CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

March 27, 2013

Labeled Transition System (LTS)

A labeled tranistion system (LTS) is a 4-tuple (Q, Σ, δ, I) where

- Q set of states
- Q finite or countably infinite
- Σ set of labels (aka actions)
- Σ finite or countably infinite
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation
- $I \subseteq Q$ initial states

Note: Write $q \xrightarrow{\alpha} q^{\prime}$ for $\left(q, \alpha, q^{\prime}\right) \in \delta$.

Example: Candy Machine

- $Q=\{$ Start, Select, GetMarsBar, GetKitKatBar $\}$
- $I=\{$ Start $\}$
- $\Sigma=\{$ Pay, ChooseMarsBar, ChooseKitKatBar, TakeCandy $\}$
$-\delta=\left\{\begin{array}{l}\text { (Start, Pay, Select) } \\ \text { (Select, ChooseMarsBar, GetMarsBar) } \\ \text { (Select, ChooseKitKatBar, GetKitKatBar) } \\ \text { (GetMarsBar, TakeCandy, Start) } \\ \text { (GetKitKatBar, TakeCandy, Start) }\end{array}\right\}$

Example: Candy Machine

Predecessors, Successors and Determinism

Let (Q, Σ, δ, I) be a labeled transition system.

$$
\begin{array}{ll}
\operatorname{In}(q, \alpha)=\left\{q^{\prime} \mid q^{\prime} \xrightarrow{\alpha} q\right\} & \operatorname{In}(q)=\bigcup_{\alpha \in \Sigma} \operatorname{In}(q, \alpha) \\
\operatorname{Out}(q, \alpha)=\left\{q^{\prime} \mid q \xrightarrow{\alpha} q^{\prime}\right\} & \operatorname{Out}(q)=\bigcup_{\alpha \in \Sigma} \operatorname{Out}(q, \alpha)
\end{array}
$$

A labeled tranistion system (Q, Σ, δ, I) is deterministic if

$$
|I| \leq 1 \text { and }|\operatorname{Out}(q, \alpha)| \leq 1
$$

Labeled Transition Systems vs Finite State Automata

- LTS have no accepting states
- Every FSA an LTS - just forget the accepting states
- Set of states and actions may be countably infinite
- May have infinite branching

Exections, Traces, and Runs

- A partial exection is a finite or infinite alternating sequence of states and actions $\rho=q_{0} \alpha_{1} q_{1} \ldots \alpha_{n} q_{n} \ldots$ such that
- $q_{0} \in I$
- $q_{i-1} \xrightarrow{\alpha_{i}} q_{i}$ for all i with q_{i} in sequence
- An exection is a maxial partial exection
- A finite or infinite sequence of actions $\alpha_{1} \ldots \alpha_{n} \ldots$ is a trace if there exist states $q_{0} \ldots q_{n} \ldots$ such that the sequence $q_{0} \alpha_{1} q_{1} \ldots \alpha_{n} q_{n} \ldots$ is a partial execution.
- Let $\rho=q_{0} \alpha_{1} q_{1} \ldots \alpha_{n} q_{n} \ldots$ be a partial execution. Then $\operatorname{trace}(\rho)=\alpha_{1} \ldots \alpha_{n} \ldots$
A finite or inifnite sequence of states $q_{0} \ldots q_{n} \ldots$ is a run if there exist actions $\alpha_{1} \ldots \alpha_{n} \ldots$ such that the sequence $q_{0} \alpha_{1} q_{1} \ldots \alpha_{n} q_{n} \ldots$ is a partial execution.
- Let $\rho=q_{0} \alpha_{1} q_{1} \ldots \alpha_{n} q_{n} \ldots$ be a partial execution. Then $\operatorname{run}(\rho)=q_{0} \ldots q_{n} \ldots$

