
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha
February 20, 2013

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 1

/ 15

Embedding logics in HOL

Problem: How to define logic and their meaning in HOL?

Two approaches: deep or shallow

Shallow: use propositions of HOL as propositions of defined logic
Example of shallow: Propositional Logic in HOL (just restrict the
terms)

Can’t always have such a simple inclusion
Reasoning easiest in “defined” logic when possible
Can’t reason about defined logic this way, only in it.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 2

/ 15

Embedding logics in HOL

Alternative - Deep:

Terms and propositions: elements in data types,
Assignment: function from variables (names) to values
“Satisfies”: function of assignment and proposition to
booleans
Can always be done
More work to define, more work to use than shallow
embedding
More powerful, can reason about defined logic as well as in it

Can combine two approaches

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 3

/ 15

What is the Meaning of a Hoare Triple?

Hoare triple {P} C {Q} means that

if C is run in a state S satisfying P , and C terminates
then C will end in a state S ′ satisfying Q

Implies states S and S ′ are (can be viewed as) assignments of
variables to values

States are abstracted as functions from variables to values

States are modeled as functions from variables to values

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 4

/ 15

How to Define Hoare Logic in HOL?

Deep embeeding always possible, more work

Is shallow possible?

Two parts: Code and conditions

Shallowest possible:

Code is function from states to states
Expression is function from states to values
Boolean expression is function from states to booleans
Conditions are function from states to booleans, since boolean
expressions occur in conditions

Problem: Can’t do case analysis on general type of functions from
states to states

Can’t do case analysis or induction on code

Solution: go a bit deeper

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 5

/ 15

Embedding Hoare Logic in HOL

Recursive data type for Code (think BNF Grammar)

Keep expressions, boolean expressions as before

Expressions: functions from states to values

Boolean expressions: functions from states to booleans

Conditions: function from states to booleans

Note: Variables are expressions, so are functions from states to values

What functions are they?

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 6

/ 15

HOL Types for Shallow Part of Embedding

type_synonym var_name = "string"

type_synonym data = "int"

type_synonym state = "var_name ⇒ data"

type_synonym exp = "state ⇒ data"

type_synonym bool_exp = "state ⇒ bool"

definition models :: "state ⇒ bool_exp ⇒ bool"

(infix "|=" 90)

where

"(s|= b) ≡ b s"

definition bvalid :: "bool_exp ⇒ bool" ("||=")

where

"||= b ≡(∀ s. b s)"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 7

/ 15

Using Shallow Part of Embedding

Need to lift constants, variables, boolean and arithmetic operators to
functions over states:

Constants:

definition N :: "int ⇒exp" where "N n ≡ λs. n"

Variables:

definition rev app :: "’a ⇒(’a ⇒’b) ⇒’b" ("($)") where

"$x s ≡ (s x)"

Arithmetic operations:

definition plus e :: "exp ⇒exp ⇒exp" (infixl "[+]" 150)

where "(p [+] q) ≡ λs. (p s + (q s))"

Example: x × x + (2× x + 1) becomes

"$’’x’’ [×] $’’x’’ [+] (N 2 [×] $’’x’’ [+] N 1)"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 8

/ 15

Using Shallow Part of Embedding

Arithmetic relations:

definition less b :: "exp ⇒exp ⇒bool exp"

(infix "[<]" 140) where "(a [<] b)s ≡(a s) < (b s)"

Boolean operators:

definition and b ::"bool exp ⇒bool exp ⇒bool exp"

(infix "[∧]" 100) where "(a [∧] b) ≡ λs. ((a s) ∧(b s))"

Example: x < 0 ∧ y 6= z becomes

"$’’x’’ [<] N 0 [∧] [¬]($’’y’’ [=] $’’z’’)"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 9

/ 15

How to Handle Substitution

Use the shallowness

definition substitute :: "(state ⇒ ’a) ⇒ var name ⇒ exp ⇒ (state ⇒ ’a)"

(" /[/⇐ /]" [120,120,120]60)

where

"p[x⇐ e] ≡ λ s. p(λ v. if v = x then e(s) else s(v))"

Prove this satisfies all equations for substitution:

lemma same var subst: "$x[x⇐ e] = e"

lemma diff var subst: "[[x 6= y]] =⇒ $y[x⇐ e] = $y"

lemma plus e subst:

"(a [+] b)[x⇐ e] = (a[x⇐ e])[+](b[x⇐ e])"

lemma less b subst:

"(a [<] b)[x⇐ e] = (a[x⇐ e])[<](b[x⇐ e])"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 10

/ 15

HOL Type for Deep Part of Embedding

datatype command =

AssignCom "var name" "exp" (infix "::=" 110)

| SeqCom "command" "command" (infixl ";" 109)

| CondCom "bool exp" "command" "command"

("IF / THEN / ELSE / FI" [120,120,120]60)

| WhileCom "bool exp" "command"

("WHILE / DO / OD" [120,120]60)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 11

/ 15

Defining Hoare Logic Rules

inductive valid :: "bool exp ⇒command ⇒bool exp ⇒bool"

("{{ }} {{ }}" [120,120,120]60)where

AssignmentAxiom:

"{{(P[x⇐e])}}(x::=e) {{P}}" |

SequenceRule:

"[[{{P}}C {{Q}}; {{Q}}C’ {{R}}]]

=⇒{{P}}(C;C’){{R}}" |

RuleOfConsequence:

"[[||=(P [−→] P’) ; {{P’}}C{{Q’}}; ||=(Q’ [−→] Q)]]

=⇒{{P}}C{{Q}}" |

IfThenElseRule:

"[[{{(P [∧] B)}}C{{Q}}; {{(P[∧]([¬]B))}}C’{{Q}}]]
=⇒{{P}}(IF B THEN C ELSE C’ FI){{Q}}" |

WhileRule:

"[[{{(P [∧] B)}}C{{P}}]]

=⇒{{P}}(WHILE B DO C OD){{(P [∧] ([¬]B))}}"
Elsa L Gunter () CS477 Formal Software Development Methods

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 12
/ 15

DEMO

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 13

/ 15

Annotated Simple Imperative Language

We will give verification conditions for an annotated version of
our simple imperative language

Add a presumed invariant to each while loop

〈command〉 ::= 〈variable〉 := 〈term〉
| 〈command〉; . . . ; 〈command〉
| if 〈statement〉 then 〈command〉 else 〈command〉
| while 〈statement〉 inv 〈statement〉 do 〈command〉

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 14

/ 15

Hoare Logic for Annotated Programs

Assingment Rule

{|P[e/x]|} x := e {|P|}

Rule of Consequence
P ⇒ P ′ {|P ′|} C {|Q ′|} Q ′ ⇒ Q

{|P|} C {|Q|}

Sequencing Rule
{|P|} C1 {|Q|} {|Q|} C2 {|R|}

{|P|} C1; C2 {|R|}

If Then Else Rule
{|P ∧ B|} C1 {|Q|} {|P ∧ ¬B|} C2 {|Q|}
{|P|} if B then C1 else C − 2 {|Q|}

While Rule
{|P ∧ B|} C {|P|}

{|P|} while B inv P do C {|P ∧ ¬B|}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 20, 2013 15

/ 15

