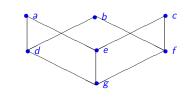
CS477 Formal Software Development Methods

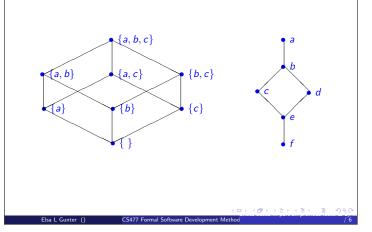

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 24, 2013

Partial orders and Complete Lattices

A partial order on a set S is a binary relation \leq on S such that • [Refl] $s \leq s$ for all $s \in S$

- [Antisym] $s \le t$ and $t \le s$ impilies s = t, for all $s, t \in S$
- **[Trans]** $s \le t$ and $t \le u$ impilies $s \le u$, for all $s, t, \in S$

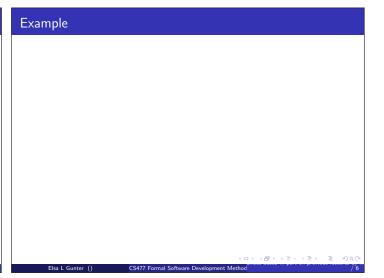

Upper Bounds and Complete Latices

- In a partial order (S, ≤), given X ⊆ S, y is an upper bound for X if for all x ∈ X we have x ≤ y.
- y is a least upper bound of X, y is an upper bound of X and whenever z is an upper bound of X, $y \le z$.
- Note: Least upper bounds are unique.
- A complete lattice is a partial order (L, ≤) such that for all X ⊆ S there exists a (unique) least upper bound.
- Write lub(X) or $\bigvee X$ for the least upper bound of X.
- Write $x \lor y$ for $\bigvee \{x, y\}$
- Note: $x \lor y = x \iff y \le x$
- Note: Given a set S, $(\mathcal{P}(S), \subseteq)$ is a complete lattice.

CS477 Formal Soft

• Write $\bot = \bigvee \{ \}$ and $\top = bigveeS$

Example Complete Lattices


Control-Flow Graphs

Elsa L Gunter ()

A Control-Flow Graph is a tuple (N, E, I, k) where

- N is a finite set of nodes
- $I: N \rightarrow \{\text{Entry}, \text{Exit}, i:=e, ifb, \}$
- $E \subseteq NtimesN$ such that
 - for all $m \in N$ we have $|\{n \cdot (m, n) \in E\}| \leq 2$
 - if $m \in N$ and $l(m) = \text{Exit then } |\{n \cdot (m, n) \in E\}| = 0$
 - if $m \in N$ and l(m) = Entry or l(m) = i := e for some identifier i and expression e, then $|\{n . (m, n) \in E\}| = 1$
 - if $m \in N$ and l(m) = if b for some boolean expression b, then $|\{n . (m, n) \in E\}| = 2$
- $k: E \to {seq, yes, no}$ such that
 - if $(m, n) \in E$ and l(m) = Entry or l(m) = i := e, then k((m, n)) = seq
 - if $m, \in N$ and l(m) = if b, then $\{k((m, n)), (m, n) \in E\} = \{yes, no\}$

→ < 団 > < Ξ > < Ξ > < Ξ > < Ξ < Ͽ< C

Abstract Interpretation

An abstract interpretation of control flow graphs is a pair (A, \mathcal{I}) where

CS477 Formal Software Development Method

• 🔊)

< E)

- A is a complete latice and to be completed in class
- •

Elsa L Gunter ()