CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC

egunter@illinois.edu

http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

February 15, 2013

 $\frac{(P \Rightarrow P')\{P'\} \ C \ \{Q\}}{\{P\} \ C \ \{Q\}}$

• Meaning: If we can show that P implies P' (i.e. $(P \Rightarrow P')$ and we can show that $\{P\}$ C $\{Q\}$, then we know that $\{P\}$ C $\{Q\}$

Precondition Strengthening

• Examples:

$$\frac{x = 3 \Rightarrow x < 7 \quad \{x < 7\} \ x := x + 3 \ \{x < 10\}}{\{x = 3\} \ x := x + 3 \ \{x < 10\}}$$

$$\frac{\textit{True} \Rightarrow (2=2) \quad \{2=2\} \ x := 2 \ \{x=2\}}{\{\textit{True}\} \ x := 2 \ \{x=2\}}$$

$$\frac{x = n \Rightarrow x + 1 = n + 1}{\{x = n + 1\}} \frac{\{x + 1 = n + 1\}}{\{x = n\}} \frac{\{x = n + 1\}}{\{x = n + 1\}}$$

Which Inferences Are Correct?

• P is stronger than P' means $P \Rightarrow P'$

Precondition Strengthening

$$\frac{\{x > 0 \land x < 5\} \ x \ := \ x * x \ \{x < 25\}}{\{x = 3\} \ x \ := \ x * x \ \{x < 25\}}$$

$$\frac{\{x=3\} \ x \ := \ x * x \{x < 25\}}{\{x > 0 \land x < 5\} \ x \ := \ x * x \{x < 25\}}$$

$$\frac{\{x * x < 25\} \ x := x * x \{x < 25\}}{\{x > 0 \land x < 5\} \ x := x * x \{x < 25\}}$$

Which Inferences Are Correct?

$$\frac{\{x > 0 \land x < 5\} \ x \ := \ x * x \{x < 25\}}{\{x = 3\} \ x \ := \ x * x \{x < 25\}} \ \textit{YES}$$

$$\frac{\{x=3\} \ x \ := \ x * x \{x < 25\}}{\{x > 0 \land x < 5\} \ x \ := \ x * x \{x < 25\}}$$

$$\frac{\{x * x < 25\} \ x := x * x \{x < 25\}}{\{x > 0 \land x < 5\} \ x := x * x \{x < 25\}}$$

Which Inferences Are Correct?

$$\frac{\{x > 0 \land x < 5\} \ x := x * x \{x < 25\}}{\{x = 3\} \ x := x * x \{x < 25\}} \ YES$$

$$\frac{\{x=3\}\ x\ :=\ x*x\ \{x<25\}}{\{x>0\land x<5\}\ x\ :=\ x*x\ \{x<25\}}\ \textit{NO}$$

$$\frac{\{x * x < 25\} \ x := x * x \{x < 25\}}{\{x > 0 \land x < 5\} \ x := x * x \{x < 25\}}$$

Which Inferences Are Correct?

$$\frac{\{x > 0 \land x < 5\} \ x \ := \ x * x \{x < 25\}}{\{x = 3\} \ x \ := \ x * x \{x < 25\}} \ \textit{YES}$$

$$\frac{\{x=3\} \ x \ := \ x * x \{x < 25\}}{\{x > 0 \land x < 5\} \ x \ := \ x * x \{x < 25\}} \ NO$$

$$\frac{\{x * x < 25\} \ x := x * x \{x < 25\}}{\{x > 0 \land x < 5\} \ x := x * x \{x < 25\}} \ YES$$

Post Condition Weakening

$$\frac{\{P\}\ C\ \{Q'\}\quad Q'\Rightarrow Q}{\{P\}\ C\ \{Q\}}$$

• Example:

$$\frac{\{x+y=5\} \ x := x+y \ \{x=5\} \quad (x=5) \Rightarrow (x<10)}{\{x+y=5\} \ x := x+y \ \{x<10\}}$$

