
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

March 27, 2013

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 1

/ 17

Labeled Transition System (LTS)

A labeled tranistion system (LTS) is a 4-tuple (Q, Σ, δ, I)
where

Q set of states
Q finite or countably infinite

Σ set of labels (aka actions)
Σ finite or countably infinite

δ ⊆ Q × Σ× Q transition relation

I ⊆ Q initial states

Note: Write q
α−→ q′ for (q, α, q′) ∈ δ.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 2

/ 17

Example: Candy Machine

Q = {Start,Select,GetMarsBar,GetKitKatBar}
I = {Start}
Σ = {Pay,ChooseMarsBar,ChooseKitKatBar,TakeCandy}

δ =

(Start,Pay,Select)
(Select,ChooseMarsBar,GetMarsBar)
(Select,ChooseKitKatBar,GetKitKatBar)
(GetMarsBar,TakeCandy,Start)
(GetKitKatBar,TakeCandy,Start)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 3

/ 17

Example: Candy Machine

�
 �	Start

?

Pay

�
 �	Select
�

�
�

�
�

�	

ChooseMarsBar

@
@

@
@

@
@R

ChooseKitKatBar

�
 �	GetMarsBar

TakeCandy

-

�
 �	GetKitKatBar

TakeCandy

�

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 4

/ 17

Predecessors, Successors and Determinism

Let (Q, Σ, δ, I) be a labeled transition system.

In(q, α) = {q′|q′ α−→ q} In(q) =
⋃

α∈Σ In(q, α)

Out(q, α) = {q′|q α−→ q′} Out(q) =
⋃

α∈Σ Out(q, α)

A labeled tranistion system (Q, Σ, δ, I) is deterministic if

|I | ≤ 1 and |Out(q, α)| ≤ 1

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 5

/ 17

Labeled Transition Systems vs Finite State Automata

LTS have no accepting states

Every FSA an LTS - just forget the accepting states

Set of states and actions may be countably infinite

May have infinite branching

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 6

/ 17

Exections, Traces, and Runs

A partial exection is a finite or infinite alternating sequence of states
and actions ρ = q0α1q1 . . . αnqn . . . such that

q0 ∈ I
qi−1

αi−→ qi for all i with qi in sequence

An exection is a maxial partial exection

A finite or infinite sequence of actions α1 . . . αn . . . is a trace if there
exist states q0 . . . qn . . . such that the sequence q0α1q1 . . . αnqn . . . is
a partial execution.

Let ρ = q0α1q1 . . . αnqn . . . be a partial execution. Then
trace(ρ) = α1 . . . αn

A finite or inifnite sequence of states q0 . . . qn . . . is a run if there exist
actions α1 . . . αn . . . such that the sequence q0α1q1 . . . αnqn . . . is a
partial execution.

Let ρ = q0α1q1 . . . αnqn . . . be a partial execution. Then
run(ρ) = q0 . . . qn

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 7

/ 17

Example: Candy Machine

Partial execution:
ρ = Start ·Pay ·Select ·ChooseMarsBar ·GetMarsBar ·TakeCandy ·Start

Trace: trace(ρ) = Pay · ChooseMarsBar · TakeCandy

Run: run(ρ) = Start · Select · GetMarsBar · Start

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 8

/ 17

Program Transition System

A Program Transition System is a triple (S,T , init)

S = (G,D,F , φ,R, ρ) is a first-order structure over signature
G = (V ,F , af ,R, ar), used to interpret expressions and conditionals

T is a finite set of conditional transitions of the form

g → (v1, . . . , vn) := (e1, . . . , en)

where vi ∈ V distinct, and ei term in G, for i = 1 . . . n

init initial condition asserted to be true at start of program

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 9

/ 17

Example: Traffic Light

V = {Turn,NSColor ,EWColor}, F = {NS ,EW ,Red ,Yellow ,Green} (all
arity 0), R = {=}

T = Turn = NS ∧ NSColor = Red → NSColor := Green
NSColor = Green → NSColor := Yellow

NSColor = Yellow → (Turn,NSColor) := (EW ,Red)
Turn = EW ∧ EWColor = Red → EWColor := Green

EWColor = Green → EWColor := Yellow
EWColor = Yellow → (Turn,EWColor) := (NS ,Red)

init = (NSColor = Red ∧ EWColor = Red ∧ (Turn = NS ∨ Turn = EW)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 10

