egunter@illinois.edu
http://courses.engr.illinois.edu/cs477
Slides based in part on previous lectures by Mahesh Vishwanathan, and

> by Gul Agha

$$
\text { April 3, } 2013
$$

Example: Traffic Light

$V=\{$ Turn, NSC, EWC $\}, F=\{N S, E W$, Red, Yellow, Green $\}$ (all arity 0), $R=\{=\}$

Example: Traffic Lights

Linear Temporal Logic - Syntax

$$
\begin{aligned}
\varphi::= & p|(\varphi)| \neg \varphi\left|\varphi \wedge \varphi^{\prime}\right| \varphi \vee \varphi^{\prime} \\
& |\circ \varphi| \varphi \mathcal{U} \varphi^{\prime}\left|\varphi \mathcal{V} \varphi^{\prime}\right| \square \varphi \mid \diamond \varphi
\end{aligned}
$$

- p-a propostion over state variables
- $\circ \varphi$ - "next"
- $\varphi \mathcal{U} \varphi^{\prime}$ - "until"
- $\varphi \mathcal{V} \varphi^{\prime}$ - "releases"
- $\square \varphi-$ "box", "always", "forever"
- $\diamond \varphi$ - "diamond", "eventually", "sometime"

Examples (cont)

- LTS for traffic light has $3 \times 3 \times 2=18$ possible well typed states
- Is is possible to reach a state where NSC $\neq \operatorname{Red} \wedge E W C \neq \operatorname{Red}$ from an initial state?
- If so, what sequence of actions alows this?
- Do all the immediate predecessors of a state where

NSC $=$ Green $\vee E W C=$ Green satisfy $N S C=\operatorname{Red} \wedge E W C=$ Red?

- If not, are any of those offend states reachable from and initial state, and if so, how?
- LTS for Mutual Exclusion has $6 \times 6 \times 2 \times 2=144$ posible well-tped states.
- Is is possible to reach a state where $p c 1=m 5 \wedge p c 2=n 5$?
- How can we state these questions rigorously, formally?
- Can we find an algorihm to answer these types of questions?

LTL Semantics: The Idea

Formal LTL Semantics

Given:

- $\mathcal{G}=(V, F, a f, R, a r)$ signature expressing state propositions
- Q set of states,
- \mathcal{M} modeling function over Q and $\mathcal{G}: \mathcal{M}(q, p)$ is true iff q models p. Write $q \models p$.
- $\sigma=q_{0} q_{1} \ldots q_{n} \ldots$ infinite sequence of state from Q.
- $\sigma^{i}=q_{i} q_{i+1} \ldots q_{n} \ldots$ the $i^{\text {th }}$ tail of σ

Say σ models LTL formula φ, write $\sigma \models \varphi$ as follows:

- $\sigma \models p$ iff $q_{0} \models p$
- $\sigma \models \neg \varphi$ iff $\sigma \not \models \varphi$
- $\sigma \models \varphi \wedge \psi$ iff $\sigma \models \varphi$ and $\sigma \models \psi$.
- $\sigma \models \varphi \vee \psi$ iff $\sigma \models \varphi$ or $\sigma \models \psi$.

Some Common Combinations

- $\square \diamond p$ " p will hold infinitely often"
- $\diamond \square p$ " p will continuously hold from some point on"
- $(\square p) \Rightarrow(\square q)$ "if p happens infinitely often, then so does q

