
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’
Tutorial
April 10, 2013

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 1

/ 19

Hello World

/* A "Hello World" Promela model for SPIN. */

active proctype Hello() {

printf("Hello process, my pid is: %d\n", pid);

}

init {

int lastpid;

printf("init process, my pid is: %d\n", pid);

lastpid = run Hello();

printf("last pid was: %d\n", lastpid);

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 2

/ 19

Hello World, Sample Execution

bash-3.2$ spin hello.pml

init process, my pid is: 1

Hello process, my pid is: 0

Hello process, my pid is: 2

last pid was: 2

3 processes created

bash-3.2$ spin hello.pml

Hello process, my pid is: 0

init process, my pid is: 1

last pid was: 2

Hello process, my pid is: 2

3 processes created

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 3

/ 19

Hello Processes

Hello()

print "Hello"

init()

print "init"

run Hello()

print "last"

Hello()

print "Hello"

hhhhhhhhhhz

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 4

/ 19

Hello Processes Interleavings

Hello()

print "Hello"��
��

��
��
��*

 :

hh hh hh hh hhz
HH

HH
HH

HH
HHj

init()

print "init"

run Hello()

print "last"

Hello()

print "Hello"PP
PP

PP
PP

PPi

`̀`̀`̀`̀`̀y

((((((((((9

hhhhhhhhhhz

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 5

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 13

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 25

Interleaving Semantics
• Promela processes execute concurrently.

• Non-deterministic scheduling of the processes.

• Processes are interleaved (statements of different
processes do not occur at the same time).
– exception: rendez-vous communication.

• All statements are atomic; each statement is executed
without interleaving with other processes.

• Each process may have several different possible actions
enabled at each point of execution.
– only one choice is made, non-deterministically.

= randomly

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 26

(X)SPIN Architecture

Promela
model M Xspin spin.exe

M |M

M LTL
Translator

Simulator

Verifier
Generator

C program pan.*

checker pan.exe

editing window
simulation options

verification options
MSC simulation window counter

example
 |

random
guided
interactive

false

SPIN

•deadlocks
•safety properties
•liveness properties

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 6

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 10

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 19

Hello World!
/* A "Hello World" Promela model for SPIN. */
active proctype Hello() {

printf("Hello process, my pid is: %d\n", _pid);
}
init {

int lastpid;
printf("init process, my pid is: %d\n", _pid);
lastpid = run Hello();
printf("last pid was: %d\n", lastpid);

}

$ spin -n2 hello.pr
init process, my pid is: 1

last pid was: 2
Hello process, my pid is: 0

Hello process, my pid is: 2
3 processes created

running SPIN in
random simulation mode

random seed

DEMO

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 20

Basic types

bit turn=1; [0..1]

bool flag; [0..1]

byte counter; [0..255]

short s; [-216-1.. 216 –1]

int msg; [-232-1.. 232 –1]

Arrays

byte a[27];
bit flags[4];

Typedef (records)

typedef Record {
short f1;
byte f2;

}
Record rr;
rr.f1 = ..

Variables and Types (1)

• Five different (integer)

basic types.

• Arrays

• Records (structs)

• Type conflicts are detected

at runtime.

• Default initial value of basic

variables (local and global)

is 0.

array
indicing

start at 0

variable
declaration

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 7

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 11

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 21

int ii;
bit bb;

bb=1;
ii=2;

short s=-1;

typedef Foo {
bit bb;
int ii;

};
Foo f;
f.bb = 0;
f.ii = -2;

ii*s+27 == 23;
printf(“value: %d”, s*s);

Variables and Types (2)

• Variables should be
declared.

• Variables can be given a
value by:
– assignment
– argument passing
– message passing

(see communication)

• Variables can be used in
expressions.

assignment =

equal test ==

declaration +
initialisation

Most arithmetic, relational,
and logical operators of
C/Java are supported,

including bitshift operators.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 22

Statements (1)

• The body of a process consists of a sequence of
statements. A statement is either
– executable: the statement can

be executed immediately.
– blocked: the statement cannot be executed.

