
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

April 5, 2013

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 1

/ 16

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

What is Model Checking?

Most generally Model Checking is

an automated technique, that given

a finite-state model M of a system

and a logical property ϕ,

checks whether the property holds of model: M |= ϕ?

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 2

/ 16

Model Checking

Model checkers usually give example of failure if M 6|= ϕ.

This makes them useful for debugging.

Problem: Can only handle finite models: unbounded or
continuous data sets can’t be directly handled

Problem: Nnmber of states grows exponentially in the size of the
system.

Answer: Use abstract model of system

Problem: Relationship of results on abstract model to real
system?

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 3

/ 16

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 3

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 5

What is Model Checking?
• [Clarke & Emerson 1981]:

“Model checking is an automated technique that, given
a finite-state model of a system and a logical property,
systematically checks whether this property holds for
(a given initial state in) that model.”

I |M

Although finite-state, the
model of a system typically

grows exponentially.

 0RGHO�FKHFNLQJ�WRROV�DXWRPDWLFDOO\ YHULI\�ZKHWKHU

KROGV��ZKHUH�M LV�D��ILQLWH�VWDWH��PRGHO RI�D�V\VWHP�DQG�
SURSHUW\ I LV�VWDWHG�LQ�VRPH�IRUPDO�QRWDWLRQ�

 3UREOHP��VWDWH�VSDFH�H[SORVLRQ�
 63,1� >+RO]PDQQ ����@ LV�RQH�RI�
WKH�PRVW�SRZHUIXO PRGHO�FKHFNHUV�

Based on [Vardi & Wolper 1986].

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 6

System Development

System
Engineering

Analysis

Design

Code

Testing

Maintenance

“Modern”
Model Checking

“Classic”
Model Checking

Classic “waterfall model”
[Pressman 1996]

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 4

/ 16

Theo C. Ruys - SPIN Beginners' Tutorial version: Friday, 13 September 2002

SPIN 2002 Workshop, Grenoble, 11-13 April 2002 4

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 7

“Classic” Model Checking

Model
Checker

Abstract
Verification Model

(initial) Design

Implementation

(manual)
abstractions

refinement
techniques

Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 8

“Modern” Model Checking

• Abstraction is the key activity in both approaches.

• This talk deals with pure SPIN, i.e., the “classic”
model checking approach.

Model
Checker

systematic
abstraction
techniques

Implementation

Verification Model

To cope with the
state space explosion.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 5

/ 16

LTL Model Checking Problem

Model Checking Problem: Given model M amd logical property
varphi of M, does M |= ϕ?

Given transition system with states Q, transition relation δ and inital
state state I , say (Q, δ, I) |= ϕ for LTL formula ϕ if every run of
(Q, δ, I), σ satisfies σ |= ϕ.

Theorem

The Model Checking Problem for finite transition systems and LTL
formulae is decideable.

Treat states q ∈ Q as letters in an alphabet.

Language of (Q, δ, I), L(Q, δ, I) (or L(Q) for short) is set of runs in Q

Language of ϕ, Lϕ = {σ|σ |= ϕ}
Question: L(Q) ⊆ L(ϕ)?

Same as: L(Q) ∩ L(¬ϕ) = ∅?
Elsa L Gunter () CS477 Formal Software Development Methods

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 6
/ 16

Introduction to SPIN and Promela

SPIN Background

Promela processes

Promela statements

Promela communication primitives Architecture of (X)Spin

Some SPIN demo’s

hello world
mutual exclusion
alternating bit protocol

Slides from : Theo C. Ruys - SPIN Beginners’ Tutorial

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 7

/ 16

SPIN Documentation

SPIN home page: http://spinroot.com/spin/whatispin.html

SPIN book: The SPIN Model Checker: Primer and Reference Manual
by Gerard J. Holzmann

On-line Man pages: http://spinroot.com/spin/Man/index.html

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 8

/ 16

http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/Man/index.html

SPIN Introduction

SPIN = Simple Promela Interpreter

Tool for analyzing logical consistenct of concurrent systems

specifically data communication protocols

state-of-the-art model checkers, thousands of users

Concurrent systems described in modelling language Promela

Promela = Protocol/Process Meta Language

Resemles C programming language

Supports dynamic creation of concurrent processes

limited to describing finite-state systems

Communication via message channels

Synchronous (rendezvous)
Asynchronous (buffered)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 9

/ 16

Promela Models

Promela model consist of:

type declarations

channel declarations

variable declarations

process declarations

[init process]

A Promela model corresponds with a (usually very large, but) finite
transition system, so

no unbounded data

no unbounded channels

no unbounded processes

no unbounded process creation

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 10

/ 16

Promela Skeleton Example

mtype = {MSG, ACK};

chan toS = ...

chan toP = ...

bool flag;

proctype Sender() {

... /* process body */

}

proctype Receiver() {

... /* process body */

}

init {

... /* creates processes */

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 11

/ 16

Processes

A process type (proctype) consists of

a name

a list of formal parameters

local variable declarations

body consisting a sequence of statements

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 12

/ 16

Sample Process Declaration

proctype Sender (chan in; chan out) {

bit sndB, rcvB; /* local variables */

do /* body beginning */

:: out ! MSG, sndB ->

in ? ACK, rcvB;

if

:: sndB == rcvB -> sndB = 1-sndB

:: else -> skip

fi

od /* body end */

}

The body consist of a sequence of statements.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 13

/ 16

Processes

A process

is defined by a proctype definition

executes concurrently with all other processes, independent of speed
of behaviour

communicate with other processes

using global (shared) variables
using channels

May be several processes of the same type
Each process has own local state:

process counter (location within the proctype)

contents of the local variables

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 14

/ 16

Process Creation

Processes created with run statement

Returns process id

Process createed at any point in exection (of any process)

Processes start after execution of run statement

Also craeted by active keyword before proctype declaration

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 15

/ 16

Sample Proctype Declaration Skeleton

proctype Foo(byte x) {

...

}

active[3] proctype Bar(byte y) { /* [3] opt; y init to 0 */

...

}

init {

int pid2 = run Foo(2);

run Bar(17);

run Foo (27);

}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha April 5, 2013 16

/ 16

	Model Checking
	SPIN