Some More Eqivalences

- $\square \varphi=\varphi \wedge \circ \square \varphi$
- $\Delta \varphi=\varphi \vee \circ \diamond \varphi$
- $\varphi \mathcal{V} \psi=(\varphi \wedge \psi) \vee(\psi \wedge \circ(\varphi \mathcal{V} \psi))$
- $\varphi \mathcal{U} \psi=\psi \vee(\varphi \wedge \circ(\varphi \mathcal{V} \psi)$
- $\square, \diamond, \mathcal{U}, \mathcal{V}$ may all be understood recursively, by what they state about right now, and what they state about the future
- Caution: \square vs \diamond, \mathcal{U} vs \mathcal{V} differ in there limit behavior
- $\sigma \models o \varphi$ iff $\sigma^{1} \models \varphi$
- $\sigma \models \varphi \mathcal{U} \psi$ iff for some $k, \sigma^{k} \models \psi$ and for all $i<k, \sigma^{i} \models \varphi$
- $\sigma \models \varphi \mathcal{V} \psi$ iff for some $k, \sigma^{k} \models \varphi$ and for all $i \leq k, \sigma^{i} \models \psi$,

$$
\text { or for all } i, \sigma^{i} \models \psi \text {. }
$$

- $\sigma \models \square \varphi$ if for all $i, \sigma^{i} \models \psi$
- $\sigma \models \Delta \varphi$ if for some $i, \sigma^{i} \models \psi$

Some Equivalences

- $\square(\varphi \wedge \psi)=(\square \varphi) \wedge(\square \psi)$
- $\diamond(\varphi \vee \psi)=(\diamond \varphi) \vee(\diamond \psi)$
- $\square \varphi=\mathbf{F} \mathcal{V} \varphi$
- $\Delta \varphi=\mathbf{T} \mathcal{U} \varphi$
- $\varphi \mathcal{V} \psi=\neg((\neg \varphi) \mathcal{U}(\neg \psi))$
- $\varphi \mathcal{U} \psi=\neg((\neg \varphi) \mathcal{V}(\neg \psi))$
- $\neg(\Delta \varphi)=\square(\neg \varphi)$
- $\neg(\square \varphi)=\diamond(\neg \varphi)$

Traffic Light Example

Basic Behavior

- $\square(($ NSC $=$ Red $) \vee($ NSC $=$ Green $) \vee($ NSC $=$ Yellow $))$
- $\square(($ NSC $=$ Red $) \Rightarrow(($ NSC \neq Green $) \wedge($ NSC \neq Yellow $))$
- Similarly for Green and Red
- $\square(((N C S=$ Red $) \wedge \circ(N C S \neq$ Red $)) \Rightarrow \circ(N C S=$ Green $))$
- Same as $\square((N C S=\operatorname{Red}) \Rightarrow((N C S=\operatorname{Red}) \mathcal{U}(N C S=$ Green $)))$
- $\square((($ NCS $=$ Green $) \wedge \circ($ NCS \neq Green $)) \Rightarrow \circ($ NCS $=$ Yellow $))$
- $\square((($ NCS $=$ Yellow $) \wedge \circ($ NCS \neq Yellow $)) \Rightarrow \circ($ NCS $=$ Red $))$
- Same for EWC

Traffic Light Example

Basic Safety

- $\square((N S C=R e d) \vee(E W C=R e d)$
- $\square(((N S C=R e d) \wedge(E W C=R e d)) \mathcal{V}$

$$
((\text { NSC } \neq \text { Green }) \Rightarrow(\circ(\text { NSC }=\text { Green }))))
$$

Basic Liveness

- $(\diamond(N S C=$ Red $)) \wedge(\diamond($ NSC $=$ Green $)) \wedge(\diamond($ NSC = Yellow $))$
- $(\diamond(E W C=$ Red $)) \wedge(\diamond(E W C=$ Green $)) \wedge(\diamond(E W C=$ Yellow $))$

Proof System for LTL

First step: View $\varphi \mathcal{V} \psi$ as moacro: $\varphi \mathcal{V} \psi=\neg((\neg \varphi) \mathcal{U}(\neg \psi))$
Second Step: Extend all rules of Prop Logic to LTL
Third Step: Add one more rule: $\frac{\square \varphi}{\varphi}$ Gen
Fourth Step: Add a collection of axioms (a sufficient set of 8 exists)
Result: a sound and relatively complete proof system

