Example: Traffic Light CS477 Formal Software Development Methods $V = \{Turn, NSC, EWC\}, F = \{NS, EW, Red, Yellow, Green\}$ (all arity 0), $R = \{=\}$ Elsa L Gunter 2112 SC, UIUC NSG $Turn = NS \land NSC = Red \rightarrow NSC := Green$ egunter@illinois.edu NSY $NSC = Green \rightarrow NSC := Yellow$ http://courses.engr.illinois.edu/cs477 NSR $NSC = Yellow \rightarrow (Turn, NSC) := (EW, Red)$ $EWG \ Turn = EW \land EWC = Red \rightarrow EWC := Green$ $EWC = Green \rightarrow EWC := Yellow$ EWY **EWR** $EWC = Yellow \rightarrow (Turn, EWC) := (NS, Red)$ Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha $init = (NSC = Red \land EWC = Red \land (Turn = NS \lor Turn = EW)$ April 3, 2013 CS477 Formal Software Developm Elsa L Gunter () CS477 Formal Software Development Me Elsa L Gunter () Example: Traffic Lights Examples (cont) $\begin{cases} Turn = NS \\ NSC = Red \\ EWC = Red \end{cases}$ 2GG 1RG • LTS for traffic light has $3 \times 3 \times 2 = 18$ possible well typed states 2GY 1RY

- Is is possible to reach a state where NSC ≠ Red ∧ EWC ≠ Red from an initial state?
 - If so, what sequence of actions alows this?
 - Do all the immediate predecessors of a state where
 - $NSC = Green \lor EWC = Green satisfy NSC = Red \land EWC = Red?$ • If not, are any of those offend states reachable from and initial state,
- and if so, how? \bullet LTS for Mutual Exclusion has $6\times6\times2\times2=144$ posible well-tped
- states. The state is a set of the state in the state is $10 \times 2 \times 2 = 144$ posible well-tped states.
- Is is possible to reach a state where $pc1 = m5 \land pc2 = n5$?
- $\bullet\,$ How can we state these questions rigorously, formally?

Elsa L Gunter () CS477 Formal Software Development Me

• Can we find an algorihm to answer these types of questions?

Linear Temporal Logic - Syntax

2YR

Turn = EW NSC = Red EWC = Yello

Turn = EW NSC = Red EWC = Gree Turn = NS NSC = Green EWC = Red

 $\begin{cases}
Turn = NS \\
NSC = Yello \\
FWC = Red
\end{cases}$

1YG

- AP

1GY

1YY

1GG

$$\begin{split} \varphi & ::= & p \mid (\varphi) \mid \neg \varphi \mid \varphi \land \varphi' \mid \varphi \lor \varphi' \\ & \mid & \circ \varphi \mid \varphi \mathcal{U} \varphi' \mid \varphi \mathcal{V} \varphi' \mid \Box \varphi \mid \Diamond \varphi \end{split}$$

Turn = EW NSC = Red EWC = Red

- p a propostion over state variables
- $\circ \varphi$ "next"
- $\varphi \mathcal{U} \varphi'$ "until"

Elsa L Gunter ()

2YY

2YG

2GR

- $\varphi \mathcal{V} \varphi'$ "releases"
- $\Box \varphi$ "box", "always", "forever"
- $\Diamond \varphi$ "diamond", "eventually", "sometime"

LTL Semantics: The Idea

Formal LTL Semantics

Given:

• $\mathcal{G} = (V, F, af, R, ar)$ signature expressing state propositions

CS477 Formal Software Developm

- Q set of states,
- \mathcal{M} modeling function over Q and \mathcal{G} : $\mathcal{M}(q, p)$ is true iff q models p. Write $q \models p$.
- $\sigma = q_0 q_1 \dots q_n \dots$ infinite sequence of state from Q.
- $\sigma^i = q_i q_{i+1} \dots q_n \dots$ the i^{th} tail of σ
- Say σ models LTL formula $\varphi,$ write $\sigma\models\varphi$ as follows:
 - $\sigma \models p$ iff $q_0 \models p$
 - $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$

Elsa L Gunter ()

- $\sigma \models \varphi \land \psi$ iff $\sigma \models \varphi$ and $\sigma \models \psi$.
- $\sigma \models \varphi \lor \psi$ iff $\sigma \models \varphi$ or $\sigma \models \psi$.