• An assignment is always executable.

• An expression is also a statement; it is executable if it
evaluates to non-zero.

2 < 3 always executable
x < 27 only executable if value of x is smaller 27
3 + x executable if x is not equal to –3

executable/blocked
depends on the global
state of the system.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 8

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 11

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 21

int ii;
bit bb;

bb=1;
ii=2;

short s=-1;

typedef Foo {
bit bb;
int ii;

};
Foo f;
f.bb = 0;
f.ii = -2;

ii*s+27 == 23;
printf(“value: %d”, s*s);

Variables and Types (2)

• Variables should be
declared.

• Variables can be given a
value by:
– assignment
– argument passing
– message passing

(see communication)

• Variables can be used in
expressions.

assignment =

equal test ==

declaration +
initialisation

Most arithmetic, relational,
and logical operators of
C/Java are supported,

including bitshift operators.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 22

Statements (1)

• The body of a process consists of a sequence of
statements. A statement is either
– executable: the statement can

be executed immediately.
– blocked: the statement cannot be executed.

• An assignment is always executable.

• An expression is also a statement; it is executable if it
evaluates to non-zero.

2 < 3 always executable
x < 27 only executable if value of x is smaller 27
3 + x executable if x is not equal to –3

executable/blocked
depends on the global
state of the system.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 9

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 12

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 23

Statements (2)

• The skip statement is always executable.

– “does nothing”, only changes process’ process counter

• A run statement is only executable if a new process can be

created (remember: the number of processes is bounded).

• A printf statement is always executable (but is not

evaluated during verification, of course).

int x;
proctype Aap()
{

int y=1;
skip;
run Noot();
x=2;
x>2 && y==1;
skip;

}

Can only become executable
if a some other process
makes x greater than 2.

Executable if Noot can
be created…

Statements are
separated by a
semi-colon: “;”.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 24

Statements (3)

• assert(<expr>);
– The assert-statement is always executable.

– If <expr> evaluates to zero, SPIN will exit with an error, as
the <expr> “has been violated”.

– The assert-statement is often used within Promela models,

to check whether certain properties are valid in a state.

proctype monitor() {
assert(n <= 3);

}

proctype receiver() {
...
toReceiver ? msg;
assert(msg != ERROR);
...

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 10

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 12

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 23

Statements (2)

• The skip statement is always executable.

– “does nothing”, only changes process’ process counter

• A run statement is only executable if a new process can be

created (remember: the number of processes is bounded).

• A printf statement is always executable (but is not

evaluated during verification, of course).

int x;
proctype Aap()
{

int y=1;
skip;
run Noot();
x=2;
x>2 && y==1;
skip;

}

Can only become executable
if a some other process
makes x greater than 2.

Executable if Noot can
be created…

Statements are
separated by a
semi-colon: “;”.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 24

Statements (3)

• assert(<expr>);
– The assert-statement is always executable.

– If <expr> evaluates to zero, SPIN will exit with an error, as
the <expr> “has been violated”.

– The assert-statement is often used within Promela models,

to check whether certain properties are valid in a state.

proctype monitor() {
assert(n <= 3);

}

proctype receiver() {
...
toReceiver ? msg;
assert(msg != ERROR);
...

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 11

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 14

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 27

Xspin in a nutshell

• Xspin allows the user to
– edit Promela models (+ syntax check)
– simulate Promela models

• random
• interactive
• guided

– verify Promela models
• exhaustive
• bitstate hashing mode

– additional features
• Xspin suggest abstractions to a Promela model (slicing)
• Xspin can draw automata for each process
• LTL property manager
• Help system (with verification/simulation guidelines)

with dialog boxes to set
various options and directives

to tune the verification process

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 28

bit flag; /* signal entering/leaving the section */
byte mutex; /* # procs in the critical section. */

proctype P(bit i) {

flag != 1;

flag = 1;

mutex++;

printf("MSC: P(%d) has entered section.\n", i);

mutex--;

flag = 0;

}

proctype monitor() {

assert(mutex != 2);