/ 17

Mutual Exclusion (Attempt)

P1 :: m1 : while true do
m2 : p11(∗not in crit sect∗)
m3 : c1 := 0
m4 : wait(c2 = 1)
m5 : r1(∗in crit sect∗)
m6 : c1 := 1
m7 : od

P2 :: n1 : while true do
n2 : p21(∗not in crit sect∗)
n3 : c2 := 0
n4 : wait(c1 = 1)
n5 : r2(∗in crit sect∗)
n6 : c2 := 1
n7 : od

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 11

/ 17

Mutual Exclusion PTS

V = {pc1, pc2, c1, c2}, F = {m1, . . . ,m6, n1, . . . , n6, 0, 1}

T = pc1 = m1 → pc1 := m2
pc1 = m2 → pc1 := m3
pc1 = m3 → (pc1, c1) := (m4, 0)

pc1 = m4 ∧ c2 = 1 to pc1 := m5
pc1 = m5 → pc1 := m6
pc1 = m6 → (pc1, c1) := (m1, 1)
pc2 = n1 → pc2 := n2
pc2 = n2 → pc2 := n3
pc2 = n3 → (pc2, c2) := (n4, 0)

pc2 = n4 ∧ c1 = 1 to pc2 := n5
pc2 = n5 → pc2 := n6
pc2 = n6 → (pc2, c2) := (n1, 1)

init = (pc1 = m1 ∧ pc2 = n1 ∧ c1 = 1 ∧ c2 = 1)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 12

/ 17

Interpreting PTS as LTS

Let (S,T , init) be a program transition system. Assume V finite, D at
most countable.

Let Q = V ×D, interpretted as all assingments of values to variables

Can restrict to pairs (v , d) where v and d have same type

Let σ = T

Let δ(q, g → (v1, . . . , vn) := (e1, . . . , en), q
′) =

Mq(g) ∧ q′(v) =

{
Tq(ei) if v = v1 some i ≤ n
q(v) otherwise

I = {q|Tq(init) = T}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 13

/ 17

Examples (cont)

LTS for traffic light has 3× 3× 2 = 18 possible well typed states

Is is possible to reach a state where NSColor 6= Red ∧ EWColor 6= Red
from an initial state?
If so, what sequence of actions alows this?
Do all the immediate predecessors of a state where
NSColor = Green ∨ EWColor = Green satisfy
NSColor = Red ∧ EWColor = Red?
If not, are any of those offend states reachable from and initial state,
and if so, how?

LTS for Mutual Exclusion has 6× 6× 2× 2 = 144 posible well-tped
states.

Is is possible to reach a state where pc1 = m5 ∧ pc2 = n5?

How can we state these questions rigorously, formally?

Cna we find an algorihm to answer these types of questions?

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 14

/ 17

Linear Temporal Logic - Syntax

ϕ ::= p|(ϕ)| 6 ϕ|ϕ ∧ ϕ′|ϕ ∨ ϕ′

| ◦ϕ|ϕUϕ′|ϕVϕ′|�ϕ|♦ϕ

p – a propostion over state variables

◦ϕ – “next”

ϕUϕ′ – “until”

ϕVϕ′ – “releases”

�ϕ – “box”, “always”, “forever”

♦ϕ – “diamond”, “eventually”, “sometime”

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 15

/ 17

LTL Semantics: The Idea

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 16

/ 17

Formal LTL Semantics

Given:

G = (V ,F , af ,R, ar) signature expressing state propositions

Q set of states,

M modeling function over Q and cG : cM(q, p) is true iff q models
p. Write q |= p.

σ = q0q1 . . . qn . . . infinite sequence of state from Q.

sigmai = qiqi+1 . . . qn . . . the i th tail of σ

Say σ models LTL formula ϕ, write σ |= ϕ as follows:

σ |= p iff q0 |= p

σ |= ¬ϕ iff σ 6|= ϕ

σ |= ϕ ∧ ψ iff σ |= ϕ and σ |= ψ.

σ |= ϕ ∨ ψ iff σ |= ϕ or σ |= ψ.

σ |= ◦ϕ iff σ1 |= ϕ

σ |= ϕUψ iff for some k, σk |= ψ and for all i ≤ k, σi |= ϕ

σ |= ϕVψ iff for some k, σk |= ϕ and for all i < k, σi |= ψ, or for all
i , σi |= ψ.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 27, 2013 17

/ 17

