## CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

February 6, 2013

## First-Order Formulae

Given signature ( $V, F, a f, R$, ar), terms defined by

$$
\begin{array}{ll}
t::=v & v \in V \\
\mid & f\left(t_{1}, \ldots, t_{n}\right) \\
& f \in F \text { and } n=a f(f)
\end{array}
$$

Formulae defined by First-order formulae built from terms using relations, logical connectives, quantifiers:

| form $::=$ true | False |
| :---: | :---: |
| \| $r\left(t_{1}, \ldots, t_{n}\right)$ | $r \in R, t_{i}$ terms, $n=\operatorname{ar}(r)$ |
| (form) | $\neg$ form |
| form $\wedge$ form | form $\vee$ form |
| form $\Rightarrow$ form | form $\Leftrightarrow$ form |
| $\forall v . f o r m$ | $\exists \mathrm{v}$.form |

## Free Variables: Terms

Informally: free variables of a expression are variables that have an occurrence in an expression that is not bound. Written $f v(e)$ for expression e
Free variables of terms defined by structural induction over terms; written

- $f v(x)=\{x\}$
- $f v\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=\bigcup_{i=1, \ldots, n} f v\left(t_{i}\right)$


## Note:

- Free variables of term just variables occurring in term; no bound variables
- No free variables in constants
- Example: $f v(\operatorname{add}(1, \operatorname{abs}(x)))=\{x\}$


## Free Variables: Formulae

Defined by structural induction on formulae; uses $f v$ on terms

- $f v($ true $)=f v($ false $)=\{ \}$
- $f v\left(r\left(t_{1}, \ldots, t_{n}\right)\right)=\bigcup_{i=1, \ldots, n} f v\left(t_{i}\right)$
- $f v\left(\psi_{1} \wedge \psi_{2}\right)=f v\left(\psi_{1} \vee \psi_{2}\right)=f v\left(\psi_{1} \Rightarrow \psi_{2}\right)=f v\left(\psi_{1} \Leftrightarrow \psi_{2}\right)=$ $\left(f v\left(\psi_{1}\right) \cup f v\left(\psi_{2}\right)\right)$
- $f v(\forall v . \psi)=f v(\exists v . \psi)=(f v(\psi) \backslash\{v\})$

Variable occurrence at quantifier binding occurrence; occurrence not free, not binding is bound occurrence

Example:

$$
\underset{\uparrow}{f v(x>3 \wedge(\exists y \cdot(\forall z \cdot z \geq(y-x))} \vee \underset{\uparrow}{\uparrow} \underset{\uparrow}{(z \geq y)}))=\{x, z\}
$$

## Free Variables, Assignments and Interpretation

## Theorem

Assume given structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, term $t$ over $\mathcal{G}$, and $a$ and $b$ assignments. If for every $x \in f v(t)$ we have $a(x)=b(x)$ then $\mathcal{T}_{a}(t)=c T_{b}(a)$.

## Theorem

Assume given structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, formula $\psi$ over $\mathcal{G}$, and a and $b$ assignments. If for every $x \in f v(\psi)$ we have $a(x)=b(x)$ then $\mathcal{M}_{a}(\psi)=\mathcal{M}_{b}(\psi)$.

## Syntactic Substitution versus Assignment Update

- When interpreting universal quantification $(\forall x . \psi)$, wanted to check interpretation of every instance of $\psi$ where $v$ was replaced by element of semantic domain $\mathcal{D}$
- How: semantically - interpret $\psi$ with assignment updated by $v \mapsto d$ for every $d \in \mathcal{D}$
- Syntactically?
- Answer: substitution


## Substitution in Terms

- Substitution of term $t$ for variable $x$ in term $s$ (written $s[t / x]$ ) gotten by replacing every instance of $x$ in $s$ by $t$
- $x$ called redex; $t$ called residue
- Yields instance of $s$

Formally defined by structural induction on terms:

- $x[t / x]=t$
- $y[t / x]=y$ for variable $y$ where $y \neq x$
- $f\left(t_{1}, \ldots, t_{n}\right)[t / x]=f\left(t_{1}[t / x], \ldots, t_{n}[t / x]\right)$

Example: $(\operatorname{add}(1, \operatorname{abs}(x)))[\operatorname{add}(x, y) / x]=\operatorname{add}(1, \operatorname{abs}(\operatorname{add}(x, y)))$

## Substitution in Formulae: Problems

- Want to define by structural induction, similar to terms
- Quantifiers must be handled with care
- Substitution only replaces free occurrences of variable Example:

$$
\begin{aligned}
& (x>3 \wedge(\exists y \cdot(\forall z \cdot z \geq(y-x)) \vee(z \geq y)))[x+2 / z]= \\
& (x>3 \wedge(\exists y \cdot(\forall z \cdot z \geq(y-x)) \vee(x+2 \geq y)))
\end{aligned}
$$

