
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

April 19, 2013

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 1

/ 18

Traffic Light Example

/* File: trafficlight.pml */

mtype = {NS, EW, Red, Yellow, Green};

bit Turn = 0;

mtype Color[2];

proctype Light(bit myId) {

bit otherId = 1 - myId;

do

:: Turn == myId && Color[myId] == Red

-> Color[myId] = Green

:: Color[myId] == Green

-> Color[myId] = Yellow

:: Color[myId] == Yellow

-> Color[myId] = Red; Turn = otherId

od

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 2

/ 18

init { atomic{Color[0] = Red; Color[1] = Red};

atomic{run Light(0); run Light(1)}

}

/* End of File: trafficlight.pml */

Can test this with

bash-3.2$ spin -p -l -g -u50 trafficlight.pml

0: proc - (:root:) creates proc 0 (:init:)

1: proc 0 (:init:) trafficlight.pml:18 (state 1) [Color[0] = Red]

Color[0] = Red

Color[1] = 0

2: proc 0 (:init:) trafficlight.pml:19 (state 2) [Color[1] = Red]

Color[0] = Red

Color[1] = Red

Starting Light with pid 1

3: proc 0 (:init:) creates proc 1 (Light)

3: proc 0 (:init:) trafficlight.pml:20 (state 5) [(run Light(0))]

Starting Light with pid 2

4: proc 0 (:init:) creates proc 2 (Light)

4: proc 0 (:init:) trafficlight.pml:20 (state 4) [(run Light(1))]

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 3

/ 18

LTL to Never Claim

bash-3.2$ spin -f ’(Color[0] == 0 && Color[1] == 0) U

[]((Color[0] == Red) || (Color[1] == Red))

’ >& trafficlightnever.pml

bash-3.2$ cat trafficlightnever.pml

never /* (Color[0] == 0 && Color[1] == 0) U

[]((Color[0] == Red) || (Color[1] == Red)) */

T0_init:

do

:: (((Color[0] == Red) || (Color[1] == Red))) -> goto accept_S4

:: ((Color[0] == 0 && Color[1] == 0)) -> goto T0_init

od;

accept_S4:

do

:: (((Color[0] == Red) || (Color[1] == Red))) -> goto accept_S4

od;

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 4

/ 18

Using never Claim in Separate File

To use file containing never claim:

bash-3.2$ spin -a -N trafficlightnever.pml trafficlight.pml

bash-3.2$ cc -o pan pan.c

bash-3.2$./pan

omissions

Full statespace search for:

never claim + (never_0)

assertion violations + (if within scope of claim)

acceptance cycles - (not selected)

invalid end states - (disabled by never claim)

State-vector 44 byte, depth reached 34, errors: 0

17 states, stored

1 states, matched

18 transitions (= stored+matched)

1 atomic steps

hash conflicts: 0 (resolved)
Elsa L Gunter () CS477 Formal Software Development Methods

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 5
/ 18

unreached in proctype Light

trafficlight.pml:17, state 11, "-end-"

(1 of 11 states)

unreached in init

(0 of 6 states)

unreached in claim never_0

trafficlightnever.pml:11, state 13, "-end-"

(1 of 13 states)

pan: elapsed time 0.01 seconds

Process Light never ends, so its end state never reached

never claim encodes LTL formual that ends in “always” something -
can’t terminate without error

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 6

/ 18

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 30

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 59

inline init_array(a) {
d_step {
i=0;
do
:: i<N -> a[i] = 0; i++
:: else -> break
od;
i=0;

}
}

inline – poor man’s procedures
• Promela also has its own macro-expansion feature using

the inline-construct.

ಥ HUURU�PHVVDJHV�DUH�PRUH�XVHIXO WKDQ�ZKHQ�XVLQJ�#define
ಥ FDQQRW EH�XVHG�DV�H[SUHVVLRQ
ಥ DOO�YDULDEOHV VKRXOG�EH�GHFODUHG�VRPHZKHUH�HOVH

Should be declared somewhere
else (probably as a local variable).

