CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides mostly a reproduction of Theo C. Ruys — SPIN Beginners’
Tutorial

April 10, 2013

Elsa L Gunter () CS477 Formal Software Development Methoc

Hello World

/* A "Hello World" Promela model for SPIN. */
active proctype Hello() {
printf("Hello process, my pid is: %d\n", _pid);
}
init {
int lastpid;
printf("init process, my pid is: %d\n", _pid);
lastpid = run Hello();
printf("last pid was: %d\n", lastpid);

Elsa L Gunter ()

CS477 Formal Software Development Methoc

Hello World, Sample Execution Hello Processes

bash-3.2$ spin hello.pml
init process, my pid is: 1
Hello process, my pid is: O
Hello process, my pid is: 2
last pid was: 2
3 processes created
bash-3.2$ spin hello.pml
Hello process, my pid is: 0O
init process, my pid is: 1
last pid was: 2
Hello process, my pid is: 2
3 processes created

Elsa L Gunter ()

CS477 Formal Software Development Methoc

Hello Processes Interleavings

Elsa L Gunter () CS477 Formal Software Development Methoc

Elsa L Gunter () CS477 Formal Software Development Methoc

Interleaving Semantics

* Promela processes execute concurrently.
* Non-deterministic scheduling of the processes.

* Processes are interleaved (statements of different
processes do not occur at the same time).
— exception: rendez-vous communication.

» All statements are atomic; each statement is executed
without interleaving with other processes.

» Each process may have several different possible actions
enabled at each point of execution.

— only one choice is made, non-deterministically.
-

- = randomly
S8 &)
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 25 (%
University of Twsante.

Elsa L Gunter ()

CS477 Formal Software Development Methoc

Variables and Types @

Basic types
« Five different (integer) bit turn=1; [0..1]
basic types. bool flag; [0..1]
byte counter; [0..255]
« Arrays short s; [-216-1.. 216 —1]
int msg; [-232-1.. 232 1]

* Records (structs) Arrays
D

. arras
« Type conflicts are detected byte a[27]; ;ndicizg
at runtime. B Eeeplidl s start at O
« Default initial value of basic Typ(idefc(lrefcids)d .
. ede COX
variables (local and global) et £1;
is 0.) Ly SRRy variable
E———— declaration
rr.fl = ..
O
§%§>: o o
“?s Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 20 L‘J
University of Twante

Elsa L Gunter () CS477 Formal Software Development Methoc

Variables and Types (2)

. ; int ii;
X:;ZE;S should be ST Do
. . bb=1;/ assignment =
» Variables can be given a ii=2;
value by:
. 1, — g
— assignment short s=-1; CLE TR
. initialisation
— argument passing typedef Foo {
— message passing bit bb;
(see communication) }.mt ==
. i i Foo £;
Varlablgs can be used in £.bb = 0
expressions. 7oA = =g
equal test ==

Most arithmetic, relational,
and logical operators of
C/Java are supported,

including bitshift operators.

ii*s+27 == 23;

=
s

7
‘)’\: Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial

CS477 Formal Software Development Methoc

Elsa L Gunter ()

printf (“value: %d”, s*s);

21(‘)

University of Twente

Statements @)

The body of a process consists of a sequence of

statements. A statement is either

— executable: the statement can
be executed immediately.

— blocked: the statement cannot be executed.

executable/blocked
depends on the global
state of the system.

» An assignment is always executable.

* An expression is also a statement; it is executable if it
evaluates to non-zero.

Statements are

Statements ()

+ The skip statement is always executable.
— “does nothing”, only changes process’ process counter

separated by a
semi-colon: *;".

* A run statement is only executable if a new process can be

created (remember: the number of processes is bounded).

* Aprintf statementis always executable (but is not
evaluated during verification, of course).
int x;
proctype Aap()
{ Executable if Noot can

int y=1; be created...
2<3 always executable skip;
. . run Noot() ;
x < 27 only executable if value of x is smaller 27 =R /— Can only become executable
3+ x executable if x is not equal to -3 x>2 && y==1; if a some other process
skip; makes x greater than 2.
= \/@ }
@: R o ey R o
Ps Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 22 \y P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 23 \%
University of Tuente University of Twente
Elsa L Gunter () CS477 Formal Software Development Methoc 19’ Elsa L Gunter () CS477 Formal Software Development Methoc /19
DEMO WRONG!
Statements (3) Mutual Exclusion @)
¢ assert (<expr>) ; bit flag; /* signal entering/leaving the section */

— The assert-statement is always executable.

— If <expr> evaluates to zero, SPIN will exit with an error, as
the <expr> “has been violated”.