Formal LTL Semantics

• $\sigma \models \circ \varphi$ iff $\sigma^1 \models \varphi$

Elsa L Gunter ()

- $\sigma \models \varphi \mathcal{U} \psi$ iff for some $k, \sigma^k \models \psi$ and for all $i < k, \sigma^i \models \varphi$
- $\sigma \models \varphi \mathcal{V} \psi$ iff for some $k, \sigma^k \models \varphi$ and for all $i \le k, \sigma^i \models \psi$, or for all $i, \sigma^i \models \psi$.

CS477 Formal Software Development M

- $\sigma \models \Box \varphi$ if for all $i, \sigma^i \models \psi$
- $\sigma \models \Diamond \varphi$ if for some *i*, $\sigma^i \models \psi$

Some Common Combinations	Some Equivalences
 □◊p "p will hold infinitely often" ◊□p "p will continuously hold from some point on" (□p) ⇒ (□q) "if p happens infinitely often, then so does q 	• $\Box(\varphi \land \psi) = (\Box \varphi) \land (\Box \psi)$ • $\Diamond(\varphi \lor \psi) = (\Diamond \varphi) \lor (\Diamond \psi)$ • $\Box \varphi = \mathbf{F} \mathcal{V} \varphi$ • $\Diamond \varphi = \mathbf{T} \mathcal{U} \varphi$ • $\varphi \mathcal{V} \psi = \neg((\neg \varphi) \mathcal{U} (\neg \psi))$ • $\varphi \mathcal{U} \psi = \neg((\neg \varphi) \mathcal{V} (\neg \psi))$ • $\neg(\Diamond \varphi) = \Box(\neg \varphi)$ • $\neg(\Box \varphi) = \Diamond(\neg \varphi)$
(ロナ・クラ・イミン・ミーン) Elsa L Gunter () CS477 Formal Software Development Method /	C · · · · · · · · · · · · · · · · · · ·
Some More Eqivalences	Traffic Light Example

• $\Box \varphi = \varphi \land \circ \Box \varphi$

• $\Diamond \varphi = \varphi \lor \circ \Diamond \varphi$

Elsa L Gunter ()

- $\varphi \mathcal{V} \psi = (\varphi \land \psi) \lor (\psi \land \circ (\varphi \mathcal{V} \psi))$
- $\varphi \mathcal{U} \psi = \psi \lor (\varphi \land \circ (\varphi \mathcal{V} \psi))$
- \Box , \Diamond , \mathcal{U} , \mathcal{V} may all be understood recursively, by what they state about right now, and what they state about the future
- Caution: \Box vs \Diamond , \mathcal{U} vs \mathcal{V} differ in there limit behavior

Basic Behavior:

- \Box ((*NSC* = *Red*) \lor (*NSC* = *Green*) \lor (*NSC* = *Yellow*))
- $\Box((NSC = Red) \Rightarrow ((NSC \neq Green) \land (NSC \neq Yellow))$
- Similarly for *Green* and *Red*
- $\Box(((NCS = Red) \land \circ(NCS \neq Red)) \Rightarrow \circ(NCS = Green))$
- Same as $\Box((NCS = Red) \Rightarrow ((NCS = Red)\mathcal{U}(NCS = Green)))$
- $\Box(((NCS = Green) \land \circ(NCS \neq Green)) \Rightarrow \circ(NCS = Yellow))$
- $\Box(((NCS = Yellow) \land \circ(NCS \neq Yellow)) \Rightarrow \circ(NCS = Red))$

CS477 Formal Software Development Me

Ø

• Same for EWC

<<u>⊕</u>> <<u>≧</u>> <≧> ≥ 90

Traffic Light Example

Basic Safety

- $\Box((NSC = Red) \lor (EWC = Red)$
- \Box (((*NSC* = *Red*) \land (*EWC* = *Red*)) \mathcal{V} $((NSC \neq Green) \Rightarrow (\circ(NSC = Green))))$

Basic Liveness

Elsa L Gunter ()

- $(\Diamond(NSC = Red)) \land (\Diamond(NSC = Green)) \land (\Diamond(NSC = Yellow))$
- $(\Diamond(EWC = Red)) \land (\Diamond(EWC = Green)) \land (\Diamond(EWC = Yellow))$

CS477 Formal Software Developr

nt Me

Proof System for LTL

Elsa L Gunter ()

First step: View $\varphi \mathcal{V} \psi$ as moacro: $\varphi \mathcal{V} \psi = \neg((\neg \varphi)\mathcal{U}(\neg \psi))$ Second Step: Extend all rules of Prop Logic to LTL Third Step: Add one more rule: $\frac{\Box \varphi}{\varphi}$ Gen Fourth Step: Add a collection of axioms (a sufficient set of 8 exists)

Result: a sound and relatively complete proof system

CS477 Formal Software Development Met