Example: Candy Machine

- Partial execution:
$\rho=$ Start•Pay•Select•ChooseMarsBar•GetMarsBar• TakeCandy•Start
- Trace: $\operatorname{trace}(\rho)=$ Pay \cdot ChooseMarsBar \cdot TakeCandy
- Run: run $(\rho)=$ Start \cdot Select \cdot GetMarsBar \cdot Start

Program Transition System

A Program Transition System is a triple (\mathcal{S}, T, init)

- $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ is a first-order structure over signature $\mathcal{G}=(V, F, a f, R, a r)$, used to interpret expressions and conditionals
- T is a finite set of conditional transitions of the form

$$
g \rightarrow\left(v_{1}, \ldots, v_{n}\right):=\left(e_{1}, \ldots, e_{n}\right)
$$

where $v_{i} \in V$ distinct, and e_{i} term in \mathcal{G}, for $i=1 \ldots n$

- init initial condition asserted to be true at start of program

Example: Traffic Light

$V=\{$ Turn, NSColor, EWColor $\}, F=\{N S, E W$, Red, Yellow, Green $\}$ (all arity 0), $R=\{=\}$
$T=$ Turn $=$ NS \wedge NSColor $=$ Red $\quad \rightarrow$ NSColor $:=$ Green NSColor $=$ Green \rightarrow NSColor $:=$ Yellow
NSColor $=$ Yellow \rightarrow (Turn, NSColor) $:=($ EW, Red $)$
Turn $=E W \wedge E W C o l o r=$ Red \rightarrow EWColor $:=$ Green
EWColor $=$ Green \rightarrow EWColor := Yellow
EWColor $=$ Yellow \rightarrow (Turn, EWColor $):=($ NS, Red $)$
init $=($ NSColor $=$ Red \wedge EWColor $=$ Red $\wedge($ Turn $=$ NS \vee Turn $=E W)$

Mutual Exclusion (Attempt)

$P 1:: \quad m 1$: while true do
$m 2$: $p 11(*$ not in crit sect*)
m3: c1:=0
$m 4$: \quad wait $(c 2=1)$
$m 5$: $r 1(*$ in crit sect $*$)
$m 6: c 1:=1$
m7 : od

P2 :: n1: while true do
n2: p21(*not in crit sect*)
$n 3: c 2:=0$
$n 4$: \quad wait $(c 1=1)$
n5: r2(*in crit sect $*$)
$n 6: c 2:=1$
n7 : od

Mutual Exclusion PTS

$$
\begin{aligned}
& V=\{p c 1, p c 2, c 1, c 2\}, F=\{m 1, \ldots, m 6, n 1, \ldots, n 6,0,1\} \\
& T=\begin{array}{l}
F
\end{array} \\
& p c 1=m 1 \rightarrow p c 1:=m 2 \\
& p c 1=m 2 \rightarrow p c 1:=m 3 \\
& p c 1=m 3 \rightarrow(p c 1, c 1):=(m 4,0) \\
& p c 1=m 4 \wedge c 2=1 \text { to } p c 1:=m 5 \\
& p c 1=m 5 \rightarrow p c 1:=m 6 \\
& p c 1=m 6 \rightarrow(p c 1, c 1):=(m 1,1) \\
& p c 2=n 1 \rightarrow p c 2:=n 2 \\
& p c 2=n 2 \rightarrow p c 2:=n 3 \\
& p c 2=n 3 \rightarrow(p c 2, c 2):=(n 4,0) \\
& p c 2=n 4 \wedge c 1=1 \text { to } p c 2:=n 5 \\
& p c 2=n 5 \rightarrow p c 2:=n 6 \\
& p c 2=n 6 \rightarrow(p c 2, c 2):=(n 1,1)
\end{aligned}
$$

$$
\text { init }=(p c 1=m 1 \wedge p c 2=n 1 \wedge c 1=1 \wedge c 2=1)
$$

Interpreting PTS as LTS

Let $(\mathcal{S}, T$, init) be a program transition system. Assume V finite, \mathcal{D} at most countable.

