CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

February 20, 2013

Embedding logics in HOL

- Problem: How to define logic and their meaning in HOL?
- Two approaches: deep or shallow
- Shallow: use propositions of HOL as propositions of defined logic
- Example of shallow: Propositional Logic in HOL (just restrict the terms)
- Can't always have such a simple inclusion
- Reasoning easiest in "defined" logic when possible
- Can't reason about defined logic this way, only in it.

Embedding logics in HOL

- Alternative - Deep:
- Terms and propositions: elements in data types,
- Assignment: function from variables (names) to values
- "Satisfies" : function of assignment and proposition to booleans
- Can always be done
- More work to define, more work to use than shallow embedding
- More powerful, can reason about defined logic as well as in it
- Can combine two approaches

What is the Meaning of a Hoare Triple?

- Hoare triple $\{P\} \subset\{Q\}$ means that
- if C is run in a state S satisfying P, and C terminates
- then C will end in a state S^{\prime} satisfying Q
- Implies states S and S^{\prime} are (can be viewed as) assignments of variables to values
- States are abstracted as functions from variables to values
- States are modeled as functions from variables to values

How to Define Hoare Logic in HOL?

- Deep embeeding always possible, more work
- Is shallow possible?
- Two parts: Code and conditions
- Shallowest possible:
- Code is function from states to states
- Expression is function from states to values
- Boolean expression is function from states to booleans
- Conditions are function from states to booleans, since boolean expressions occur in conditions
- Problem: Can't do case analysis on general type of functions from states to states
- Can't do case analysis or induction on code
- Solution: go a bit deeper

Embedding Hoare Logic in HOL

- Recursive data type for Code (think BNF Grammar)
- Keep expressions, boolean expressions as before
- Expressions: functions from states to values
- Boolean expressions: functions from states to booleans
- Conditions: function from states to booleans
- Note: Variables are expressions, so are functions from states to values
- What functions are they?

HOL Types for Shallow Part of Embedding

type_synonym var_name = "string"
type_synonym data = "int"
type_synonym state = "var_name \Rightarrow data"
type_synonym exp = "state \Rightarrow data"
type_synonym bool_exp = "state \Rightarrow bool"
definition models :: "state \Rightarrow bool_exp \Rightarrow bool" (infix " \models " 90)
where
" $(\mathrm{s} \mid=\mathrm{b}) \equiv \mathrm{b} \mathrm{s}^{\prime}$
definition bvalid :: "bool_exp \Rightarrow bool" ("| 1 ") where
$" \| \vDash \mathrm{b} \equiv(\forall \mathrm{s} . \mathrm{b} \mathrm{s}) \mathrm{l}$

Using Shallow Part of Embedding

Need to lift constants, variables, boolean and arithmetic operators to functions over states:

- Constants:

$$
\text { definition } N:: ~ " i n t ~ \Rightarrow \exp " \text { where } " N \mathrm{n} \equiv \lambda \text { s. } \mathrm{n} \text { " }
$$

- Variables:
definition rev_app :: "'a $\Rightarrow(\prime a \Rightarrow$ 'b) \Rightarrow 'b" (" (\$)") where "\$x s \equiv (s x)"
- Arithmetic operations:
definition plus_e : : "exp $\Rightarrow \exp \Rightarrow \exp "(i n f i x l ~ "[+] " ~ 150) ~$ where " $(\mathrm{p}[+] \mathrm{q}) \equiv \lambda \mathrm{s}$. (p s + (q s))"
Example: $x \times x+(2 \times x+1)$ becomes

$$
\text { "\$',x', [×] \$''x', [+] (N } 2 \text { [} \times \text {] \$''x', [+] N 1)" }
$$

Using Shallow Part of Embedding

- Arithmetic relations:
definition less_b : : "exp $\Rightarrow \exp \Rightarrow$ bool_exp" (infix "[<]" 140) where "(a [<] b)s 三(a s) < (b s)"
- Boolean operators:
definition and_b : :"bool_exp \Rightarrow bool_exp \Rightarrow bool_exp"
(infix "[^]" 100) where "(a [^] b) $\equiv \lambda \mathrm{s} .((\mathrm{a}$ s) $\wedge(\mathrm{b}$ s))"
Example: $x<0 \wedge y \neq z$ becomes
"\$''x', [<] N 0 [\wedge] [7] (\$''y', [=] \$''z'')"

How to Handle Substitution

Use the shallowness

definition substitute : : " (state \Rightarrow 'a) \Rightarrow var_name $\Rightarrow \exp \Rightarrow$

$$
\left("{ }^{\prime} /\left[/ \Leftarrow_{-} /\right] "[120,120,120] 60\right)
$$

where
"p $[\mathrm{x} \Leftarrow \mathrm{e}] \equiv \lambda \mathrm{s} . \mathrm{p}(\lambda \mathrm{v}$. if $\mathrm{v}=\mathrm{x}$ then $\mathrm{e}(\mathrm{s})$ else $\mathrm{s}(\mathrm{v})) \mathrm{l}$
Prove this satisfies all equations for substitution:
lemma same_var_subst: "\$x[x\&e] = e"
lemma diff_var_subst: " $[x \neq y \rrbracket \Longrightarrow \$ y[x \Leftarrow e]=\$ y "$
lemma plus_e_subst:

$$
\text { " }(\mathrm{a}[+] \mathrm{b})[\mathrm{x} \Leftarrow \mathrm{e}]=(\mathrm{a}[\mathrm{x} \Leftarrow \mathrm{e}])[+](\mathrm{b}[\mathrm{x} \Leftarrow \mathrm{e}]) \mathrm{C}
$$

lemma less_b_subst:

$$
\text { " }(\mathrm{a}[<] \mathrm{b})[\mathrm{x} \Leftarrow \mathrm{e}]=(\mathrm{a}[\mathrm{x} \Leftarrow \mathrm{e}])[<](\mathrm{b}[\mathrm{x} \Leftarrow
$$