- Need to avoid free variable capture Example Problem:

$$
\begin{aligned}
& (x>3 \wedge(\exists y \cdot(\forall z \cdot z \geq(y-x)) \vee(z \geq y)))[x+y / z] \neq \\
& (x>3 \wedge(\exists y \cdot(\forall z \cdot z \geq(y-x)) \vee(x+y \geq y)))
\end{aligned}
$$

## Theorem

Assume given structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, variable $x$, terms $s$ and $t$ over $\mathcal{G}$, and a assignment. Let $b=a\left[x \mapsto \mathcal{T}_{a}(t)\right]$. Then $\mathcal{T}_{a}(s[t / x])=\mathcal{T}_{b}(s)$.

## Substitution in Formulae: Two Approaches

- When quantifier would capture free variable of redex, can't substitute in formula as is
- Solution 1: Make substitution partial function - undefined in this case
- Solution 2: Define equivalence relation based on renaming bound variables; define substitution on equivalence classes
- Will take Solution 1 here
- Still need definition of equivalence up to renaming bound variables


## Substitution in Formulae

- Defined by structural induction; uses substitution in terms
- Read equations below as saying left is not defined if any expression on right not defined
- true $[t / x]=$ true $\quad$ false $[t / x]=$ false
- $r\left(t_{1}, \ldots, t_{n}\right)[t / x]=r\left(\left(t_{1}[t / x], \ldots, t_{n}[t / x]\right)\right)$
- $(\psi)[t / x]=(\psi[t / x]) \quad(\neg \psi)[t / x]=\neg(\psi[t / x])$
- $\left(\psi_{1} \otimes \psi_{2}\right)[t / x]=\left(\psi_{1}[t / x]\right) \otimes\left(\psi_{2}[t / x]\right)$ for $\otimes \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$
- $(\mathcal{Q} x . \psi)[t / x]=\mathcal{Q} x . \psi$ for $\mathcal{Q} \in\{\forall, \exists\}$
- $(\mathcal{Q} y . \psi)[t / x]=\mathcal{Q} y .(\psi[t / x])$ if $x \neq y$ and $y \notin f v(t)$ for $\mathcal{Q} \in\{\forall, \exists\}$
- $(\mathcal{Q} y . \psi)[t / x]$ not defined if $x \neq y$ and $y \in f v(t)$ for $\mathcal{Q} \in\{\forall, \exists\}$


## Substitution in Formulae

## Examples

$$
\begin{aligned}
& (x>3 \wedge(\exists y \cdot(\forall z \cdot z \geq(y-x)) \vee(z \geq y)))[x+y / z] \text { not defined } \\
& \quad(x>3 \wedge(\exists w \cdot(\forall z \cdot z \geq(w-x)) \vee(z \geq w)))[x+y / z]= \\
& (x>3 \wedge(\exists w \cdot(\forall z \cdot z \geq(w-x)) \vee((x+y) \geq y)))
\end{aligned}
$$

## Theorem

Assume given structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, formula $\psi$ over $\mathcal{G}$, and a assignment. If $\psi[t / x]$ defined, then $\left.a\right|^{\mathcal{S}} \psi[t / x]$ if and only if $a\left[x \mapsto \mathcal{T}_{a}(t)\right] \models^{\mathcal{S}} \psi$

## Renaming by Swapping: Terms

Define the swapping of two variables in a term swaptxy by structural induction on terms:

- $x[x \leftrightarrow y]=y$ and $y[x \leftrightarrow y]=x$
- $z[x \leftrightarrow y]=z$ for $z$ a variable, $z \neq x, z \neq y$
- $f\left(t_{1}, \ldots, t_{n}\right)[x \leftrightarrow y]=f\left(t_{1}[x \leftrightarrow y], \ldots, t_{n}[x \leftrightarrow y]\right)$


## Examples:

$$
\begin{aligned}
& \operatorname{add}(1, \operatorname{abs}(\operatorname{add}(x, y)))[x \leftrightarrow y]=\operatorname{add}(1, \operatorname{abs}(\operatorname{add}(y, x))) \\
& \operatorname{add}(1, \operatorname{abs}(\operatorname{add}(x, y)))[x \leftrightarrow z]=\operatorname{add}(1, \operatorname{abs}(\operatorname{add}(z, y)))
\end{aligned}
$$

## Renaming by Swapping: Terms

## Theorem

Assume given structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, variables $x$ and $y$, term $t$ over $\mathcal{G}$, and a assignment. Let $b=a[x \mapsto a(y)][y \mapsto a(x)]$. Then $\mathcal{T}_{a}(t[x \leftrightarrow y])=\mathcal{T}_{b}(t)$