Rule of Consequence

$\frac{P \Rightarrow P' \quad \{P'\} \ C \ \{Q'\} \quad Q' \Rightarrow Q}{\{P\} \ C \ \{Q\}}$

- Logically equivalent to the combination of Precondition Strengthening and Postcondition Weakening
- Uses $P \Rightarrow P$ and $Q \Rightarrow Q$

Sequencing

$$\frac{\{P\}\ C_1\ \{Q\}\quad \{Q\}\ C_2\ \{R\}}{\{P\}\ C_1;\ C_2\ \{R\}}$$

• Example:

If Then Else

$$\frac{\{P \land B\} \ C_1 \ \{Q\} \quad \{P \land \neg B\} \ C_2 \ \{Q\}\}}{\{P\} \ \textit{if} \ B \ \textit{then} \ C_1 \ \textit{else} \ C - 2 \ \{Q\}}$$

• Example:

$$\{y = a\}$$
 if $x < 0$ then $y := y - x$ else $y := y + x$ $\{y = a + |x|\}$

By If_Then_Else Rule suffices to show:

• (1)
$$\{y = a \land x < 0\}$$
 $y := y - x$ $\{y = a + |x|\}$ and

• (4)
$$\{y = a \land \neg(x < 0)\}\ y := y + x \ \{y = a + |x|\}$$

 $(1) \{y = a \land x < 0\} \ y := y - x \{y = a + |x|\}$

(3)
$$(y = a \land x < 0) \Rightarrow (y = a + |x|)$$

(2) $\{y - x = a + |x|\} \ y := y - x \{y = a + |x|\}$
(1) $\{y = a \land x < 0\} \ y := y - x \{y = a + |x|\}$

- (1) reduces to (2) and (3) by Precondition Strengthening
- (2) instance of Assignment Axiom
- (3) holds since $x < 0 \Rightarrow |x| = -x$

(4) $\{y = a \land \neg(x < 0)\}\ y := y + x\ \{y = a + |x|\}$

(6)
$$(y = a \land \neg(x < 0)) \Rightarrow (y + x = a + |x|)$$

(5) $\{y + x = a + |x|\} y := y + x \{y = a + |x|\}$
(4) $\{y = a \land \neg(x < 0)\} y := y + x \{y = a + |x|\}$

- (4) reduces to (5) and (6) by Precondition Strengthening
- (5) Follows from Assignment Axiom
- (6) since $\neg(x < 0) \Rightarrow |x| = x$

Elsa L Gunter () CS477

CS477 Formal Software Development Method

If Then Else

$$\begin{array}{c} \text{(1) } \{y = a \land x < 0\} \ y := y - x \ \{y = a + |x|\} \\ \text{(4) } \{y = a \land \neg(x < 0)\} \ y := y + x \ \{y = a + |x|\} \\ \hline \{y = a\} \ \textit{if} \ x < 0 \ \textit{then} \ y := y - x \ \textit{else} \ y := y + x \ \{y = a + |x|\} \end{array}$$

by the If_Then_Else Rule

lsa I Gunter ()

5477 Formal Software Development Method

(日) (원) (분) (분) (분) 연

While

We need a rule to be able to make assertions about while loops.

- Inference rule because we can only draw conclusions if we know something about the body
- Lets start with:

Elsa L Gunter (

CS477 Formal Software Development Method

While

- Loop may never execute
- To know P holds after, it had better hold before
- Second approximation:

$$\frac{\{?\}C\{?\}}{\{P\} \text{ while } B \text{ do } C\{P\}}$$

Elsa L Gunter

While

CS477 Formal Software Development Metho

While

- Loop may execute C; enf of loop is of C
- ullet P holds at end of while means P holds at end of loop C
- P holds at start of *while*; loop taken means $P \wedge B$ holds at start of C
- Third approximation:

$$\frac{\{P \land B\} \ C \ \{P\}}{\{P\} \ \textit{while B do C} \ \{P\}}$$

(ロ) (**a**)) (言) (言) (言) (9)

• Always know $\neg B$ when while loop finishes

• Final While rule:

