CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunterQ@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

April 5, 2013

Elsa L Gunter () CS477 Formal Software Development Method / 16


mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

What is Model Checking?

Most generally Model Checking is
e an automated technique, that given
e a finite-state model M of a system
e and a logical property ¢,
o checks whether the property holds of model: M = ¢?

Elsa L Gunter () CS477 Formal Software Development Method / 16



Model Checking

Model checkers usually give example of failure if M [~ .

This makes them useful for debugging.

e Problem: Can only handle finite models: unbounded or
continuous data sets can't be directly handled

Problem: Nnmber of states grows exponentially in the size of the
system.

Answer: Use abstract model of system

e Problem: Relationship of results on abstract model to real
system?

Elsa L Gunter () CS477 Formal Software Development Method / 16



System Development
Engineering

o3
- “Modern"”

G,
- Model Checking

S s Totor &
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 6 \ Y

University of Twente

"Classic"
Model Checking

Classic "waterfall model”
[Pressman 1996]

Elsa L Gunter () CS477 Formal Software Development Method

/ 16



“Classic” Model Checking

(initial) Design ,J

(manual)
abstractions
\ /4
Abstract Model
Verification Model Checker
L=
refinement
techniques
\ /4
Implementation ,J
@: N . P
Q‘)‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 7 \Y
Universitv of Twente

Elsa L Gunter () CS477 Formal Software Development Method / 16



LTL Model Checking Problem

@ Model Checking Problem: Given model M amd logical property
varphi of M, does M = 7

@ Given transition system with states @, transition relation ¢ and inital
state state /, say (Q, 9, /) = ¢ for LTL formula ¢ if every run of
(Q,0,1), o satisfies 0 = .

The Model Checking Problem for finite transition systems and LTL
formulae is decideable.

o Treat states g € Q as letters in an alphabet.

e Language of (Q,0,/), £(Q,d,1) (or L(Q) for short) is set of runs in Q
e Language of ¢, Ly = {o|o |= ¢}

@ Question: L(Q) C L(p)?

e Same as: L(Q) N L(—p) =07

Elsa L Gunter () CS477 Formal Software Development Method / 16



Introduction to SPIN and Promela

SPIN Background
Promela processes
Promela statements

Promela communication primitives Architecture of (X)Spin
Some SPIN demo’s
o hello world

e mutual exclusion
e alternating bit protocol

Slides from : Theo C. Ruys - SPIN Beginners' Tutorial

Elsa L Gunter () CS477 Formal Software Development Method / 16



SPIN Documentation

@ SPIN home page: http://spinroot.com/spin/whatispin.html

@ SPIN book: The SPIN Model Checker: Primer and Reference Manual
by Gerard J. Holzmann

@ On-line Man pages: http://spinroot.com/spin/Man/index.html

Elsa L Gunter () CS477 Formal Software Development Method / 16


http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/Man/index.html

SPIN Introduction

SPIN = Simple Promela Interpreter
@ Tool for analyzing logical consistenct of concurrent systems
e specifically data communication protocols

@ state-of-the-art model checkers, thousands of users
@ Concurrent systems described in modelling language Promela
Promela = Protocol /Process Meta Language
@ Resemles C programming language
Supports dynamic creation of concurrent processes

°
@ limited to describing finite-state systems
@ Communication via message channels

e Synchronous (rendezvous)
o Asynchronous (buffered)

Elsa L Gunter () CS477 Formal Software Development Method / 16



Promela Models

Promela model consist of:
@ type declarations
@ channel declarations
@ variable declarations
@ process declarations
@ [init process]

A Promela model corresponds with a (usually very large, but) finite
transition system, so

@ no unbounded data

@ no unbounded channels

@ no unbounded processes

@ no unbounded process creation

Elsa L Gunter () CS477 Formal Software Development Method / 16



Promela Skeleton Example

mtype = {MSG, ACK};
chan toS = ...

chan toP = ...

bool flag;

proctype Sender() {

.. /* process body */
}
proctype Receiver() {

. /* process body */
}

init {
/* creates processes */

Elsa L Gunter () CS477 Formal Software Development Method / 16



Processes

A process type (proctype) consists of
@ a name
a list of formal parameters

local variable declarations

body consisting a sequence of statements

Elsa L Gunter () CS477 Formal Software Development Method / 16



Sample Process Declaration

proctype Sender (chan in; chan out) {
bit sndB, rcvB; /* local variables */
do /* body beginning */
:: out ! MSG, sndB ->
in ? ACK, rcvB;
if
sndB == rcvB -> sndB = 1-sndB
:: else -> skip
fi
od /* body end */
}

The body consist of a sequence of statements.

Elsa L Gunter () CS477 Formal Software Development Method / 16



Processes

A process
@ is defined by a proctype definition

@ executes concurrently with all other processes, independent of speed
of behaviour
@ communicate with other processes

e using global (shared) variables
e using channels

May be several processes of the same type
Each process has own local state:

@ process counter (location within the proctype)

@ contents of the local variables

Elsa L Gunter () CS477 Formal Software Development Method / 16



Process Creation

@ Processes created with run statement
e Returns process id

@ Process createed at any point in exection (of any process)
@ Processes start after execution of run statement
@ Also craeted by active keyword before proctype declaration

Elsa L Gunter () CS477 Formal Software Development Method / 16



Sample Proctype Declaration Skeleton

proctype Foo(byte x) {

}

active[3] proctype Bar(byte y) { /* [3] opt; y init to 0 */
}

init {
int pid2 = run Foo(2);
run Bar(17);
run Foo (27);

}

Elsa L Gunter () CS477 Formal Software Development Method / 16



	Model Checking
	SPIN