Be sure to reset temporary variables.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 60

Properties (1)

• With SPIN one may check the following type of properties:

– deadlocks (invalid endstates)

– assertions

– unreachable code

– LTL formulae

– liveness properties

• non-progress cycles (livelocks)

• acceptance cycles

I |M
 0RGHO�FKHFNLQJ�WRROV�DXWRPDWLFDOO\ YHULI\�ZKHWKHU

KROGV��ZKHUH�M LV�D��ILQLWH�VWDWH��PRGHO RI�D�V\VWHP�DQG�
SURSHUW\ I LV�VWDWHG�LQ�VRPH�IRUPDO�QRWDWLRQ�

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 7

/ 18

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 31

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 61

Properties (2)

safety property
– “nothing bad ever happens”

– invariant
x is always less than 5

– deadlock freedom
the system never reaches a
state where no actions are
possible

– SPIN: find a trace leading to
the “bad” thing. If there is not
such a trace, the property is
satisfied.

liveness property
– “something good will eventually

happen”

– termination
the system will eventually
terminate

– response
if action X occurs then
eventually action Y will occur

– SPIN: find a (infinite) loop in
which the “good” thing does not
happen. If there is not such a
loop, the property is satisfied.

Historical
Classification

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 62

Properties (3)

• LTL formulae are used to specify liveness properties.
LTL { propositional logic + temporal operators
– []P always P
– <>P eventually P
– P U Q P is true until Q becomes true

• Some LTL patterns
– invariance [] (p)
– response [] ((p) -> (<> (q)))
– precedence [] ((p) -> ((q) U (r)))
– objective [] ((p) -> <>((q) || (r)))

Xspin contains a special
“LTL Manager” to edit,

save and load LTL properties.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 8

/ 18

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 31

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 61

Properties (2)

safety property
– “nothing bad ever happens”

– invariant
x is always less than 5

– deadlock freedom
the system never reaches a
state where no actions are
possible

– SPIN: find a trace leading to
the “bad” thing. If there is not
such a trace, the property is
satisfied.

liveness property
– “something good will eventually

happen”

– termination
the system will eventually
terminate

– response
if action X occurs then
eventually action Y will occur

– SPIN: find a (infinite) loop in
which the “good” thing does not
happen. If there is not such a
loop, the property is satisfied.

Historical
Classification

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 62

Properties (3)

• LTL formulae are used to specify liveness properties.
LTL { propositional logic + temporal operators
– []P always P
– <>P eventually P
– P U Q P is true until Q becomes true

• Some LTL patterns
– invariance [] (p)
– response [] ((p) -> (<> (q)))
– precedence [] ((p) -> ((q) U (r)))
– objective [] ((p) -> <>((q) || (r)))

Xspin contains a special
“LTL Manager” to edit,

save and load LTL properties.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 9

/ 18

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 32

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 63

Properties (4)

• Suggested further reading (on temporal properties):
[Bérard et. al. 2001]

• Textbook on model checking.
• One part of the book (six chapters) is devoted to

“Specifying with Temporal Logic”.
• Also available in French.

[Dwyer et. al. 1999]
• classification of temporal logic properties
• pattern-based approach to the presentation, codification

and reuse of property specifications for finite-state
verification.

Note: although this tutorial focuses on how to construct an
effective Promela model M, the definition of the set of
properties which are to be verified is equally important!

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 64

Solution to the Hippies problem (1)
DEMO

chan germany_to_holland = [0] of {hippie, hippie} ;
chan holland_to_germany = [0] of {hippie} ;
chan stopwatch = [0] of {hippie} ;
byte time ;
...
proctype Germany()
{

bit here[N] ;
hippie h1, h2 ;
here[0]=1; here[1]=1; here[2]=1; here[3]=1;
do
:: select_hippie(h1) ;

select_hippie(h2) ;
germany_to_holland ! h1, h2 ;
IF all_gone -> break FI ;
holland_to_germany ? h1 ;
here[h1] = 1 ;
stopwatch ! h1 ;

od
}

It can be modelled more effectively
See [Ruys 2001] for directions.

A hippie is a byte.

Process “Holland” is
the dual of “Germany”.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 10

/ 18

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 41

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 81

Invariance
• []P where P is a state property

– safety property
– invariance { global universality or global absence

[Dwyer et. al. 1999]:
• 25% of the properties that are being checked with model

checkers are invariance properties
• BTW, 48% of the properties are response properties

– examples:
• [] !aflag
• [] mutex != 2

• SPIN supports (at least) 7 ways to check for invariance.

[]P

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 82

variant 1+2 - monitor process (single assert)

• proposed in SPIN's documentation

• add the following monitor process to
the Promela model:

1

2

0

assert(P)

-end-

[]P

If the monitor process is
created last, the –end-

transition will be executable
after executing assert(P).

• Two variations:
– 1. monitor process is created first
– 2. monitor process is created last

active proctype monitor()
{
assert(P);

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 11

/ 18

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 41

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 81

Invariance
• []P where P is a state property

– safety property
– invariance { global universality or global absence

[Dwyer et. al. 1999]:
• 25% of the properties that are being checked with model

checkers are invariance properties
• BTW, 48% of the properties are response properties

– examples:
• [] !aflag
• [] mutex != 2

• SPIN supports (at least) 7 ways to check for invariance.

