

Exections, Traces, and Runs Example: Candy Machine • A partial exection is a finite or infinite alternating sequence of states and actions $\rho = q_0 \alpha_1 q_1 \dots \alpha_n q_n \dots$ such that • $q_0 \in I$ • $q_{i-1} \xrightarrow{\alpha_i} q_i$ for all *i* with q_i in sequence • An exection is a maxial partial exection • Partial execution: • A finite or infinite sequence of actions $\alpha_1 \dots \alpha_n \dots$ is a trace if there $\rho = \textit{Start} \cdot \textit{Pay} \cdot \textit{Select} \cdot \textit{ChooseMarsBar} \cdot \textit{GetMarsBar} \cdot \textit{TakeCandy} \cdot \textit{Start}$ exist states $q_0 \ldots q_n \ldots$ such that the sequence $q_0 \alpha_1 q_1 \ldots \alpha_n q_n \ldots$ is • Trace: $trace(\rho) = Pay \cdot ChooseMarsBar \cdot TakeCandy$ a partial execution. • Run: $run(\rho) = Start \cdot Select \cdot GetMarsBar \cdot Start$ • Let $\rho = q_0 \alpha_1 q_1 \dots \alpha_n q_n \dots$ be a partial execution. Then $trace(\rho) = \alpha_1 \dots \alpha_n \dots$ A finite or inifnite sequence of states $q_0 \ldots q_n \ldots$ is a run if there exist actions $\alpha_1 \ldots \alpha_n \ldots$ such that the sequence $q_0 \alpha_1 q_1 \ldots \alpha_n q_n \ldots$ is a partial execution. • Let $\rho = q_0 \alpha_1 q_1 \dots \alpha_n q_n \dots$ be a partial execution. Then $run(\rho) = q_0 \ldots q_n \ldots$ Elsa L Gunter () CS477 Formal Software Develor CS477 Formal Soft Program Transition System Example: Traffic Light $V = \{Turn, NSColor, EWColor\}, F = \{NS, EW, Red, Yellow, Green\}$ (all A Program Transition System is a triple (S, T, init)arity 0), $R = \{=\}$ • $S = (\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$ is a first-order structure over signature $\mathcal{G} = (V, F, af, R, ar)$, used to interpret expressions and conditionals $T = Turn = NS \land NSColor = Red \rightarrow NSColor := Green$ • T is a finite set of conditional transitions of the form $NSColor = Green \rightarrow NSColor := Yellow$ $NSColor = Yellow \rightarrow (Turn, NSColor) := (EW, Red)$ $g \rightarrow (v_1, \ldots, v_n) := (e_1, \ldots, e_n)$ $Turn = EW \land EWColor = Red \rightarrow EWColor := Green$ $EWColor = Green \rightarrow EWColor := Yellow$ where $v_i \in V$ distinct, and e_i term in \mathcal{G} , for $i = 1 \dots n$ $EWColor = Yellow \rightarrow (Turn, EWColor) := (NS, Red)$ • init initial condition asserted to be true at start of program

2 (1) × 2(4) × 2 × 2 × 2 ×	1 000		

Mut	cual Exclusion (Attempt)	
<i>P</i> 1 ::	: m1: while true do m2: p11(*not in crit sect*) m3: c1:=0 m4: wait(c2=1) m5: r1(*in crit sect*) m6: c1:=1 m7: od	P2:: n1: while true do n2: p21(*not in crit sect*) n3: c2:= 0 n4: wait(c1 = 1) n5: r2(*in crit sect*) n6: c2:= 1 n7: od
	Eles I. Gustar, () C\$477 Exampl Software	<ロ>・(語)、(言)、(言)、(言)、言うの(C

Elsa L Gunter ()

Mutual Exclusion PTS

Elsa L Gunter ()