}

init {

atomic { run P(0); run P(1); run monitor(); }

}

Mutual Exclusion (1)
WRONG!

starts two instances of process P

DEMO

models:
while (flag == 1) /* wait */;

Problem: assertion violation!
Both processes can pass the
flag != 1 “at the same time”,
i.e. before flag is set to 1.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 12

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 15

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 29

Mutual Exclusion (2)

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */

active proctype A() {
x = 1;
y == 0;
mutex++;
mutex--;
x = 0;

}
active proctype monitor() {

assert(mutex != 2);
}

WRONG!

active proctype B() {
y = 1;
x == 0;
mutex++;
mutex--;
y = 0;

}

Process A waits for
process B to end.

DEMO

Problem: invalid-end-state!
Both processes can pass execute
x = 1 and y = 1 “at the same time”,
and will then be waiting for each other.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 30

Mutual Exclusion (3)
Dekker [1962]

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */
byte turn; /* who's turn is it? */

active proctype A() {
x = 1;
turn = B_TURN;
y == 0 ||
(turn == A_TURN);

mutex++;
mutex--;
x = 0;

}
active proctype monitor() {

assert(mutex != 2);
}

active proctype B() {
y = 1;
turn = A_TURN;
x == 0 ||
(turn == B_TURN);

mutex++;
mutex--;
y = 0;

}

DEMO

First “software-only” solution to the
mutex problem (for two processes).

Can be generalised
to a single process.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 13

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 15

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 29

Mutual Exclusion (2)

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */

active proctype A() {
x = 1;
y == 0;
mutex++;
mutex--;
x = 0;

}
active proctype monitor() {

assert(mutex != 2);
}

WRONG!

active proctype B() {
y = 1;
x == 0;
mutex++;
mutex--;
y = 0;

}

Process A waits for
process B to end.

DEMO

Problem: invalid-end-state!
Both processes can pass execute
x = 1 and y = 1 “at the same time”,
and will then be waiting for each other.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 30

Mutual Exclusion (3)
Dekker [1962]

bit x, y; /* signal entering/leaving the section */
byte mutex; /* # of procs in the critical section. */
byte turn; /* who's turn is it? */

active proctype A() {
x = 1;
turn = B_TURN;
y == 0 ||
(turn == A_TURN);

mutex++;
mutex--;
x = 0;

}
active proctype monitor() {

assert(mutex != 2);
}

active proctype B() {
y = 1;
turn = A_TURN;
x == 0 ||
(turn == B_TURN);

mutex++;
mutex--;
y = 0;

}

DEMO

First “software-only” solution to the
mutex problem (for two processes).

Can be generalised
to a single process.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 14

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 16

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 31

Mutual Exclusion (4)
BakeryDEMO

byte turn[2]; /* who’s turn is it? */
byte mutex; /* # procs in critical section */

proctype P(bit i) {

do

:: turn[i] = 1;

turn[i] = turn[1-i] + 1;

(turn[1-i] == 0) || (turn[i] < turn[1-i]);

mutex++;

mutex--;

turn[i] = 0;

od

}

proctype monitor() { assert(mutex != 2); }

init { atomic {run P(0); run P(1); run monitor()}}

More mutual exclusion algorithms
in (good-old) [Ben-Ari 1990].

Problem (in Promela/SPIN):
turn[i] will overrun after 255.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 32

if-statement (1)

• If there is at least one choicei (guard) executable, the if-
statement is executable and SPIN non-deterministically
chooses one of the executable choices.

• If no choicei is executable, the if-statement is blocked.

