
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

March 15, 2013

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 1

/ 25

Transition Semantics

Aka “small step structured operational semantics”

Defines a relation of “one step” of computation, instead of complete
evaluation

Determines granularity of atomic computaions

Typically have two kinds of “result”: configurations and final values

Written (C ,m)→ (C ′,m′) or (C ,m)→ m′

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 2

/ 25

Simple Imperative Programming Language #1 (SIMPL1)

I ∈ Identifiers

N ∈ Numerals

E ::= N | I | E + E | E ∗ E | E − E

B ::= true | false | B&B | B or B | not B

| E < E | E = E

C ::= skip | C ; C | {C} | I ::= E

| if B then C else C fi

| while B do C

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 3

/ 25

Commands - in English

skip means done evaluating

When evaluating an assignment, evaluate expression first

If the expression being assigned is a value, update the memory with
the new value for the identifier

When evaluating a sequence, work on the first command in the
sequence first

If the first command evaluates to a new memory (ie completes),
evaluate remainder with new memory

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 4

/ 25

Commands

Skip: (skip,m) −→ m

Assignment:
(E ,m) −→ (E ′,m)

(I ::= E ,m) −→ (I ::= E ′,m)

(I ::= V ,m) −→ m[I ← V]

Sequencing:
(C ,m) −→ (C ′′,m′)

(C ; C ′,m) −→ (C ′′; C ′,m′)

(C ,m) −→ m′

(C ; C ′,m) −→ (C ′,m′)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 5

/ 25

Block Command

Choice of level of granularity:

Choice 1: Open a block is a unit of work

({C},m) −→ (C ,m)

Choice 2: Blocks are syntactic sugar

(C ,m) −→ (C ′,m′)

({C},m) −→ (C ′,m′)

(C ,m) −→ m′

({C},m) −→ m′

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 6

/ 25

If Then Else Command - in English

If the boolean guard in an if then else is true, then evaluate the
first branch

If it is false, evaluate the second branch

If the boolean guard is not a value, then start by evaluating it first.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 7

/ 25

If Then Else Command

(if true then C else C ′ fi,m) −→ (C ,m)

(if false then C else C ′ fi,m) −→ (C ′,m)

(B,m) −→ (B ′,m)

(if B then C else C ′ fi,m) −→ (if B ′ then C else C ′ fi,m)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 8

/ 25

While Command

(while B do C ,m)
−→

(if B then C ; while B do C else skip fi,m)

In English: Expand a while into a test of the boolean guard, with the
true case being to do the body and then try the while loop again, and
the false case being to stop.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 9

/ 25

Example

(y := i; while i > 0 do {i := i - 1; y := y * i}, 〈i 7→ 3〉)

−→ ?

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 10

/ 25

Alternate Semantics for SIMPL1

Can mix Natural Semantics with Transition Semantics to get larger
atomic computations

Use (E ,m) ⇓ v and (B,m) ⇓ b for arithmetics and boolean
expressions

Revise rules for commmands

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 11

/ 25

Revised Rules for SIMPL1

Skip: (skip,m) −→ m

Assignment:
(E ,m) ⇓ v

(I ::= E ,m)
−→ m[I ← V]

Sequencing:
(C ,m) −→ (C ′′,m′)

(C ; C ′,m) −→ (C ′′; C ′,m′)

(C ,m) −→ m′

(C ; C ′,m) −→ (C ′,m′)

Blocks:
(C ,m) −→ (C ′,m′)

({C},m) −→ (C ′,m′)

(C ,m) −→ m′

({C},m) −→ m′

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 12

/ 25

If Then Else Command

(B,m) ⇓ true

(if B then C else C ′ fi,m) −→ (C ,m)

(B,m) ⇓ false

(if B then C else C ′ fi,m) −→ (C ′,m)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 13

/ 25

While Command

(B,m) ⇓ true

(while B do C ,m) −→ (C ; while B do C ,m)

(B,m) ⇓ false

(while B do C ,m) −→ m

Other more fine grained options exist (eg rule given before)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 14

/ 25

Transition Semantics for SIMPL2?

