
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha
February 22, 2013

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 22, 2013 1

/ 9

Modificaton of data from Last Time

data was

type_synonym data = "int"

Now data is

datatype data = DN "int" | DR "real"

Tagged disjoint union of int and real

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 22, 2013 2

/ 9

Revised Lifting Constants, Operators

Need to lift constants, variables, boolean and arithmetic operators to
functions over states:

Constants:

definition Data :: "data ⇒ exp" where

"Data d ≡ λ s. d"

definition N :: "int ⇒ exp" where "N n ≡ λ s. DN n"

definition Real :: "real ⇒ exp" where

"Real r ≡ λ s. DR r"

definition is int b :: "exp ⇒ bool exp" where

"is int b x ≡ λ s. (∃ n. x s = DN n)"

definition is real b :: "exp ⇒ bool exp" where

"is real b x ≡ λ s. (∃ r. x s = DR r)"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 22, 2013 3

/ 9

Revised Lifting Constants, Operators

Arithmetic operations do type checking and coercion
Before:

definition plus e :: "exp ⇒ exp ⇒ exp"

(infixl "[+]" 150) where

"(p [+] q) ≡ λ s. (p s + (q s))"

Now:

definition plus e :: "exp ⇒ exp ⇒ exp"

(infixl "[+]" 150) where

"(p [+] q) ≡
λ s. (case p s of DN n ⇒

(case q s of DN m ⇒ DN(n + m)

| DR y ⇒ DR((real n) + y))

| DR x ⇒
(case q s of DN m ⇒ DR(x + real m)

| DR y ⇒ DR(x + y)))"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 22, 2013 4

/ 9

HOL Type for Deep Part of Embedding

datatype command =

AssignCom "var name" "exp" (infix "::=" 110)

| SeqCom "command" "command" (infixl ";" 109)

| CondCom "bool exp" "command" "command"

("IF / THEN / ELSE / FI" [120,120,120]60)

| WhileCom "bool exp" "command"

("WHILE / DO / OD" [120,120]60)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 22, 2013 5

/ 9

Defining Hoare Logic Rules

inductive valid :: "bool exp ⇒command ⇒bool exp ⇒bool"

("{{ }} {{ }}" [120,120,120]60)where

AssignmentAxiom:

"{{(P[x⇐e])}}(x::=e) {{P}}" |

SequenceRule:

"[[{{P}}C {{Q}}; {{Q}}C’ {{R}}]]

=⇒{{P}}(C;C’){{R}}" |

RuleOfConsequence:

"[[||=(P [−→] P’) ; {{P’}}C{{Q’}}; ||=(Q’ [−→] Q)]]

=⇒{{P}}C{{Q}}" |

IfThenElseRule:

"[[{{(P [∧] B)}}C{{Q}}; {{(P[∧]([¬]B))}}C’{{Q}}]]
=⇒{{P}}(IF B THEN C ELSE C’ FI){{Q}}" |

WhileRule:

"[[{{(P [∧] B)}}C{{P}}]]

=⇒{{P}}(WHILE B DO C OD){{(P [∧] ([¬]B))}}"
Elsa L Gunter () CS477 Formal Software Development Methods

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 22, 2013 6
/ 9

DEMO

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 22, 2013 7

/ 9

Annotated Simple Imperative Language

We will give verification conditions for an annotated version of
our simple imperative language

Add a presumed invariant to each while loop

〈command〉 ::= 〈variable〉 := 〈term〉
| 〈command〉; . . . ; 〈command〉
| if 〈statement〉 then 〈command〉 else 〈command〉
| while 〈statement〉 inv 〈statement〉 do 〈command〉

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 22, 2013 8

/ 9

Hoare Logic for Annotated Programs

Assingment Rule

{|P[e/x]|} x := e {|P|}

Rule of Consequence
P ⇒ P ′ {|P ′|} C {|Q ′|} Q ′ ⇒ Q

{|P|} C {|Q|}

Sequencing Rule
{|P|} C1 {|Q|} {|Q|} C2 {|R|}

{|P|} C1; C2 {|R|}

If Then Else Rule
{|P ∧ B|} C1 {|Q|} {|P ∧ ¬B|} C2 {|Q|}
{|P|} if B then C1 else C − 2 {|Q|}

While Rule
{|P ∧ B|} C {|P|}

{|P|} while B inv P do C {|P ∧ ¬B|}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 22, 2013 9

/ 9