• The operator “->” is equivalent to “;”. By convention, it is used
within if-statements to separate the guards from the
statements that follow the guards.

if

:: choice1 -> stat1.1; stat1.2; stat1.3; …

:: choice2 -> stat2.1; stat2.2; stat2.3; …

:: …

:: choicen -> statn.1; statn.2; statn.3; …

fi;

inspired by:
Dijkstra’s guarded
command language

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 15

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 16

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 31

Mutual Exclusion (4)
BakeryDEMO

byte turn[2]; /* who’s turn is it? */
byte mutex; /* # procs in critical section */

proctype P(bit i) {

do

:: turn[i] = 1;

turn[i] = turn[1-i] + 1;

(turn[1-i] == 0) || (turn[i] < turn[1-i]);

mutex++;

mutex--;

turn[i] = 0;

od

}

proctype monitor() { assert(mutex != 2); }

init { atomic {run P(0); run P(1); run monitor()}}

More mutual exclusion algorithms
in (good-old) [Ben-Ari 1990].

Problem (in Promela/SPIN):
turn[i] will overrun after 255.

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 32

if-statement (1)

• If there is at least one choicei (guard) executable, the if-
statement is executable and SPIN non-deterministically
chooses one of the executable choices.

• If no choicei is executable, the if-statement is blocked.

• The operator “->” is equivalent to “;”. By convention, it is used
within if-statements to separate the guards from the
statements that follow the guards.

if

:: choice1 -> stat1.1; stat1.2; stat1.3; …

:: choice2 -> stat2.1; stat2.2; stat2.3; …

:: …

:: choicen -> statn.1; statn.2; statn.3; …

fi;

inspired by:
Dijkstra’s guarded
command language

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 16

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 17

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 33

if-statement (2)

಴ 7KH�else JXDUG�EHFRPHV
H[HFXWDEOH LI�QRQH RI�WKH�
RWKHU�JXDUGV�LV�H[HFXWDEOH�

non-deterministic branching
if
:: skip -> n=0
:: skip -> n=1
:: skip -> n=2
:: skip -> n=3
fi

give n a random value

skips are redundant, because assignments
are themselves always executable...

if
:: (n % 2 != 0) -> n=1
:: (n >= 0) -> n=n-2
:: (n % 3 == 0) -> n=3
:: else -> skip
fi

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 34

do-statement (1)

• With respect to the choices, a do-statement behaves in the
same way as an if-statement.

• However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

• The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop.

do
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
od;

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 17

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 17

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 33

if-statement (2)

಴ 7KH�else JXDUG�EHFRPHV
H[HFXWDEOH LI�QRQH RI�WKH�
RWKHU�JXDUGV�LV�H[HFXWDEOH�

non-deterministic branching
if
:: skip -> n=0
:: skip -> n=1
:: skip -> n=2
:: skip -> n=3
fi

give n a random value

skips are redundant, because assignments
are themselves always executable...

if
:: (n % 2 != 0) -> n=1
:: (n >= 0) -> n=n-2
:: (n % 3 == 0) -> n=3
:: else -> skip
fi

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 34

do-statement (1)

• With respect to the choices, a do-statement behaves in the
same way as an if-statement.

• However, instead of ending the statement at the end of the
choosen list of statements, a do-statement repeats the choice
selection.

• The (always executable) break statement exits a do-loop
statement and transfers control to the end of the loop.

do
:: choice1 -> stat1.1; stat1.2; stat1.3; …
:: choice2 -> stat2.1; stat2.2; stat2.3; …
:: …
:: choicen -> statn.1; statn.2; statn.3; …
od;

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 18

/ 19

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 18

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 35

mtype = { RED, YELLOW, GREEN } ;

active proctype TrafficLight() {
byte state = GREEN;
do
:: (state == GREEN) -> state = YELLOW;
:: (state == YELLOW) -> state = RED;
:: (state == RED) -> state = GREEN;
od;

}

do-statement (2)

• Example – modelling a traffic light

Note: this do-loop does not contain
any non-deterministic choice.

if- and do-statements
are ordinary Promela
statements; so they can
be nested.

mtype (message type) models enumerations in Promela

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 36

Communication (1)

Sender Receiver
s2r

r2s

s2r!MSG MSG

ACK

s2r?MSG

r2s!ACK

r2s?ACK

! is sending
? is receiving

Elsa L Gunter () CS477 Formal Software Development Methods
Slides mostly a reproduction of Theo C. Ruys – SPIN Beginners’ Tutorial April 10, 2013 19

/ 19

