CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

April 19, 2013

Elsa L Gunter ()

CS477 Formal Software Development Methoc

init { atomic{Color[0] = Red; Color[1] = Red};
atomic{run Light(0); run Light(1)}
}
/* End of File: trafficlight.pml */

Can test this with

bash-3.2$ spin -p -1 -g -ub0 trafficlight.pml

0: proc - (:root:) creates proc O (:init:)

1: proc O (:init:) trafficlight.pml:18 (state 1) [Color[0] = Red
Color[0] = Red
Color[1] =0

2: proc O (:init:) trafficlight.pml:19 (state 2) [Color[1] = Red
Color[0] = Red
Color[1] = Red
Starting Light with pid 1

3: proc O (:init:) creates proc 1 (Light)

3: proc 0 (:init:) trafficlight.pml:20 (state 5) [(run Light(0))]
Starting Light with pid 2

4: proc 0 (:init:) creates proc 2 (Light)

4: proc O (:init:) trafficlight.pml:20 (state 4) [(run Light(1))]

Elsa L Gunter () €$477 Formal Software Development Methoc / 18

Using never Claim in Separate File

To use file containing never claim:

bash-3.2$ spin -a -N trafficlightnever.pml trafficlight.pml
bash-3.2$ cc -o pan pan.c

bash-3.2$./pan

omiSSt1Ons

Full statespace search for:

never claim + (never_0)

assertion violations + (if within scope of claim)
acceptance cycles - (not selected)

invalid end states - (disabled by never claim)

State-vector 44 byte, depth reached 34, errors: 0O
17 states, stored
1 states, matched
18 transitions (= stored+matched)
1 atomic steps

hash conflicts:
Elsa L Gunter ()

0 (resolved)

CS477 Formal Software Development Methoc

Traffic Light Example
/* File: trafficlight.pml */

mtype = {NS, EW, Red, Yellow, Green};
bit Turn = O;
mtype Color[2];

proctype Light(bit myId) {
bit otherId = 1 - myId;
do
: Turn == myId && Color[myId] == Red
-> Color[myId] = Green
: Color[myId] == Green
-> Color[myId] = Yellow
:: Color[myId] == Yellow

-> Color[myId] = Red; Turn = otherId

Elsa L Gunter () CS477 Formal Software Development Methoc

LTL to Never Claim

bash-3.2$ spin -f ’(Color[0] == 0 && Color[1] == 0) U
[1((Color[0] == Red) || (Color[1] == Red))
> >& trafficlightnever.pml
bash-3.2$ cat trafficlightnever.pml

never /* (Color[0] == 0 && Color[1] == 0) U
[1((Color[0] == Red) || (Color[1] == Red)) x/

TO_init:

do

(((Color[0] == Red) || (Color[1] ==
((Color[0] == 0 && Color[1] == 0))

Red))) -> goto accept_S4
-> goto TO_init

od;
accept_S4:
do
(((Color[0] == Red) || (Color[1] == Red))) -> goto accept_S4
od;
Elsa L Gunter () CS477 Formal Software Development Methoc / 18

unreached in proctype Light
trafficlight.pml:17, state 11, "-end-"

(1 of 11 states)

unreached in init

(0 of 6 states)

unreached in claim never_0
trafficlightnever.pml:11, state 13, "-end-"
(1 of 13 states)

pan: elapsed time 0.01 seconds

@ Process Light never ends, so its end state never reached

@ never claim encodes LTL formual that ends in “always” something -
can't terminate without error

Elsa L Gunter ()

CS477 Formal Software Development Methoc

Properties ()

* Model checking tools automatically verify whether
MEg
holds, where M is a (finite-state) model of a system and
property ¢ is stated in some formal notation.

+ With SPIN one may check the following type of properties:
— deadlocks (invalid endstates)
— assertions
— unreachable code
— LTL formulae

— liveness properties
* non-progress cycles (livelocks)
+ acceptance cycles

@?}\: Thursday 11-Apr-2002

Elsa L Gunter ()

w0 &

University of Twente

Theo C. Ruys - SPIN Beginners' Tutorial

CS477 Formal Software Development Methoc /18

Historical
Classification

Properties (2

safety property liveness property
— “nothing bad ever happens” — “something good will eventually
happen”
— invariant — termination
x is always less than 5 the system will eventually
— deadlock freedom terminate
the system never reaches a — response

if action X occurs then
eventually action Y will occur

state where no actions are
possible

— SPIN: find a (infinite) loop in
which the “good” thing does not
happen. If there is not such a

— SPIN: find a trace leading to
the “bad” thing. If there is not
such a trace, the property is

satisfied. loop, the property is satisfied.
O
\ : "
Ye® Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 61 (Y

University of Twente

Elsa L Gunter () CS477 Formal Software Development Methoc / 1

Properties @)

* LTL formulae are used to specify liveness properties.
LTL = propositional logic + temporal operators

- [1P always P
- <>P eventually P
-PUQ P is true until Q becomes true

Xspin contains a special
“LTL Manager” to edit,
save and load LTL properties.

