
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

April 19, 2013

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 1

/ 1

Assertin Violation: mutextwrong1.pml

bit flag; /* signal entering/leaving the section */

byte mutex; /* # procs in the critical section. */

proctype P(bit i) {

flag != 1;

flag = 1;

mutex++;

printf("MSC: P(%d) has entered section.\n", i);

mutex--;

flag = 0;

}

proctype monitor() {

assert(mutex != 2);

}

init {

atomic { run P(0); run P(1); run monitor(); }

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 2

/ 1

SPIN as Simulator

bash-3.2$ spin mutexwrong1.pml

MSC: P(0) has entered section.

MSC: P(1) has entered section.

4 processes created

bash-3.2$!s

spin mutexwrong1.pml

MSC: P(1) has entered section.

MSC: P(0) has entered section.

4 processes created

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 3

/ 1

Assertion Checking in SPIN

bash-3.2$ spin -a mutexwrong1.pml

bash-3.2$ cc -o pan pan.c

bash-3.2$./pan

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 4

/ 1

SPIN (Partial) Output

hint: this search is more efficient if pan.c is compiled

-DSAFETY

pan:1: assertion violated (mutex!=2) (at depth 11)

pan: wrote mutexwrong1.pml.trail

(Spin Version 6.2.4 -- 8 March 2013)

Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 5

/ 1

Deadlock: mutextwrong2.pml

bit x, y; /* signal entering/leaving the section */

byte mutex; /* # of procs in the critical section. */

active proctype A() {

x = 1;

y == 0;

mutex++;

printf ("Process A is in the critical section\n");

mutex--;

x = 0;

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 6

/ 1

Deadlock: mutextwrong2.pml

active proctype B() {

y = 1;

x == 0;

mutex++;

printf ("Process B is in the critical section\n");

mutex--;

y = 0;

}

active proctype monitor() {

assert(mutex != 2);

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 7

/ 1

SPIN as Simulator

bash-3.2$ spin mutexwrong2.pml

Process A is in the critical section

Process B is in the critical section

3 processes created

bash-3.2$ spin mutexwrong2.pml

timeout

#processes: 2

x = 1

y = 1

mutex = 0

3: proc 1 (B) mutexwrong2.pml:15 (state 2)

3: proc 0 (A) mutexwrong2.pml:6 (state 2)

3 processes created

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 8

/ 1

Deadlock Detection in SPIN

bash-3.2$ spin -a mutexwrong2.pml

bash-3.2$ cc -o pan pan.c

bash-3.2$./pan

hint: this search is more efficient if pan.c is compiled -DSAFETY

pan:1: invalid end state (at depth 3)

pan: wrote mutexwrong2.pml.trail

(Spin Version 6.2.4 -- 8 March 2013)

Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 9

/ 1

Examining Error Traces: mutexwrong3.pml

/* File: mutexwrong3.pml */

byte cnt;

byte x, y, z;

active [2] proctype user()

{ byte me = _pid + 1; /* me either 1 or 2 */

again:

x = me;

if

:: (y == 0 || y == me) -> skip

:: else -> goto again;

fi;

z = me;

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 10

/ 1

Examining Error Traces: mutexwrong3.pml

if

:: (x == me) -> skip

:: else -> goto again;

fi;

y = me;

if

:: (z == me) -> skip

:: else -> goto again;

fi;

/* enter the critical section */

cnt = cnt + 1;

assert (cnt == 1);

cnt = cnt -1;

goto again

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 11

/ 1

Generating Error Traces: mutexwrong3.pml

bash-3.2$ spin -a mutexwrong2.pml

bash-3.2$ cc -o pan pan.c

bash-3.2$./pan

hint: this search is more efficient if pan.c is compiled

-DSAFETY

pan:1: invalid end state (at depth 3)

pan: wrote mutexwrong2.pml.trail

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 12

/ 1

Examining Error Traces: mutexwrong1.pml

How did mutexwrong1.pml go wrong?

bash-3.2$

spin -p -s -r -v -n123 -l -g -k mutexwrong1.pml.trail

-u10000 mutexwrong1.pml

Simulator options (incomplete):

-p: Print at each state which process took which step

-s: Print send statements and their effects

-r: Print receive statements and their effects

-v: verbose

-nN: Use N as random seed, instead of clock (good for
reproducibility)

l Show changes to local variables

g Show changes to global variables

-uN Limit number of steps taken to N

-kfilename use the trail file stored in filefname

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 13

/ 1

Examining Error Traces: mutexwrong1.pml

How did mutexwrong1.pml go wrong?

spin: mutexwrong1.pml:0, warning, proctype P, ’bit i’

variable is never used (other than in print stmnts)

using statement merging

Starting P with pid 1

1: proc 0 (:init:) mutexwrong1.pml:15 (state 1) [(run P(0))]

Starting P with pid 2

2: proc 0 (:init:) mutexwrong1.pml:15 (state 2) [(run P(1))]

Starting monitor with pid 3

3: proc 0 (:init:) mutexwrong1.pml:15 (state 3)

[(run monitor())]

4: proc 2 (P) mutexwrong1.pml:4 (state 1) [((flag!=1))]

5: proc 1 (P) mutexwrong1.pml:4 (state 1) [((flag!=1))]

6: proc 2 (P) mutexwrong1.pml:5 (state 2) [flag = 1]

flag = 1

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 14

/ 1

Examining Error Traces: mutexwrong1.pml
7: proc 2 (P) mutexwrong1.pml:6 (state 3)

[mutex = (mutex+1)]

mutex = 1

MSC: P(1) has entered section.