What are the choices and consequences for giving a transition
semantics for the Simple Concurrent Imperative Programming
Language #2, SIMP2?

For finest grain transitions, summary:

Each rule for aritmetic or boolean expression must propagate changes
to memory; instead of transitioning to a value, go to a value - memory
pair

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 15

/ 25

Transition Semantics for SIMPL2

Second assignment rule returns value:

(I ::= V ,m) −→ (V ,m[I ← V])

Expressions as commands need two rules:

(E ,m) −→ (E ′,m′)

(E ,m) −→ (E ′,m′)

(E ,m) −→ (V ,m′)

(E ,m) −→ m′

Exp. as Comm.:
(E ,m) −→ (E ′,m′)

(E ,m) −→ (E ′,m)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 16

/ 25

Simple Concurrent Imperative Programming Language
(SCIMP1)

I ∈ Identifiers

N ∈ Numerals

E ::= N | I | E + E | E ∗ E | E − E

B ::= true | false | B&B | B or B | not B

| E < E | E = E

C ::= skip | C ; C | {C} | I ::= E | C‖C ′

| if B then C else C fi

| while B do C

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 17

/ 25

Semantics for ‖

C1‖C2 means that the actions of C1 and done at the same time as,
“in parallel” with, those of C2

True parallelism hard to model; must handle collisions on resources

What is the meaning of
x := 1‖ x := 0

True parallelism exists in real world, so important to model correctly

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 18

/ 25

Interleaving Semantics

Weaker alternative: interleving semantics

Each process gets a turn to commit some atomic steps; no preset
order of turns, no preset number of actions

No collision for x := 1‖ x := 0

Yields only 〈x 7→ 1〉 and 〈x 7→ 0〉; no collision

No simultaneous substitution: x := y‖ y := x results in x and y having
the same value; not in swapping their values.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 19

/ 25

Coarse-Grained Interleaving Semantics for SCIMPL1
Commands

Skip, Assignment, Sequencing, Blocks, If Then Else, While unchanged

Need rules for ‖

(C1,m) −→ (C ′
1,m

′)

(C1‖C2,m) −→ (C ′
1‖C2,m

′)

(C1,m) −→ m′

(C1‖C2,m) −→ (C2,m
′)

(C2,m) −→ (C ′
2,m

′)

(C1‖C2,m) −→ (C1‖C ′
2,m

′)

(C2,m) −→ m′

(C1‖C2,m) −→ (C1,m
′)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 20

/ 25

Simple Concurrent Imperative Programming Language #2
(SCIMP2)

I ∈ Identifiers

N ∈ Numerals

E ::= N | I | E + E | E ∗ E | E − E

B ::= true | false | B&B | B or B | not B

| E < E | E = E

C ::= skip | C ; C | {C} | I ::= E | C‖C ′ | sync(E)

| if B then C else C fi

| while B do C

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 21

/ 25

Informal Semantics of sync

sync(E) evaluates E to a value v

Waits for another parallel command waiting to synchronize on v

When two parallel commands are both waiting to synchronize on a
value v , they may both stop waiting, move past the synchronization,
and carry on with whatever commands they each have left

Only two processes may synchronize at a time (in this version).

Problem: How to formalize?

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 22

/ 25

Labeled Transition System (LTS)

A labeled tranistion system (LTS) is a 4-tuple (Q,Σ, δ, I)
where

Q set of states
Q finite or countably infinite

Σ set of labels (aka actions)
Σ finite or countably infinite

δ ⊆ Q × Σ× Q transition relation

I ⊆ Q initial states

Note: Write q
α−→ q′ for (q, α, q′) ∈ δ.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 23

/ 25

Example: Candy Machine

Q = {Start,Select,GetMarsBar,GetKitKatBar}
I = {Start}
Σ = {Pay,ChooseMarsBar,ChooseKitKatBar,TakeCandy}

δ =





(Start,Pay,Select)
(Select,ChooseMarsBar,GetMarsBar)
(Select,ChooseKitKatBar,GetKitKatBar)
(GetMarsBar,TakeCandy,Start)
(GetKitKatBar,TakeCandy,Start)





Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 24

/ 25

