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Transition Semantics

Aka “small step structured operational semantics”

Defines a relation of “one step” of computation, instead of complete
evaluation

Determines granularity of atomic computaions

Typically have two kinds of “result”: configurations and final values

Written (C ,m)→ (C ′,m′) or (C ,m)→ m′
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Simple Imperative Programming Language #1 (SIMPL1)

I ∈ Identifiers

N ∈ Numerals

E ::= N | I | E + E | E ∗ E | E − E

B ::= true | false | B&B | B or B | not B

| E < E | E = E

C ::= skip | C ; C | {C} | I ::= E

| if B then C else C fi

| while B do C
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Commands - in English

skip means done evaluating

When evaluating an assignment, evaluate expression first

If the expression being assigned is a value, update the memory with
the new value for the identifier

When evaluating a sequence, work on the first command in the
sequence first

If the first command evaluates to a new memory (ie completes),
evaluate remainder with new memory

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 4

/ 25

Commands

Skip: (skip,m) −→ m

Assignment:
(E ,m) −→ (E ′,m)

(I ::= E ,m) −→ (I ::= E ′,m)

(I ::= V ,m) −→ m[I ← V ]

Sequencing:
(C ,m) −→ (C ′′,m′)

(C ; C ′,m) −→ (C ′′; C ′,m′)

(C ,m) −→ m′

(C ; C ′,m) −→ (C ′,m′)
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Block Command

Choice of level of granularity:

Choice 1: Open a block is a unit of work

({C},m) −→ (C ,m)

Choice 2: Blocks are syntactic sugar

(C ,m) −→ (C ′,m′)

({C},m) −→ (C ′,m′)

(C ,m) −→ m′

({C},m) −→ m′
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If Then Else Command - in English

If the boolean guard in an if then else is true, then evaluate the
first branch

If it is false, evaluate the second branch

If the boolean guard is not a value, then start by evaluating it first.
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If Then Else Command

(if true then C else C ′ fi,m) −→ (C ,m)

(if false then C else C ′ fi,m) −→ (C ′,m)

(B,m) −→ (B ′,m)

(if B then C else C ′ fi,m) −→ (if B ′ then C else C ′ fi,m)
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While Command

(while B do C ,m)
−→

(if B then C ; while B do C else skip fi,m)

In English: Expand a while into a test of the boolean guard, with the
true case being to do the body and then try the while loop again, and
the false case being to stop.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 9

/ 25

Example

(y := i; while i > 0 do {i := i - 1; y := y * i}, 〈i 7→ 3〉)

−→ ?
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Alternate Semantics for SIMPL1

Can mix Natural Semantics with Transition Semantics to get larger
atomic computations

Use (E ,m) ⇓ v and (B,m) ⇓ b for arithmetics and boolean
expressions

Revise rules for commmands

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 11

/ 25

Revised Rules for SIMPL1

Skip: (skip,m) −→ m

Assignment:
(E ,m) ⇓ v

(I ::= E ,m)
−→ m[I ← V ]

Sequencing:
(C ,m) −→ (C ′′,m′)

(C ; C ′,m) −→ (C ′′; C ′,m′)

(C ,m) −→ m′

(C ; C ′,m) −→ (C ′,m′)

Blocks:
(C ,m) −→ (C ′,m′)

({C},m) −→ (C ′,m′)

(C ,m) −→ m′

({C},m) −→ m′
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If Then Else Command

(B,m) ⇓ true

(if B then C else C ′ fi,m) −→ (C ,m)

(B,m) ⇓ false

(if B then C else C ′ fi,m) −→ (C ′,m)
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While Command

(B,m) ⇓ true

(while B do C ,m) −→ (C ; while B do C ,m)

(B,m) ⇓ false

(while B do C ,m) −→ m

Other more fine grained options exist (eg rule given before)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 14

/ 25

Transition Semantics for SIMPL2?

