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Embedding logics in HOL

Problem: How to define logic and their meaning in HOL?

Two approaches: deep or shallow

Shallow: use propositions of HOL as propositions of defined logic
Example of shallow: Propositional Logic in HOL (just restrict the
terms)

Can’t always have such a simple inclusion
Reasoning easiest in “defined” logic when possible
Can’t reason about defined logic this way, only in it.
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Embedding logics in HOL

Alternative - Deep:

Terms and propositions: elements in data types,
Assignment: function from variables (names) to values
“Satisfies”: function of assignment and proposition to
booleans
Can always be done
More work to define, more work to use than shallow
embedding
More powerful, can reason about defined logic as well as in it

Can combine two approaches
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What is the Meaning of a Hoare Triple?

Hoare triple {P} C {Q} means that

if C is run in a state S satisfying P , and C terminates
then C will end in a state S ′ satisfying Q

Implies states S and S ′ are (can be viewed as) assignments of
variables to values

States are abstracted as functions from variables to values

States are modeled as functions from variables to values
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How to Define Hoare Logic in HOL?

Deep embeeding always possible, more work

Is shallow possible?

Two parts: Code and conditions

Shallowest possible:

Code is function from states to states
Expression is function from states to values
Boolean expression is function from states to booleans
Conditions are function from states to booleans, since boolean
expressions occur in conditions

Problem: Can’t do case analysis on general type of functions from
states to states

Can’t do case analysis or induction on code

Solution: go a bit deeper
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Embedding Hoare Logic in HOL

Recursive data type for Code (think BNF Grammar)

Keep expressions, boolean expressions as before

Expressions: functions from states to values

Boolean expressions: functions from states to booleans

Conditions: function from states to booleans

Note: Variables are expressions, so are functions from states to values

What functions are they?
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HOL Types for Shallow Part of Embedding

type_synonym var_name = "string"

type_synonym data = "int"

type_synonym state = "var_name ⇒ data"

type_synonym exp = "state ⇒ data"

type_synonym bool_exp = "state ⇒ bool"

definition models :: "state ⇒ bool_exp ⇒ bool"

(infix "|=" 90)

where

"(s|= b) ≡ b s"

definition bvalid :: "bool_exp ⇒ bool" ("||=")

where

"||= b ≡(∀ s. b s)"
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Using Shallow Part of Embedding

Need to lift constants, variables, boolean and arithmetic operators to
functions over states:

Constants:

definition N :: "int ⇒exp" where "N n ≡ λs. n"

Variables:

definition rev app :: "’a ⇒(’a ⇒’b) ⇒’b" ("($)") where

"$x s ≡ (s x)"

Arithmetic operations:

definition plus e :: "exp ⇒exp ⇒exp" (infixl "[+]" 150)

where "(p [+] q) ≡ λs. (p s + (q s))"

Example: x × x + (2× x + 1) becomes

"$’’x’’ [×] $’’x’’ [+] (N 2 [×] $’’x’’ [+] N 1)"
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Using Shallow Part of Embedding

Arithmetic relations:

definition less b :: "exp ⇒exp ⇒bool exp"

(infix "[<]" 140) where "(a [<] b)s ≡(a s) < (b s)"

Boolean operators:

definition and b ::"bool exp ⇒bool exp ⇒bool exp"

(infix "[∧]" 100) where "(a [∧] b) ≡ λs. ((a s) ∧(b s))"

Example: x < 0 ∧ y 6= z becomes

"$’’x’’ [<] N 0 [∧] [¬]($’’y’’ [=] $’’z’’)"
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How to Handle Substitution

Use the shallowness

definition substitute :: "(state ⇒ ’a) ⇒ var name ⇒ exp ⇒ (state ⇒ ’a)"

(" /[ /⇐ /]" [120,120,120]60)

where

"p[x⇐ e] ≡ λ s. p(λ v. if v = x then e(s) else s(v))"

Prove this satisfies all equations for substitution:

lemma same var subst: "$x[x⇐ e] = e"

lemma diff var subst: "[[x 6= y]] =⇒ $y[x⇐ e] = $y"

lemma plus e subst:

"(a [+] b)[x⇐ e] = (a[x⇐ e])[+](b[x⇐ e])"

lemma less b subst:

"(a [<] b)[x⇐ e] = (a[x⇐ e])[<](b[x⇐ e])"
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HOL Type for Deep Part of Embedding

datatype command =

AssignCom "var name" "exp" (infix "::=" 110)

| SeqCom "command" "command" (infixl ";" 109)

| CondCom "bool exp" "command" "command"

("IF / THEN / ELSE / FI" [120,120,120]60)

| WhileCom "bool exp" "command"

("WHILE / DO / OD" [120,120]60)
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Defining Hoare Logic Rules

inductive valid :: "bool exp ⇒command ⇒bool exp ⇒bool"

("{{ }} {{ }}" [120,120,120]60)where

AssignmentAxiom:

"{{(P[x⇐e])}}(x::=e) {{P}}" |

SequenceRule:

"[[{{P}}C {{Q}}; {{Q}}C’ {{R}}]]

=⇒{{P}}(C;C’){{R}}" |

RuleOfConsequence:

"[[||=(P [−→] P’) ; {{P’}}C{{Q’}}; ||=(Q’ [−→] Q) ]]

=⇒{{P}}C{{Q}}" |

IfThenElseRule:

"[[{{(P [∧] B)}}C{{Q}}; {{(P[∧]([¬]B))}}C’{{Q}}]]
=⇒{{P}}(IF B THEN C ELSE C’ FI){{Q}}" |

WhileRule:

"[[{{(P [∧] B)}}C{{P}}]]

=⇒{{P}}(WHILE B DO C OD){{(P [∧] ([¬]B))}}"
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DEMO
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Annotated Simple Imperative Language

We will give verification conditions for an annotated version of
our simple imperative language

Add a presumed invariant to each while loop

〈command〉 ::= 〈variable〉 := 〈term〉
| 〈command〉; . . . ; 〈command〉
| if 〈statement〉 then 〈command〉 else 〈command〉
| while 〈statement〉 inv 〈statement〉 do 〈command〉
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Hoare Logic for Annotated Programs

Assingment Rule

{|P[e/x ]|} x := e {|P|}

Rule of Consequence
P ⇒ P ′ {|P ′|} C {|Q ′|} Q ′ ⇒ Q

{|P|} C {|Q|}

Sequencing Rule
{|P|} C1 {|Q|} {|Q|} C2 {|R|}

{|P|} C1; C2 {|R|}

If Then Else Rule
{|P ∧ B|} C1 {|Q|} {|P ∧ ¬B|} C2 {|Q|}
{|P|} if B then C1 else C − 2 {|Q|}

While Rule
{|P ∧ B|} C {|P|}

{|P|} while B inv P do C {|P ∧ ¬B|}
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