

Which Inferences Are Correct?

$$
\begin{aligned}
& \frac{\{x>0 \wedge x<5\} x:=x * x\{x<25\}}{\{x=3\} x:=x * x\{x<25\}} \text { YES } \\
& \frac{\{x=3\} x:=x * x\{x<25\}}{\{x>0 \wedge x<5\} \times:=x * x\{x<25\}} \text { NO } \\
& \frac{\{x * x<25\} x:=x * x\{x<25\}}{\{x>0 \wedge x<5\} x:=x * x\{x<25\}} \text { YES }
\end{aligned}
$$

Rule of Consequence

$$
\frac{P \Rightarrow P^{\prime} \quad\left\{P^{\prime}\right\} \subset\left\{Q^{\prime}\right\} \quad Q^{\prime} \Rightarrow Q}{\{P\} \subset\{Q\}}
$$

- Logically equivalent to the combination of Precondition

Strengthening and Postcondition Weakening

- Uses $P \Rightarrow P$ and $Q \Rightarrow Q$

If Then Else

$$
\frac{\{P \wedge B\} C_{1}\{Q\} \quad\{P \wedge \neg B\} C_{2}\{Q\}}{\{P\} \text { if } B \text { then } C_{1} \text { else } C-2\{Q\}}
$$

- Example:
$\{y=a\}$ if $x<0$ then $y:=y-x$ else $y:=y+x\{y=a+|x|\}$
By If_Then_Else Rule suffices to show:
-(1) $\{y=a \wedge x<0\} y:=y-x\{y=a+|x|\}$ and
-(4) $\{y=a \wedge \neg(x<0)\} y:=y+x\{y=a+|x|\}$

Post Condition Weakening

$$
\frac{\{P\} \subset\left\{Q^{\prime}\right\} \quad Q^{\prime} \Rightarrow Q}{\{P\} \subset\{Q\}}
$$

- Example:

$$
\frac{\{x+y=5\} x:=x+y\{x=5\} \quad(x=5) \Rightarrow(x<10)}{\{x+y=5\} x:=x+y\{x<10\}}
$$

Sequencing

$$
\frac{\{P\} C_{1}\{Q\} \quad\{Q\} C_{2}\{R\}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

- Example:

$$
\begin{gathered}
\{z=z \wedge z=z\} x:=z\{x=z \wedge z=z\} \\
\{x=z \wedge z=z\} y:=z\{x=z \wedge y=z\} \\
\{z=z \wedge z=z\} x:=z ; y:=z\{x=z \wedge y=z\}
\end{gathered}
$$

(1) $\{y=a \wedge x<0\} y:=y-x\{y=a+|x|\}$

(3) $(y=a \wedge x<0) \Rightarrow(y=a+|x|)$
(2) $\{y-x=a+|x|\} y:=y-x\{y=a+|x|\}$
(1) $\{y=a \wedge x<0\} y:=y-x\{y=a+|x|\}$

- (1) reduces to (2) and (3) by Precondition Strengthening
- (2) instance of Assignment Axiom
- (3) holds since $x<0 \Rightarrow|x|=-x$

(4) $\{y=a \wedge \neg(x<0)\} y:=y+x\{y=a+|x|\}$

(6) $(y=a \wedge \neg(x<0)) \Rightarrow(y+x=a+|x|)$
$\frac{\text { (5) }\{y+x=a+|x|\} y:=y+x\{y=a+\mid x\}}{\text { (4) }\{y=a \wedge \neg(x<0)\} y:=y+x\{y=a+|x|\}}$

- (4) reduces to (5) and (6) by Precondition Strengthening
- (5) Follows from Assignment Axiom
- (6) since $\neg(x<0) \Rightarrow|x|=x$

While

- Loop may never execute
- To know P holds after, it had better hold before
- Second approximation:

$$
\frac{\{?\} C\{?\}}{P\} \text { while } B \text { do } C\{P\}}
$$

While

- Always know $\neg B$ when while loop finishes
- Final While rule:

$$
\frac{\{P \wedge B\} C\{P\}}{\{P\} \text { while } B \text { do } C\{P \wedge \neg B\}}
$$

While

While

$$
\frac{\{P \wedge B\} C\{P\}}{\{P\} \text { while } B \text { do } C\{P \wedge \neg B\}}
$$

- P satisfying this rule is called a loop invariant
- Must hold before and after the each iteration of the loop

Example

- Need to find P that is true before and after loop is executed, such that

$$
(P \wedge \neg(x<n)) \Rightarrow y=n * n
$$

Example

- First attempt:

$$
y=x * x
$$

- Motivation:
- Want $y=n * n$
- x counts up to n
- Guess: Each pass of loop calcuates next square
- While rule generally used with precondition strengthening and postcondition weakening
- No algorithm for computing P in general
- Requires intuition and an understanding of why the program works

Example

Prove:

$$
\begin{aligned}
& \{n \geq 0\} \\
& x:=0 ; y:=0 \\
& \text { while } x<n d o \\
& (y:=y+((2 * x)+1) \\
& x:=x+1) \\
& \{y=n * n\}
\end{aligned}
$$