 $\frac{\{\textit{P} \land \textit{B}\} \textit{ C} \{\textit{P}\}}{\{\textit{P}\} \textit{ while } \textit{B} \textit{ do } \textit{C} \{\textit{P} \land \neg \textit{B}\}}$

Elsa L Gunter ()

S477 Formal Software Development Method

1 + 4 m +

Elsa L Gunter

477 Formal Software Development Method

While

$$\frac{\{P \land B\} \ C \ \{P\}}{\{P\} \ \textit{while} \ B \ \textit{do} \ C \ \{P \land \neg B\}}$$

- P satisfying this rule is called a loop invariant
- Must hold before and after the each iteration of the loop

Elsa I Gunter (

CS477 Formal Software Development Method

While

- While rule generally used with precondition strengthening and postcondition weakening
- No algorithm for computing P in general
- Requires intuition and an understanding of why the program works

Elea I Guntar (

477 Formal Software Development Method

Example

Prove:

$${n \ge 0}$$

 $x := 0; y := 0;$
while $x < n$ do
 $(y := y + ((2 * x) + 1);$
 $x := x + 1)$
 ${y = n * n}$

Elsa L Gunter (

S477 Formal Software Development Method

Example

 Need to find P that is true before and after loop is executed, such that

$$(P \land \neg(x < n)) \Rightarrow y = n * n$$

Elsa L Gunter (

CS477 Formal Software Development Metho

Example

• First attempt:

$$y = x * x$$

- Motivation:
- Want y = n * n
- x counts up to n
- Guess: Each pass of loop calcuates next square

Example

By Post-condition Weakening, suffices to show:

(1)
$$\{n \ge 0\}$$

 $x := 0; y := 0;$
while $x < n$ do
 $\{y := y + ((2 * x) + 1); x := x + 1\}$
 $\{y = x * x \land \neg(x < n)\}$

and

(2)
$$(y = x * x \land \neg(x < n)) \Rightarrow (y = n * n)$$

Elsa L Gunter ()

S477 Formal Software Development Method

< □ > <**♂** > < 분 > < 분 > 및 **♡** Q(

Elsa L Gunter

477 Formal Software Development Method

Problem with (2)

- Want (2) $(y = x * x \land \neg(x < n)) \Rightarrow (y = n * n)$
- From $\neg(x < n)$ have $x \ge n$
- Need x = n
- Don't know this; from this could have x > n
- Need stronger invariant
- Try ading $x \le n$
- Then have $((x \le n) \land \neg (x < n)) \Rightarrow (x = n)$
- Then have x = n when loop done

4 D > 4 🗗 >

a L Gunter ()

CS477 Formal Software Development Method

Example

Second attempt:

$$P = ((y = x * x) \land (x < n))$$

Again by Post-condition Weakening, sufices to show:

(1)
$$\{n \ge 0\}$$

 $x := 0; y := 0;$
while $x < n$ do
 $\{y := y + ((2 * x) + 1); x := x + 1\}$
 $\{(y = x * x) \land (x \le n) \land \neg (x < n)\}$

and

$$(2) ((y = x * x) \land (x \le n) \land \neg (x < n)) \Rightarrow (y = n * n)$$

Isa I Gunter ()

S477 Formal Software Development Meth

∄ ჟ৭৫

Proof of (2)

- $\bullet (\neg (x < n)) \Rightarrow (x \ge n)$
- $((x \ge n) \land (x \le n)) \Rightarrow (x = n)$
- $\bullet ((x = n) \land (y = x * x)) \Rightarrow (y = n * n)$

Elsa L Gunter (

CS477 Formal Software Development Meth

Example

- For (1), set up While Rule using Sequencing Rule
- By Sequencing Rule, suffices to show
- (3) $\{n \ge 0\}$ x := 0; y := 0 $\{(y = x * x) \land (x \le n)\}$

and

(4)
$$\{(y = x * x) \land (x \le n)\}$$

while $x < n$ do
 $(y := y + ((2 * x) + 1); x := x + 1)$
 $\{(y = x * x) \land (x \le n) \land \neg (x < n)\}$

