

Alternate Semantics for SIMPL1

Revised Rules for SIMPL1

Skip.			
Assignment:	$\frac{(E,m) \Downarrow v}{(I ::= E,m)} -$	$\longrightarrow m[I \leftarrow V]$	
Sequencing: $(C, m) -$	\rightarrow (C", m')	$(C,m) \longrightarrow m'$	
(C; C', m) —	\rightarrow (C"; C', m')	$\overline{(C;C',m)\longrightarrow (C',m')}$	
Blocks:			
(<i>C</i> , <i>m</i>)	$) \longrightarrow (C', m')$	$(C,m) \longrightarrow m'$	
({ <i>C</i> }, <i>n</i>	$(C', m') \longrightarrow (C', m')$	$(\{C\}, m) \longrightarrow m'$	

rmal Software Development Met

A labeled tranistion system (LTS) is a 4-tuple (Q, Σ, δ, I) where • Q set of states • Q finite or countably infinite • Σ set of labels (aka actions) • Σ finite or countably infinite • $\delta \subseteq Q \times \Sigma \times Q$ transition relation • $I \subseteq Q$ initial states Note: Write $q \xrightarrow{\alpha} q'$ for $(q, \alpha, q') \in \delta$.