HOL Type for Deep Part of Embedding

datatype command =
AssignCom "var_name" "exp"
(infix "::=" 110)
| SeqCom "command" "command"
(infixl ";" 109)
| CondCom "bool_exp" "command" "command"
("IF _/ THEN _/ ELSE _/ FI" [120,120,120]60)
| WhileCom "bool_exp" "command"
("WHILE _/ DO _/ OD" [120,120]60)

Defining Hoare Logic Rules

inductive valid :: "bool_exp \Rightarrow command \Rightarrow bool_exp \Rightarrow bool" ("\{\{_\}\}_\{\{_\}\}" [120,120,120]60)where
AssignmentAxiom:
"\{\{(P[xץe])\}\}(x::=e) \{\{P\}\}"
SequenceRule:
" $\left.\mathbb{\{}\{P\}\} C^{\{ }\{Q \mathrm{Q}\}\right\} ;\{\{\mathrm{Q}\}\} C^{\prime}\{\{R\}\} \rrbracket$
$\Longrightarrow\{\{P\}\}\left(C ; C^{\prime}\right)\{\{R\}\}^{\prime \prime}$
RuleOfConsequence:

$\begin{aligned} & " \mathbb{I}\left\\|=\left(P[\longrightarrow] P^{\prime}\right) ;\left\{\left\{P^{\prime}\right\}\right\} C\left\{\left\{Q^{\prime}\right\}\right\} ;\right\\|=\left(Q^{\prime}[\longrightarrow] Q\right) \mathbb{1} \\ & \Longrightarrow\{\{P\}\} C\{Q\}\} "^{\prime} \mid \end{aligned}$
IfThenElseRule:
" $\mathbb{T}\{(\mathrm{P}$ [^] B) $\}\} C\{\{\mathrm{Q}\}\} ;\left\{\{(\mathrm{P}[\wedge]([\neg] \mathrm{B}) \mathrm{)}\}\} \mathrm{C}^{\prime}\{\{\mathrm{Q}\}\} \rrbracket\right.$
$\Longrightarrow\{\{\mathrm{P}\}\}\left(\mathrm{IF} \mathrm{B} \mathrm{THEN} \mathrm{C} \mathrm{ELSE} \mathrm{C'} \mathrm{FI)}\{\{\mathrm{Q}\}\}^{\prime \prime}\right.$ \|
WhileRule:
" $\mathbb{L}\{\{(\mathrm{P}[\wedge] \mathrm{B})\}\} C\{\{\mathrm{P}\}\} \rrbracket$
$\Longrightarrow\{\{\mathrm{P}\}\}$ (WHILE B DO C OD) $\{\{(\mathrm{P}$ [^] ([$\square] \mathrm{B}) \mathrm{)}\}\}^{\prime \prime}$

DEMO

Annotated Simple Imperative Language

- We will give verification conditions for an annotated version of our simple imperative language
- Add a presumed invariant to each while loop

$$
\begin{aligned}
& \langle\text { command }\rangle::=\langle\text { variable }\rangle:=\langle\text { term }\rangle \\
& \mid\langle\text { command }\rangle ; \ldots ;\langle\text { command }\rangle \\
& \mid \text { if }\langle\text { statement }\rangle \text { then }\langle\text { command }\rangle \text { else }\langle\text { command }\rangle \\
& \mid \text { while }\langle\text { statement }\rangle \text { inv }\langle\text { statement }\rangle \text { do }\langle\text { command }\rangle
\end{aligned}
$$

Hoare Logic for Annotated Programs

Assingment Rule
Rule of Consequence

$$
\frac{\left.P \Rightarrow P^{\prime} \quad\left\{\left|P^{\prime}\right|\right\} \subset\left\{\mid Q^{\prime}\right\}\right\} \quad Q^{\prime} \Rightarrow Q}{\{|P|\} \subset\{Q \mid\}}
$$

Sequencing Rule
$\frac{\{P \mid\} C_{1}\{|Q|\} \quad\{|Q|\} C_{2}\{|R|\}}{\{|P|\} C_{1} ; C_{2}\{|R|\}}$
If Then Else Rule
$\frac{\{P \wedge B \mid\} C_{1}\{|Q|\} \quad\{|P \wedge \neg B|\} C_{2}\{|Q|\}}{\{|P|\} \text { if } B \text { then } C_{1} \text { else } C-2\{|Q|\}}$

While Rule
$\{|P \wedge B|\} \subset\{P \mid\}$
$\{|P|\}$ while B inv P do $C\{|P \wedge \neg B|\}$