$V = \{pc1, pc2, c1, c2\}, F = \{m1, \dots, m6, n1, \dots, n6, 0, 1\}$								
T =	pc1 = m1	\rightarrow	pc1 := m2					
	pc1 = m2	\rightarrow	pc1 := m3					
	pc1 = m3	\rightarrow	(pc1, c1) := (m4, 0)					
pc1 = m	$4 \wedge c^2 = 1$	to	pc1 := m5					
	pc1 = m5	\rightarrow	pc1 := m6					
	pc1 = m6	\rightarrow	(pc1, c1) := (m1, 1)					
	pc2 = n1	\rightarrow	pc2 := n2					
	pc2 = n2	\rightarrow	pc2 := n3					
	pc2 = n3	\rightarrow	(pc2, c2) := (n4, 0)					
pc2 = n	$4 \wedge c1 = 1$	to	pc2 := n5					
	pc2 = n5	\rightarrow	pc2 := n6					
	pc2 = n6	\rightarrow	(pc2, c2) := (n1, 1)					
$init = (pc1 = m1 \land pc2 = n1 \land c1 = 1 \land c2 = 1)$								
Elea L Gunter ()	477 Formal Software	n Develo	 < □ ▷ < ⓓ ▷ < ≧ ▷ < ≧ ▷ Ξ approximate Method 	のへで / 17				
Lisa E Guilter ()	ATT FORMAT SOLWAR	e Develo	pment Method	/ 1/				

 $init = (NSColor = Red \land EWColor = Red \land (Turn = NS \lor Turn = EW)$

CS477 Formal Soft

Interpreting PTS as LTS

Let $(\mathcal{S}, \mathcal{T}, init)$ be a program transition system. Assume V finite, \mathcal{D} at most countable.

- Let Q = V × D, interpretted as all assingments of values to variables
 Can restrict to pairs (v, d) where v and d have same type
- Let $\sigma = T$
- Let $\sigma = I$
- Let $\delta(q, g \to (v_1, \dots, v_n) := (e_1, \dots, e_n), q') =$ $\mathcal{M}_q(g) \land q'(v) = \begin{cases} \mathcal{T}_q(e_i) & \text{if } v = v_1 \text{ some } i \leq n \\ q(v) & \text{otherwise} \end{cases}$

CS477 Formal Software Develor

• $I = \{q | T_q(init) = \mathbf{T}\}$

Elsa L Gunter ()

Examples (cont)

Elsa L Gunter ()

- LTS for traffic light has 3 × 3 × 2 = 18 possible well typed states
 Is is possible to reach a state where NSColor ≠ Red ∧ EWColor ≠ Red from an initial state?
 - If so, what sequence of actions alows this?
 - Do all the immediate predecessors of a state where *NSColor* = *Green* \lor *EWColor* = *Green* satisfy
 - $\mathit{NSColor} = \mathit{Red} \land \mathit{EWColor} = \mathit{Red}$?
 - If not, are any of those offend states reachable from and initial state, and if so, how?
- $\bullet\,$ LTS for Mutual Exclusion has $6\times6\times2\times2=144$ posible well-tped states.
 - Is is possible to reach a state where $pc1 = m5 \land pc2 = n5$?
- How can we state these questions rigorously, formally?
- Cna we find an algorihm to answer these types of questions?

CS477 Formal Software Development M

Formal LTL Semantics

Given:

- G = (V, F, af, R, ar) signature expressing state propositions
- Q set of states,
- \mathcal{M} modeling function over Q and cG: cM(q, p) is true iff q models p. Write $q \models p$.
- $\sigma = q_0 q_1 \dots q_n \dots$ infinite sequence of state from Q.
- $sigma^i = q_i q_{i+1} \dots q_n \dots$ the i^{th} tail of σ
- Say σ models LTL formula φ , write $\sigma \models \varphi$ as follows:
 - $\sigma \models p$ iff $q_0 \models p$
 - $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$
 - $\sigma \models \varphi \land \psi$ iff $\sigma \models \varphi$ and $\sigma \models \psi$.
 - $\sigma \models \varphi \lor \psi$ iff $\sigma \models \varphi$ or $\sigma \models \psi$.
 - $\sigma \models \circ \varphi$ iff $\sigma^1 \models \varphi$
 - $\sigma \models \varphi \mathcal{U} \psi$ iff for some $k, \sigma^k \models \psi$ and for all $i \leq k, \sigma^i \models \varphi$
 - $\sigma \models \varphi \mathcal{V} \psi$ iff for some $k, \sigma^k \models \varphi$ and for all $i < k, \sigma^i \models \psi$, or for all
 - $i, \sigma^{i} \models \psi$. Elsa Gueter () CS477 Eermal Software Development Weber () (2000)