[]P

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 82

variant 1+2 - monitor process (single assert)

• proposed in SPIN's documentation

• add the following monitor process to
the Promela model:

1

2

0

assert(P)

-end-

[]P

If the monitor process is
created last, the –end-

transition will be executable
after executing assert(P).

• Two variations:
– 1. monitor process is created first
– 2. monitor process is created last

active proctype monitor()
{
assert(P);

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 12

/ 18

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 42

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 83

variant 3 - guarded monitor process

• Drawback of solution “1+2 monitor process” is that the
assert statement is enabled in every state.

active proctype monitor()
{

assert(P) ;
}

active proctype monitor()
{

atomic {
!P -> assert(P) ;
}

}

• The atomic statement only becomes executable when P

itself is not true.

[]P

We are searching for a state where P
is not true. If it does not exist, []P is true.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 84

variant 4 - monitor process (do assert)

• From an operational viewpoint, the following monitor
process seems less effective:

• But the number of states is clearly advantageous.

2 assert(P)

[]P

active proctype monitor()
{
do
:: assert(P)
od

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 13

/ 18

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 42

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 83

variant 3 - guarded monitor process

• Drawback of solution “1+2 monitor process” is that the
assert statement is enabled in every state.

active proctype monitor()
{

assert(P) ;
}

active proctype monitor()
{

atomic {
!P -> assert(P) ;
}

}

• The atomic statement only becomes executable when P

itself is not true.

[]P

We are searching for a state where P
is not true. If it does not exist, []P is true.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 84

variant 4 - monitor process (do assert)

• From an operational viewpoint, the following monitor
process seems less effective:

• But the number of states is clearly advantageous.

2 assert(P)

[]P

active proctype monitor()
{
do
:: assert(P)
od

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 14

/ 18

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 43

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 85

never {
do
:: assert(P)
od

}

variant 5 - never claim (do assert)

• also proposed in SPIN's documentation

… and this never claim has not been generated…

[]P

… but SPIN will issue the following unnerving warning:
warning: for p.o. reduction to be valid the never claim must be stutter-closed
(never claims generated from LTL formulae are stutter-closed)

SPIN will synchronise the never
claim automaton with the automaton
of the system. SPIN uses never
claims to verify LTL formulae.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 86

variant 6 - LTL property
• The logical way...

• SPIN translates the LTL formula to an accepting
never claim.

[]P

never { ![]P
TO_init:
if
:: (!P) -> goto accept_all
:: (1) -> goto TO_init
fi;

accept_all:
skip

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 15

/ 18

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 43

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 85

never {
do
:: assert(P)
od

}

variant 5 - never claim (do assert)

• also proposed in SPIN's documentation

… and this never claim has not been generated…

[]P

… but SPIN will issue the following unnerving warning:
warning: for p.o. reduction to be valid the never claim must be stutter-closed
(never claims generated from LTL formulae are stutter-closed)

SPIN will synchronise the never
claim automaton with the automaton
of the system. SPIN uses never
claims to verify LTL formulae.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 86

variant 6 - LTL property
• The logical way...

• SPIN translates the LTL formula to an accepting
never claim.

[]P

never { ![]P
TO_init:
if
:: (!P) -> goto accept_all
:: (1) -> goto TO_init
fi;

accept_all:
skip

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 16

/ 18

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 44

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 87

variant 7 - unless {!P -> ...}
• Enclose the body of (at least) one of the processes into

the following unless clause:

This is quite
restrictive

Note: disabling partial reduction (-DNOREDUCE) may have severe
negative consequences on the effectiveness of the verification run.

[]P

• Discussion
+ no extra process is needed: saves 4 bytes in state vector
+ local variables can be used in the property P
– definition of the process has to be changed
– the unless construct can reach inside atomic clauses
– partial order reduction may be invalid if rendez-vous

communication is used within body
– the body is not allowed to end

{ body } unless { atomic { !P -> assert(P) ; } }

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 88

Invariance experiments
-DNOREDUCE - memory (Mb)

0

10

20

30

40

50

60

brp philo pftp

 1. monitor first
 2. monitor last
 3. guarded monitor
 4. monitor do assert
 5. never do assert
 6. LTL property
 7. unless

[]PPII 300Mhz
128 Mb

SPIN 3.3.10
Linux 2.2.12

NO partial order reduction

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 17

/ 18

