression e, then $|\{n \cdot (m, n) \in E\}| = 1$
 - if $m \in N$ and l(m) = if b for some boolean expression b, then $|\{n \cdot (m, n) \in E\}| = 2$
- $k : E \rightarrow \{\text{seq}, \text{yes}, \text{no}\}\$ such that
 - if $(m, n) \in E$ and I(m) = Entry or I(m) = i := e, then k((m, n)) = seq
 - if $m, \in N$ and l(m) = if b, then $\{k((m, n)), (m, n) \in E\} = \{\text{yes}, \text{no}\}$

Environments Revisited

Previously: environments are *partial* functions from identifiers (Ident) to values.

Add to usual values two new constants: Values = $\{v|v \text{ a value}\} \cup \{\top, \bot\}$.

- _ means undefined
- T means error
- Order Values by $v_1 \le v_2$ implies $v_1 = v_2$, and $\bot \le v$ and $v \le \top$ for all values v_1, v_2, v_3
- Redefine $Env = Ident \rightarrow Values$, all *total* functions from identifiers to extended values
- Can view every old environment as an element of Env

Fix control flow graph G = (N, E, I, k)

 $States = E \times Env$

Note: Entry is never the label on node on the end of the edge in a state. Can define next state of state $s \in S$ tates: only need the end state of the edge and the environment.

next state is a transition relation.

From next state can define a run.