- Let $Q=V \times \mathcal{D}$, interpretted as all assingments of values to variables
- Can restrict to pairs (v, d) where v and d have same type
- Let $\sigma=T$
- Let $\delta\left(q, g \rightarrow\left(v_{1}, \ldots, v_{n}\right):=\left(e_{1}, \ldots, e_{n}\right), q^{\prime}\right)=$

$$
\mathcal{M}_{q}(g) \wedge q^{\prime}(v)= \begin{cases}\mathcal{T}_{q}\left(e_{i}\right) & \text { if } v=v_{1} \text { some } i \leq n \\ q(v) & \text { otherwise }\end{cases}
$$

- $I=\left\{q \mid \mathcal{T}_{q}(\right.$ init $\left.)=\mathbf{T}\right\}$

Examples (cont)

- LTS for traffic light has $3 \times 3 \times 2=18$ possible well typed states
- Is is possible to reach a state where NSColor $\neq \operatorname{Red} \wedge$ EWColor \neq Red from an initial state?
- If so, what sequence of actions alows this?
- Do all the immediate predecessors of a state where NSColor $=$ Green \vee EWColor $=$ Green satisfy NSColor $=$ Red \wedge EWColor $=$ Red ?
- If not, are any of those offend states reachable from and initial state, and if so, how?
- LTS for Mutual Exclusion has $6 \times 6 \times 2 \times 2=144$ posible well-tped states.
- Is is possible to reach a state where $p c 1=m 5 \wedge p c 2=n 5$?
- How can we state these questions rigorously, formally?
- Cna we find an algorihm to answer these types of questions?

Linear Temporal Logic - Syntax

$$
\begin{aligned}
\varphi:: & p|(\varphi)| \varphi\left|\varphi \wedge \varphi^{\prime}\right| \varphi \vee \varphi^{\prime} \\
& |\circ \varphi| \varphi \mathcal{U} \varphi^{\prime}\left|\varphi \mathcal{V} \varphi^{\prime}\right| \square \varphi \mid \diamond \varphi
\end{aligned}
$$

- p-a propostion over state variables
- $\circ \varphi$ - "next"
- $\varphi \mathcal{U} \varphi^{\prime}$ - "until"
- $\varphi \mathcal{V} \varphi^{\prime}$ - "releases"
- $\square \varphi$ - "box", "always", "forever"
- $\Delta \varphi$ - "diamond", "eventually", "sometime"

LTL Semantics: The Idea

Formal LTL Semantics

Given:

- $\mathcal{G}=(V, F, a f, R, a r)$ signature expressing state propositions
- Q set of states,
- \mathcal{M} modeling function over Q and $c G: c M(q, p)$ is true iff q models p. Write $q \vDash p$.
- $\sigma=q_{0} q_{1} \ldots q_{n} \ldots$ infinite sequence of state from Q.
- $\operatorname{sigma}{ }^{i}=q_{i} q_{i+1} \ldots q_{n} \ldots$ the $i^{\text {th }}$ tail of σ

Say σ models LTL formula φ, write $\sigma \models \varphi$ as follows:

- $\sigma \models p$ iff $q_{0} \models p$
- $\sigma \models \neg \varphi$ iff $\sigma \not \models \varphi$
- $\sigma \models \varphi \wedge \psi$ iff $\sigma \models \varphi$ and $\sigma \models \psi$.
- $\sigma \models \varphi \vee \psi$ iff $\sigma \models \varphi$ or $\sigma \models \psi$.
- $\sigma \models \circ \varphi$ iff $\sigma^{1} \models \varphi$
- $\sigma \models \varphi \mathcal{U} \psi$ iff for some $k, \sigma^{k} \models \psi$ and for all $i \leq k, \sigma^{i} \models \varphi$
- $\sigma \models \varphi \mathcal{V} \psi$ iff for some $k, \sigma^{k} \models \varphi$ and for all $i<k, \sigma^{i} \models \psi$, or for all $i, \sigma^{i} \models \psi$.