8: proc 2 (P) mutexwrong1.pml:7 (state 4)

[printf(’MSC: P(%d) has entered section.\n’,i)]

9: proc 1 (P) mutexwrong1.pml:5 (state 2) [flag = 1]

10: proc 1 (P) mutexwrong1.pml:6 (state 3)

[mutex = (mutex+1)]

mutex = 2

MSC: P(0) has entered section.

11: proc 1 (P) mutexwrong1.pml:7 (state 4)

[printf(’MSC: P(%d) has entered section.\n’,i)]

spin: mutexwrong1.pml:12, Error: assertion violated

spin: text of failed assertion: assert((mutex!=2))

12: proc 3 (monitor) mutexwrong1.pml:12 (state 1)

[assert((mutex!=2))]

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 15

/ 1

Examining Error Traces: mutexwrong1.pml

spin: trail ends after 12 steps

#processes: 4

flag = 1

mutex = 2

12: proc 3 (monitor) mutexwrong1.pml:13 (state 2) <valid end state>

12: proc 2 (P) mutexwrong1.pml:8 (state 5)

12: proc 1 (P) mutexwrong1.pml:8 (state 5)

12: proc 0 (:init:) mutexwrong1.pml:16 (state 5) <valid end state>

4 processes created

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 16

/ 1

Demo of ispin

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 17

/ 1

never Claims

never claims used to describe systemwide behavior that should be
impossible

monitor process show similar idea

monitor checks property is true in some interleaved fashion
never claim check a proerty does not happen (anywhere in any
exectuion)
never claim takes a step after every step of every other process

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 18

/ 1

Never Claims: mutextwrong1a.pml

bit flag; /* signal entering/leaving the section */

byte mutex; /* # procs in the critical section. */

proctype P(bit i) {

flag != 1;

flag = 1;

mutex++;

printf("MSC: P(%d) has entered section\n", i);

mutex--;

flag = 0

}

never{ do

:: ((mutex != 0)&&(mutex != 1)) -> break

:: else

od }

init { atomic { run P(0); run P(1) } }

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 19

/ 1

SPIN Checking never claim

bash-3.2$ spin -p -v -n123 -l -g -k mutexwrong1a.pml.trail mutexwrong1a.pml

spin: mutexwrong1a.pml:0, warning, proctype P, ’bit i’ variable is never used (other than in print stmnts)

starting claim 1

using statement merging

1: proc - (never_0) mutexwrong1a.pml:15 (state 3) [else]

Never claim moves to line 15 [else]

Starting P with pid 2

2: proc 0 (:init:) mutexwrong1a.pml:20 (state 1) [(run P(0))]

Starting P with pid 3

3: proc 0 (:init:) mutexwrong1a.pml:20 (state 2) [(run P(1))]

4: proc - (never_0) mutexwrong1a.pml:15 (state 3) [else]

5: proc 2 (P) mutexwrong1a.pml:4 (state 1) [((flag!=1))]

6: proc - (never_0) mutexwrong1a.pml:15 (state 3) [else]

7: proc 1 (P) mutexwrong1a.pml:4 (state 1) [((flag!=1))]

8: proc - (never_0) mutexwrong1a.pml:15 (state 3) [else]

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 20

/ 1

9: proc 2 (P) mutexwrong1a.pml:5 (state 2) [flag = 1]

flag = 1

10: proc - (never_0) mutexwrong1a.pml:15 (state 3) [else]

11: proc 2 (P) mutexwrong1a.pml:6 (state 3)

[mutex = (mutex+1)]

mutex = 1

12: proc - (never_0) mutexwrong1a.pml:15 (state 3) [else]

MSC: P(1) has entered section.

13: proc 2 (P) mutexwrong1a.pml:7 (state 4)

[printf(’MSC: P(%d) has entered section.\n’,i)]

14: proc - (never_0) mutexwrong1a.pml:15 (state 3) [else]

15: proc 1 (P) mutexwrong1a.pml:5 (state 2) [flag = 1]

16: proc - (never_0) mutexwrong1a.pml:15 (state 3) [else]

17: proc 1 (P) mutexwrong1a.pml:6 (state 3)

[mutex = (mutex+1)]

mutex = 2

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 21

/ 1

18: proc - (never_0) mutexwrong1a.pml:14 (state 1)

[(((mutex!=0)&&(mutex!=1)))]

Never claim moves to line 14 [(((mutex!=0)&&(mutex!=1)))]

spin: trail ends after 19 steps

#processes: 3

flag = 1

mutex = 2

19: proc 2 (P) mutexwrong1a.pml:8 (state 5)

19: proc 1 (P) mutexwrong1a.pml:7 (state 4)

19: proc 0 (:init:) mutexwrong1a.pml:21 (state 4) <valid end state>

19: proc - (never_0) mutexwrong1a.pml:17 (state 7) <valid end state>

3 processes created

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 19, 2013 22

/ 1

