CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

February 22, 2013

Modificaton of data from Last Time

data was
type_synonym data = "int"
Now data is
datatype data = DN "int" | DR "real"
Tagged disjoint union of int and real

Revised Lifting Constants, Operators

Need to lift constants, variables, boolean and arithmetic operators to functions over states:

- Constants:

```
definition Data :: "data \(\Rightarrow\) exp" where
    "Data d \(\equiv \lambda\) s. d"
definition \(N:: ~ " i n t ~ \Rightarrow e x p " ~ w h e r e ~ " N ~ n ~ \equiv ~ s . ~ D N ~ n " ~\)
definition Real :: "real \(\Rightarrow\) exp" where
    "Real r \(\equiv \lambda \mathrm{s} . \operatorname{DR} \mathrm{r} "\)
definition is_int_b :: "exp \(\Rightarrow\) bool_exp" where
    "is_int_b \(x \equiv \lambda\) s. ( \(\exists \mathrm{n} . \mathrm{x} \mathrm{s}=\mathrm{DN} \mathrm{n}\) )"
definition is_real_b :: "exp \(\Rightarrow\) bool_exp" where
    "is_real_b x \(\equiv \lambda\) s. ( \(\exists\) r. x s = DR r)"
```


Revised Lifting Constants, Operators

- Arithmetic operations do type checking and coercion Before:

$$
\begin{aligned}
& \text { definition plus_e : : "exp } \Rightarrow \exp \Rightarrow \exp " \\
& (\text { infix " [+]" 150) where } \\
& "(p \quad[+] \text { q) } \equiv \lambda \mathrm{s} .(\mathrm{p} \mathrm{~s}+(\mathrm{q} \text { s))" }
\end{aligned}
$$

Now:

$$
\begin{aligned}
& \text { definition plus_e :: "exp } \Rightarrow \exp \Rightarrow \text { exp" } \\
& \text { (infill "[+]" 150) where } \\
& \text { " (p [+] q) } \equiv \\
& \lambda \mathrm{s} \text {. (case } \mathrm{p} \text { s of } \mathrm{DN} \mathrm{n} \Rightarrow \\
& \text { (case } \mathrm{q} \text { s of } \mathrm{DN} \mathrm{~m} \Rightarrow \mathrm{DN}(\mathrm{n}+\mathrm{m}) \\
& \text { | } \mathrm{DR} \mathrm{y} \Rightarrow \mathrm{DR}((\text { real } \mathrm{n})+\mathrm{y})) \\
& \text { | DR x } \Rightarrow \\
& \text { (case q s of } D N m \Rightarrow D R(x+r e a l m) \\
& \text { DR y } \Rightarrow D R(\mathrm{x}+\mathrm{y})))^{\prime \prime}
\end{aligned}
$$

HOL Type for Deep Part of Embedding

datatype command =
AssignCom "var_name" "exp"
(infix "::=" 110)
| SeqCom "command" "command"
(infixl ";" 109)
| CondCom "bool_exp" "command" "command"
("IF _/ THEN _/ ELSE _/ FI" [120,120,120]60)
| WhileCom "bool_exp" "command"
("WHILE _/ DO _/ OD" [120,120]60)

Defining Hoare Logic Rules

inductive valid :: "bool_exp \Rightarrow command \Rightarrow bool_exp \Rightarrow bool" ("\{\{_\}\}_\{\{_\}\}" [120,120,120]60)where
AssignmentAxiom:
"\{\{(P[xץe])\}\}(x::=e) \{\{P\}\}"
SequenceRule:
" $\mathbb{\{}\{P\}\}\}$ \{ $\{$ Q $\}\} ;\{\{Q\}\} C^{\prime}\{\{R\}\} \rrbracket$
$\Longrightarrow\{\{P\}\}\left(C ; C^{\prime}\right)\{\{R\}\}^{\prime \prime}$
RuleOfConsequence:

$\begin{aligned} & " \mathbb{I}\left\\|=\left(P[\longrightarrow] P^{\prime}\right) ;\left\{\left\{P^{\prime}\right\}\right\} C\left\{\left\{Q^{\prime}\right\}\right\} ;\right\\|=\left(Q^{\prime}[\longrightarrow] Q\right) \\ & \Longrightarrow\{\{P\}\} \subset\{Q\}\} "^{\prime} \mid \end{aligned}$
IfThenElseRule:
" $\mathbb{T}\{(\mathrm{P}$ [^] B) \}\}C\{\{Q\}\}; \{\{(P[^] ([ح]B)) \}\}C'\{\{Q\}\}】
$\Longrightarrow\{\{P\}\}$ (IF B THEN C ELSE C' FI) $\{\{\mathrm{Q}\}\}^{\prime \prime}$ \|
WhileRule:
" $\mathbb{L}\{\{(\mathrm{P}[\wedge] \mathrm{B})\}\} C\{\{\mathrm{P}\}\} \rrbracket$
$\Longrightarrow\{\{\mathrm{P}\}\}\left(\right.$ WHILE B DO C OD) $\left\{\left\{(\mathrm{P}[\wedge] \quad([\neg] \mathrm{B}) \mathrm{\}}\}{ }^{\prime \prime}\right.\right.$

DEMO

Annotated Simple Imperative Language

- We will give verification conditions for an annotated version of our simple imperative language
- Add a presumed invariant to each while loop

$$
\begin{aligned}
& \langle\text { command }\rangle::=\langle\text { variable }\rangle:=\langle\text { term }\rangle \\
& \mid\langle\text { command }\rangle ; \ldots ;\langle\text { command }\rangle \\
& \mid \text { if }\langle\text { statement }\rangle \text { then }\langle\text { command }\rangle \text { else }\langle\text { command }\rangle \\
& \mid \text { while }\langle\text { statement }\rangle \text { inv }\langle\text { statement }\rangle \text { do }\langle\text { command }\rangle
\end{aligned}
$$

Hoare Logic for Annotated Programs

Assingment Rule
Rule of Consequence

$$
\frac{\left.P \Rightarrow P^{\prime} \quad\left\{\left|P^{\prime}\right|\right\} \subset\left\{\mid Q^{\prime}\right\}\right\} \quad Q^{\prime} \Rightarrow Q}{\{|P|\} \subset\{Q \mid\}}
$$

Sequencing Rule
$\frac{\{P \mid\} C_{1}\{|Q|\} \quad\{|Q|\} C_{2}\{|R|\}}{\{|P|\} C_{1} ; C_{2}\{|R|\}}$
If Then Else Rule
$\frac{\{P \wedge B \mid\} C_{1}\{|Q|\} \quad\{|P \wedge \neg B|\} C_{2}\{|Q|\}}{\{|P|\} \text { if } B \text { then } C_{1} \text { else } C-2\{|Q|\}}$

While Rule
$\{|P \wedge B|\} \subset\{P \mid\}$
$\{|P|\}$ while B inv P do $C\{|P \wedge \neg B|\}$