* Some LTL patterns
— invariance [1 (p)

— response [1 ((p) -> (<> (9)))

— precedence [1 ((p) -> ((q@) U (x)))

— objective [1 ((p) > <>0(a) Il (x)))
(@%?\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial §2 f‘J

Elsa L Gunter () CS477 Formal Software Development Methoc /18

Properties)

» Suggested further reading (on temporal properties):

[Bérard et. al. 2001]
» Textbook on model checking.
+ One part of the book (six chapters) is devoted to
“Specifying with Temporal Logic”.
* Also available in French.

[Dwyer et. al. 1999]
« classification of temporal logic properties
* pattern-based approach to the presentation, codification
and reuse of property specifications for finite-state
verification.

Note: although this tutorial focuses on how to construct an

effective Promela model M, the definition of the set of
2 properties which are to be verified is equally important!

0 &

University of Twente

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial

Elsa L Gunter ()

CS477 Formal Software Development Methoc

Invariance

« [1P where P is a state property
— safety property
— invariance = global universality or global absence
[Dwyer et. al. 1999]:
+ 25% of the properties that are being checked with model
checkers are invariance properties
« BTW, 48% of the properties are response properties

— examples:
« [1 'aflag
* [] mutex != 2

« SPIN supports (at least) 7 ways to check for invariance.

Thursday 11-Apr-2002

Elsa L Gunter ()

81@

University of Twente

Theo C. Ruys - SPIN Beginners' Tutorial

CS5477 Formal Software Development Methoc / 18

variant 1+#2 - monitor process (single assert)

» proposed in SPIN's documentation

» add the following monitor process to
the Promela model:

active proctype monitor () assert(P)
{

assert (P) ; g
} -end-

» Two variations:
— 1. monitor process is created first/-
— 2. monitor process is created last

If the monitor process is
created last, the —end-
transition will be executable
after executing assert (P).

N A
éé’\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 82 {ij
University of Twente

Elsa L Gunter () CS477 Formal Software Development Methoc /18

[1p
variant 3 - guarded monitor process

» Drawback of solution “1+2 monitor process” is that the
assert statement is enabled in every state.

active proctype monitor ()

active proctype monitor () {
{ atomic {
assert(P) ; 'P -> assert(P) ;
} }
}

* The atomic statement only becomes executable when P

itself is not true.
We are searching for a state where P
is not true. If it does not exist, [1P is true.

[1P
variant 4 - monitor process (do assert)

» From an operational viewpoint, the following monitor
process seems less effective:

active proctype monitor ()

{
do
:: assert(P) assert (P)
od

+ But the number of states is clearly advantageous.

3 P\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 83 ﬂ; P\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 84 f‘J
University of Twente University of Twente
Elsa L Gunter () CS477 Formal Software Development Methoc / 18 Elsa L Gunter () CS477 Formal Software Development Methoc
. [e [1p
variant B - never claim (do assert) variant 6 - LTL property
+ also proposed in SPIN's documentation « The logical way...
e + SPIN tran;lates the LTL formula to an accepting
do SPIN will synchronise the never never claim.
:: assert(P) claim automaton with the automaton
od of the system. SPIN uses never never { ![]P
} claims to verify LTL formulae. TO_init:
i

... but SPIN will issue the following unnerving warning:
warning: for p.o. reduction to be valid the never claim must be stutter-closed
(never claims generated from LTL formulae are stutter-closed)

... and this never claim has not been generated...

B
)
4

N iners’ Tutor O]
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 85 \%Y
University of Twente
Elsa L Gunter () CS477 Formal Software Development Methoc 18
[ie

variant 7 - unless {!'P -> ...}

» Enclose the body of (at least) one of the processes into
the following unless clause:

{ body } unless { atomic { 'P -> assert(P) ; } }

» Discussion
+ no extra process is needed: saves 4 bytes in state vector
+ local variables can be used in the property P
— definition of the process has to be changed
— the unless construct can reach inside atomic clauses
— partial order reduction may be invalid if rendez-vous
communication is used within body

This is quite
— the body is not allowed to end — d

restrictive

Note: disabling partial reduction (-DNOREDUCE) may have severe
negative consequences on the effectiveness of the verification run.

&
\\§\‘,'s: Thursday 11-Apr-2002

Elsa L Gunter ()

87@

University of Twente

Theo C. Ruys - SPIN Beginners' Tutorial

CS477 Formal Software Development Methoc

(!P) -> goto accept_all

(1) -> goto TO_init
£i;
accept_all:
skip
}
\ = : -
P"\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 86 @
University of Twente
Elsa L Gunter () CS477 Formal Software Development Methoc

