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Partial orders and Complete Lattices

A partial order on a set S is a binary relation  on S such that

[Refl] s  s for all s 2 S

[Antisym] s  t and t  s impilies s = t, for all s, t 2 S

[Trans] s  t and t  u impilies s  u, for all s, t, 2 S

• a • b

• c

• d

• e • f

• g
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Upper Bounds and Complete Latices

In a partial order (S ,), given X ✓ S , y is an upper bound for X if

for all x 2 X we have x  y .

y is a least upper bound of X , y is an upper bound of X and

whenever z is an upper bound of X , y  z .

Note: Least upper bounds are unique.

A complete lattice is a partial order (L,) such that for all X ✓ S

there exists a (unique) least upper bound.

Write lub(X ) or

W
X for the least upper bound of X .

Write x _ y for

W
{x , y}

Note: x _ y = x () y  x

Note: Given a set S , (P(S),✓) is a complete lattice.

Write ? =

W
{ } and > = bigveeS
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Example Complete Lattices

• {a, b, c}

• {a, b} • {a, c} • {b, c}

• {a} • {b} • {c}

• { }
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• a

• b

• c • d

• e

• f
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Control-Flow Graphs

A Control-Flow Graph is a tuple (N,E , l , k) where

N is a finite set of nodes

l : N ! {Entry,Exit,i:=e, ifb, }
E ✓ NtimesN such that

for all m 2 N we have |{n . (m, n) 2 E}|  2

if m 2 N and l(m) = Exit then |{n . (m, n) 2 E}| = 0

if m 2 N and l(m) = Entry or l(m) = i := e for some identifier i and

expression e, then |{n . (m, n) 2 E}| = 1

if m 2 N and l(m) = if b for some boolean expression b, then

|{n . (m, n) 2 E}| = 2

k : E ! {seq, yes, no} such that

if (m, n) 2 E and l(m) = Entry or l(m) = i := e, then k((m, n)) = seq

if m,2 N and l(m) = if b, then {k((m, n)) . (m, n) 2 E} = {yes, no}
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Example
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Abstract Interpretation

An abstract interpretation of control flow graphs is a pair (A, I) where
A is a complete latice and to be completed in class
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