— The assert-statement is often used within Promela models,
to check whether certain properties are valid in a state.
proctype monitor() {

assert(n <= 3);

}
proctype receiver() {

toReceiver ? msg;
assert(msg !'= ERROR) ;

}

N
P
P\ Thursday 11-Apr-2002

Elsa L Gunter ()

u &

University of Twente

Theo C. Ruys - SPIN Beginners' Tutorial

CS477 Formal Software Development Methoc

/19

byte mutex; /* # procs in the critical section.

proctype P(bit i) {
flag !=1; models:

1
|_f_l_ag_ _=__]';_| while (flag == 1) /* wait */;
mutex++;
printf ("MSC: P(%d) has entered section.\n", i);

mutex--;

flag = 0;

Problem: assertion violation!
Both processes can pass the

proctype monitor() {
assert (mutex !'= 2);

}

i.e. before £lag is set to 1.

init {
atomic { run P(0); run P(l); run monitor(); }
}

P‘ Thursday 11-Apr-2002

~—
Theo C. Ruys - SPIN Beginners' Tutorial

Elsa L Gunter () CS477 Formal Software Development Methoc

274

flag !'= 1 “at the same time",

starts two instances of process P

2 &

University of Twente

DEMO WRONG!

Mutual Exclusion)

/* signal entering/leaving the section */
/* # of procs in the critical section. */

bit x, y;
byte mutex;

ac_t_ive_ proctype B() {

1_'_.:/ Process A waits for i i 2t i
mutex++; RIOCESS B to end. mutex++;
mutex--; \mutex—— 8
x =0; y=0;

} }

active proctype monitor() {
assert (mutex !'= 2);

Problem: invalid-end-statel

Both processes can pass execute

x = landy = 1 “at the same time",
and will then be waiting for each other.

}

Dekker [1962]

DEMO .
Mutual Exclusion (3)
bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */
byte turn; /* who's turn is it? */

active proctype A() {

}

active proctype B() {

x =1; y=1;
turn = B_TURN; turn = A TURN;
y = I x == I

(turn == A TURN) ; (turn == B TURN) ;
mutex++; mutex++; -
MILEX"Z7 Can be generalised MR =g
x =0; y =0;

to a single process.)

active proctype monitor() {

}

assert (mutex !'= 2);

First "software-only" solution to the
mutex problem (for two processes).

R SN
qﬁ T o He o @&
8" Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 29 % ‘)s Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 30 \Y
P University of Twente University of Twente
Elsa L Gunter () CS477 Formal Software Development Methoc /19 Elsa L Gunter () CS477 Formal Software Development Methoc : /19
DEMO query 5 lir\SI:)I'I"(’.d byd ’
H if_ ijkstra's guarde
Mutual Exclusion) if-statement @) e
byte turn[2]; /* who’s turn is it? */ if
byte mutex; /* # procs in critical section */ choice; -> stat; ;; stat; ,; stat; ;;
choice, -> stat, ;; stat, ,; stat,;;
proctype P(bit i) { Problem (in Promela/SPIN): .-
do turn[i] will overrun after 255. :: choice, -> stat,;; stat,,; stat,;;
:: turn[i] ='1; £i;

(turn[1l-i] == 0) || (turn[i] < turn[l-i]);
mutex++;
mutex--;
turn[i] = 0;
od More mutual exclusion algorithms

} in (good-old) [Ben-Ari 1990].

proctype monitor() { assert(mutex !'= 2); }
init { atomic {run P(0); run P(1l); run monitor()}}

If there is at least one choice; (guard) executable, the if-
statement is executable and SPIN non-deterministically
chooses one of the executable choices.

If no choice; is executable, the i f-statement is blocked.

The operator “->” is equivalent to “;”. By convention, it is used
within i £-statements to separate the guards from the
statements that follow the guards.

i G) e 6
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 31 L‘J P‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 32 Yy
University of Twente University of Twente
Elsa L Gunter () CS477 Formal Software Development Methoc i /19 Elsa L Gunter () CS477 Formal Software Development Methoc / 19
if-statement (2 do-statement @)
do

(n %2 !=0) -> n= * The else guard becomes

(n >= 0) -> n=n-2 executable if none of the
88 0 & 3 ==) =& == other guards is executable.
: else -> skip

fi

give n a random value non-deterministic branching

if
:: skip -> n=0
skip -> n=1
skip -> n=2
skip -> n=3

éi_

QA
&Ps Thursday 11-Apr-2002

skips are redundant, because assignments
are themselves always executable...

33@

University of Twente

Theo C. Ruys - SPIN Beginners' Tutorial

Elsa L Gunter () CS5477 Formal Software Development Methoc i /19

choice; -> stat, ;; stat; ,; stat; ;;
choice, -> stat,;; stat,,; stat,;;

choice, -> stat,,;; stat,,; stat, ;;
od;

With respect to the choices, a do-statement behaves in the
same way as an if-statement.

However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice

selection.

The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop.

A
u &
University of Twente

CS477 Formal Software Development Methoc /19

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial

Elsa L Gunter ()

do-statement (2

) o if- and do-statements
» Example — modelling a traffic light are ordinary Promela
statements; so they can

be nested.
mtype = { RED, YELLOW, GREEN } ;

mtype (message type) models enumerations in Promela

active proctype TrafficLight() ({
byte state = GREEN;
do
(state == GREEN) -> state = YELLOW;
(state == YELLOW) -> state RED;
(state == RED) -> state = GREEN;

od; \

} Note: this do-loop does not contain
— any non-deterministic choice.
e G}
P Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 35 B

1

University of Twente

Elsa L Gunter () CS477 Formal Software Development Methoc