What are the choices and consequences for giving a transition
semantics for the Simple Concurrent Imperative Programming
Language #2, SIMP2?

For finest grain transitions, summary:

Each rule for aritmetic or boolean expression must propagate changes
to memory; instead of transitioning to a value, go to a value - memory
pair
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Transition Semantics for SIMPL2

Second assignment rule returns value:

(I ::= V ,m) −→ (V ,m[I ← V ])

Expressions as commands need two rules:

(E ,m) −→ (E ′,m′)

(E ,m) −→ (E ′,m′)

(E ,m) −→ (V ,m′)

(E ,m) −→ m′

Exp. as Comm.:
(E ,m) −→ (E ′,m′)

(E ,m) −→ (E ′,m)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 15, 2013 16

/ 25

Simple Concurrent Imperative Programming Language
(SCIMP1)

I ∈ Identifiers

N ∈ Numerals

E ::= N | I | E + E | E ∗ E | E − E

B ::= true | false | B&B | B or B | not B

| E < E | E = E

C ::= skip | C ; C | {C} | I ::= E | C‖C ′

| if B then C else C fi

| while B do C
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Semantics for ‖

C1‖C2 means that the actions of C1 and done at the same time as,
“in parallel” with, those of C2

True parallelism hard to model; must handle collisions on resources

What is the meaning of
x := 1‖ x := 0

True parallelism exists in real world, so important to model correctly
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Interleaving Semantics

Weaker alternative: interleving semantics

Each process gets a turn to commit some atomic steps; no preset
order of turns, no preset number of actions

No collision for x := 1‖ x := 0

Yields only 〈x 7→ 1〉 and 〈x 7→ 0〉; no collision

No simultaneous substitution: x := y‖ y := x results in x and y having
the same value; not in swapping their values.
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Coarse-Grained Interleaving Semantics for SCIMPL1
Commands

Skip, Assignment, Sequencing, Blocks, If Then Else, While unchanged

Need rules for ‖

(C1,m) −→ (C ′
1,m

′)

(C1‖C2,m) −→ (C ′
1‖C2,m

′)

(C1,m) −→ m′

(C1‖C2,m) −→ (C2,m
′)

(C2,m) −→ (C ′
2,m

′)

(C1‖C2,m) −→ (C1‖C ′
2,m

′)

(C2,m) −→ m′

(C1‖C2,m) −→ (C1,m
′)
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Simple Concurrent Imperative Programming Language #2
(SCIMP2)

I ∈ Identifiers

N ∈ Numerals

E ::= N | I | E + E | E ∗ E | E − E

B ::= true | false | B&B | B or B | not B

| E < E | E = E

C ::= skip | C ; C | {C} | I ::= E | C‖C ′ | sync(E )

| if B then C else C fi

| while B do C
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Informal Semantics of sync

sync(E ) evaluates E to a value v

Waits for another parallel command waiting to synchronize on v

When two parallel commands are both waiting to synchronize on a
value v , they may both stop waiting, move past the synchronization,
and carry on with whatever commands they each have left

Only two processes may synchronize at a time (in this version).

Problem: How to formalize?
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Labeled Transition System (LTS)

A labeled tranistion system (LTS) is a 4-tuple (Q,Σ, δ, I )
where

Q set of states
Q finite or countably infinite

Σ set of labels (aka actions)
Σ finite or countably infinite

δ ⊆ Q × Σ× Q transition relation

I ⊆ Q initial states

Note: Write q
α−→ q′ for (q, α, q′) ∈ δ.
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Example: Candy Machine

Q = {Start,Select,GetMarsBar,GetKitKatBar}
I = {Start}
Σ = {Pay,ChooseMarsBar,ChooseKitKatBar,TakeCandy}

δ =





(Start,Pay,Select)
(Select,ChooseMarsBar,GetMarsBar)
(Select,ChooseKitKatBar,GetKitKatBar)
(GetMarsBar,TakeCandy,Start)
(GetKitKatBar,TakeCandy,Start)




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