Elsa L Gunter (

S477 Formal Software Development Method

Proof of (4)

By While Rule

(5)
$$\{(y = x * x) \land (x \le n) \land (x < n)\}\$$

 $y := y + ((2 * x) + 1); \ x := x + 1$
 $\{(y = x * x) \land (x \le n)\}\$
 $\{(y = x * x) \land (x \le n)\}\$
while $x < n$ do
 $(y := y + ((2 * x) + 1); \ x := x + 1)$
 $\{(y = x * x) \land (x \le n) \land \neg (x < n)\}\$

Elsa L Gunter ()

S477 Formal Software Development Method

Proof of (5)

By Sequencing Rule

$$\begin{array}{ll} (6) \ \{(y=x*x) \land (x \leq n) & (7) \ \{(y=(x+1)*(x+1)) \\ \land (x < n)\} & \land ((x+1) \leq n)\} \\ y:=y+((2*x)+1) & x:=x+1 \\ \{(y=(x+1)*(x+1)) & \{(y=x*x) \land (x \leq n)\} \\ \hline \land ((x+1) \leq n)\} \\ \hline \{(y=x*x) \land (x \leq n) \land (x < n)\} \\ y:=y+((2*x)+1); \ x:=x+1 \\ \{(y=x*x) \land (x \leq n)\} \end{array}$$

(7) holds by Assignment Axiom

4□ > 4∰ > 4 분 > 4 분 > 1 분 994(

Elsa L Gunter (

S477 Formal Software Development Method

Proof of (6)

By Precondition Strengthening

(8)
$$((y = x * x)$$
 $= ((x + 1) * (x + 1))$
 $(x \le n) \land (x < n)) \Rightarrow \land ((x + 1) \le n)$
 $(((y + ((2 * x) + 1))$ $y := y + ((2 * x) + 1)$
 $= (x + 1) * (x + 1))$ $\{(y = (x + 1) * (x + 1))$
 $((x + 1) \le n))$ $((x + 1) \le n)\}$

$$\{(y = x * x) \land (x \le n)$$

$$(x < n)\}$$

$$y := y + ((2 * x) + 1)$$

$$\{(y = (x + 1) * (x + 1))$$

$$((x + 1) \le n)\}$$

Have (9) by Assignment Axiom

Elsa L Gunter ()

Proof of (8)

- (Assuming x integer) $(x < n) \Rightarrow ((x + 1) \le n)$
- $(y = x * x) \Rightarrow ((y + ((2 * x) + 1)))$ = ((x * x) + ((2 * x) + 1))= ((x + 1) * (x + 1)))
- That finishes (8), and thus (6) and thus (5) and thus (4) (while)
- Need (3) $\{n \ge 0\}$ x := 0; y := 0 $\{(y = x * x) \land (x \le n)\}$

Proof of (3)

By Sequencing

(10)
$$\{n \ge 0\}$$
 (11) $\{(0 = x * x) \land (x \le n)\}$
 $x := 0$ $y := 0$
 $\{(0 = x * x) \land (x \le n)\}$ $\{(y = x * x) \land (x \le n)\}$
 $\{n \ge 0\} \ x := 0; \ y := 0 \ \{(y = x * x) \land (x \le n)\}$

Have (11) by Assignment Axiom

Proof of (10)

By Precondition Strengthening

$$(13) \quad \{(0 = 0 * 0) \land (0 \le n)\}$$

$$x := 0$$

$$(12) \quad (n \ge 0) \Rightarrow ((0 = 0 * 0) \land (0 \le n)) \qquad \{(0 = x * x) \land (x \le n)\}$$

$$\{n \ge 0\} \quad x := 0; \quad y := 0 \quad \{(0 = x * x) \land (x \le n)\}$$

- For (12), 0 = 0 * 0 and $(n \ge 0) \Leftrightarrow (0 \le n)$
- Have (13) by Assignment Axiom
- Finishes (10), thus (3), thus (1)