
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

April 26, 2013

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 26, 2013 1

/ 8

Partial orders and Complete Lattices

A partial order on a set S is a binary relation ≤ on S such that

[Refl] s ≤ s for all s ∈ S

[Antisym] s ≤ t and t ≤ s impilies s = t, for all s, t ∈ S

[Trans] s ≤ t and t ≤ u impilies s ≤ u, for all s, t, ∈ S

• a • b • c

• d • e • f

• g

HHHHHHHH

��������

HHHHHHHH

��������HHHHHHHH

��������

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 26, 2013 2

/ 8

Upper Bounds and Complete Latices

In a partial order (S ,≤), given X ⊆ S , y is an upper bound for X if
for all x ∈ X we have x ≤ y .

y is a least upper bound of X , y is an upper bound of X and
whenever z is an upper bound of X , y ≤ z .

Note: Least upper bounds are unique.

A complete lattice is a partial order (L,≤) such that for all X ⊆ S
there exists a (unique) least upper bound.

Write lub(X) or
∨
X for the least upper bound of X .

Write x ∨ y for
∨{x , y}

Note: x ∨ y = x ⇐⇒ y ≤ x

Note: Given a set S , (P(S),⊆) is a complete lattice.

Write ⊥ =
∨{ } and > = bigveeS

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 26, 2013 3

/ 8

Example Complete Lattices

• {a, b, c}

• {a, b} • {a, c} • {b, c}

• {a} • {b} • {c}

• { }

HHHHHHHH

��������HHHHHHHH

��������

HHHHHHHH

��������HHHHHHHH

��������

• a

• b

• c • d

• e

• f

�
�
�

@
@
@

@
@
@

�
�
�

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 26, 2013 4

/ 8

Control-Flow Graphs

A Control-Flow Graph is a tuple (N,E , l , k) where

N is a finite set of nodes

l : N → {Entry,Exit,i:=e, ifb, }
E ⊆ NtimesN such that

for all m ∈ N we have |{n . (m, n) ∈ E}| ≤ 2
if m ∈ N and l(m) = Exit then |{n . (m, n) ∈ E}| = 0
if m ∈ N and l(m) = Entry or l(m) = i := e for some identifier i and
expression e, then |{n . (m, n) ∈ E}| = 1
if m ∈ N and l(m) = if b for some boolean expression b, then
|{n . (m, n) ∈ E}| = 2

k : E → {seq, yes, no} such that

if (m, n) ∈ E and l(m) = Entry or l(m) = i := e, then k((m, n)) = seq
if m,∈ N and l(m) = if b, then {k((m, n)) . (m, n) ∈ E} = {yes, no}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 26, 2013 5

/ 8

Environments Revisited

Previously: environments are partial functions from identifiers (Ident) to
values.
Add to usual values two new constants: Values = {v |v a value} ∪ {>,⊥}.
⊥ means undefined
> means error
Order Values by v1 ≤ v2 implies v1 = v2, and ⊥ ≤ v and v ≤ > for all
values v , v1, v2
Redefine Env = Ident→ Values, all total functions from identifiers to
extended values
Can view every old environment as an element of Env

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 26, 2013 6

/ 8

Fix control flow graph G = (N,E , l , k)
States = E × Env
Note: Entry is never the label on node on the end of the edge in a state.
Can define next state of state s ∈ States: only need the end state of the
edge and the environment.
next state is a transition relation.
From next state can define a run.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 26, 2013 7

/ 8