Example

By Post-condition Weakening, suffices to show:
(1) $\{n \geq 0\}$
$x:=0 ; y:=0$;
while $x<n$ do
$(y:=y+((2 * x)+1) ; x:=x+1)$
$\{y=x * x \wedge \neg(x<n)\}$
and
(2) $(y=x * x \wedge \neg(x<n)) \Rightarrow(y=n * n)$

Problem with (2)

- Want (2) $(y=x * x \wedge \neg(x<n)) \Rightarrow(y=n * n)$
- From $\neg(x<n)$ have $x \geq n$
- Need $x=n$
- Don't know this; from this could have $x>n$
- Need stronger invariant
- Try ading $x \leq n$
- Then have $((x \leq n) \wedge \neg(x<n)) \Rightarrow(x=n)$
- Then have $x=n$ when loop done

Example

Second attempt:

$$
P=((y=x * x) \wedge(x \leq n))
$$

Again by Post-condition Weakening, sufices to show:
(1) $\{n \geq 0\}$
$x:=0 ; y:=0$;
while $x<n$ do
$(y:=y+((2 * x)+1) ; x:=x+1)$
$\{(y=x * x) \wedge(x \leq n) \wedge \neg(x<n)\}$
and
(2) $((y=x * x) \wedge(x \leq n) \wedge \neg(x<n)) \Rightarrow(y=n * n)$

Example

- For (1), set up While Rule using Sequencing Rule
- By Sequencing Rule, suffices to show
(3) $\{n \geq 0\} x:=0 ; y:=0\{(y=x * x) \wedge(x \leq n)\}$
and
(4) $\{(y=x * x) \wedge(x \leq n)\}$
while $x<n$ do
$(y:=y+((2 * x)+1) ; x:=x+1)$
$\{(y=x * x) \wedge(x \leq n) \wedge \neg(x<n)\}$

Elsa L Gunter ()

Proof of (5)

By Sequencing Rule

$$
\text { (6) } \begin{array}{cc}
\{(y=x * x) \wedge(x \leq n) & \text { (7) } \\
\wedge(x<(y=(x+1) *(x+1)) \\
\wedge(x<n)\} & \wedge((x+1) \leq n)\} \\
y:=y+((2 * x)+1) & x:=x+1 \\
\{(y=(x+1) *(x+1)) & \{(y=x * x) \wedge(x \leq n)\} \\
\wedge((x+1) \leq n)\} & \\
\hline & \{(y=x * x) \wedge(x \leq n) \wedge(x<n)\} \\
y:=y+((2 * x)+1) ; x:=x+1 \\
\{(y=x * x) \wedge(x \leq n)\}
\end{array}
$$

(7) holds by Assignment Axiom

Proof of (6)

By Precondition Strengthening

$$
\text { (8) } \begin{array}{cc}
((y=x * x) & \\
\wedge(x \leq n) \wedge(x<n)) \Rightarrow & \wedge((x+1) \leq n)\} \\
(((y+((2 * x)+1)) & y:=y+((2 * x)+1) \\
=(x+1) *(x+1)) & \{(y=(x+1) *(x+1)) \\
\wedge((x+1) \leq n)) & \wedge((x+1) \leq n)\} \\
\cline { 1 - 3 } & \{(y=x * x) \wedge(x \leq n) \\
\wedge(x<n)\} & \\
y:=y+((2 * x)+1) \\
\{(y=(x+1) *(x+1)) \\
\wedge((x+1) \leq n)\}
\end{array}
$$

Have (9) by Assignment Axiom

Proof of (3)

By Sequencing
(10) $\{n \geq 0\}$
$x:=0$
(11) $\{(0=x * x) \wedge(x \leq n)\}$
$\frac{\{(0=x * x) \wedge(x \leq n)\} \quad\{(y=x * x) \wedge(x \leq n)\}}{\{n \geq 0\} x:=0 ; y:=0\{(y=x * x) \wedge(x \leq n)\}}$
$y:=0$

Have (11) by Assignment Axiom

Proof of (8)

- (Assuming x integer) $(x<n) \Rightarrow((x+1) \leq n)$
- $(y=x * x) \Rightarrow((y+((2 * x)+1))$

$$
\begin{aligned}
& =((x * x)+((2 * x)+1)) \\
& =((x+1) *(x+1)))
\end{aligned}
$$

- That finishes (8), and thus (6) and thus (5) and thus (4) (while)
- Need (3) $\{n \geq 0\} x:=0 ; y:=0\{(y=x * x) \wedge(x \leq n)\}$

Proof of (10)

By Precondition Strengthening
(13) $\{(0=0 * 0) \wedge(0 \leq n)\}$
$\frac{(12)(n \geq 0) \Rightarrow((0=0 * 0) \wedge(0 \leq n)) \quad\{(0=x * x) \wedge(x \leq n)\}}{\{n \geq 0\} x:=0 ; y:=0\{(0=x * x) \wedge(x \leq n)\}}$

- For (12), $0=0 * 0$ and $(n \geq 0) \Leftrightarrow(0 \leq n)$
- Have (13) by Assignment Axiom
- Finishes (10), thus (3), thus (1)