## Renaming by Swapping: Terms

## Proof.

By structural induction on terms, suffices to show theorem for the case where $t$ variable, and case $t=f\left(t_{1}, \ldots, t_{n}\right)$, assuming result for $t_{1}, \ldots, t_{n}$

- Case: $t$ variable
- Subcase: $t=x$. Then $\mathcal{T}_{a}(x[x \leftrightarrow y])=\mathcal{T}_{a}(y)=a(y)$ and

$$
\begin{aligned}
& \mathcal{T}_{b}(x)=b(x)=a[x \mapsto a(y)][y \mapsto a(x)](x)=a\left[x \mapsto \mathcal{T}_{a}(y)\right](x)=a(y) \\
& \operatorname{so} \mathcal{T}_{a}(t[x \leftrightarrow y])=\mathcal{T}_{b}(t)
\end{aligned}
$$

- Subcase: $t=y$. Then $\mathcal{T}_{a}(y[x \leftrightarrow y])=\mathcal{T}_{a}(x)=a(x)$ and $\mathcal{T}_{b}(y)=b(y)=a[x \mapsto a(y)][y \mapsto a(x)](x)=a(x)$ so $\mathcal{T}_{a}(t[x \leftrightarrow y])=\mathcal{T}_{b}(t)$
- Subcase: $t=z$ variable, $z \neq x$ and $z \neq y$. Then

$$
\begin{aligned}
& \mathcal{T}_{a}(z[x \leftrightarrow y])=\mathcal{T}_{a}(z)=a(z) \text { and } \\
& \mathcal{T}_{b}(z)=b(z)=a[x \mapsto a(y)][y \mapsto a(x)](z)=a\left[x \mapsto \mathcal{T}_{a}(y)\right](z)=a(z) \\
& \text { so } \mathcal{T}_{a}(t[x \leftrightarrow y])=\mathcal{T}_{b}(t)
\end{aligned}
$$

## Renaming by Swapping: Terms

## Proof.

- Case: $t=f\left(t_{1}, \ldots, t_{n}\right)$. Assume $\mathcal{T}_{a}\left(t_{i}[x \leftrightarrow y]\right)=\mathcal{T}_{b}\left(t_{i}\right)$ for $i=1, \ldots, n$. Then

$$
\begin{aligned}
\mathcal{T}_{a}(t[x \leftrightarrow y])= & \mathcal{T}_{a}\left(f\left(t_{1}, \ldots, t_{n}\right)[x \leftrightarrow y]\right) \\
= & \mathcal{T}_{a}\left(f\left(t_{1}[x \leftrightarrow y], \ldots, t_{n}[x \leftrightarrow y]\right)\right) \\
= & \phi(f)\left(\mathcal{T}_{a}\left(t_{1}[x \leftrightarrow y]\right), \ldots, \mathcal{T}_{a}\left(t_{n}[x \leftrightarrow y]\right)\right) \\
= & \phi(f)\left(\mathcal{T}_{b}\left(t_{1}\right), \ldots, \mathcal{T}_{b}\left(t_{n}\right)\right) \\
& \text { since } \mathcal{T}_{a}\left(t_{i}[x \leftrightarrow y]\right)=\mathcal{T}_{b}\left(t_{i}\right) \text { for } i=1, \ldots, n \\
= & \mathcal{T}_{b}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \\
= & \mathcal{T}_{b}(t) \quad \square
\end{aligned}
$$

## Renaming by Swapping: Formulae

Define the swapping of two variables in a formula $\psi[x \leftrightarrow y]$ by structural induction, using swapping on terms:

- true $[x \leftrightarrow y]=$ true $\quad$ false $[x \leftrightarrow y]=$ false
- $r\left(t_{1}, \ldots, t_{n}\right)[x \leftrightarrow y]=r\left(\left(t_{1}[x \leftrightarrow y], \ldots, t_{n}[x \leftrightarrow y]\right)\right)$
- $(\psi)[x \leftrightarrow y]=(\psi[x \leftrightarrow y]) \quad(\neg \psi)[x \leftrightarrow y]=\neg(\psi[x \leftrightarrow y])$
- $\left(\psi_{1} \otimes \psi_{2}\right)[x \leftrightarrow y]=\left(\psi_{1}[x \leftrightarrow y]\right) \otimes\left(\psi_{2}[x \leftrightarrow y]\right)$ for
$\otimes \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$
- $(\mathcal{Q} x . \psi)[x \leftrightarrow y]=\mathcal{Q} y .(\psi[x \leftrightarrow y])$ for $\mathcal{Q} \in\{\forall, \exists\}$
- $(\mathcal{Q} y . \psi)[x \leftrightarrow y]=\mathcal{Q} y \cdot(\psi[x \leftrightarrow y])$ for $\mathcal{Q} \in\{\forall, \exists\}$
- $(\mathcal{Q} z . \psi)[x \leftrightarrow y]=\mathcal{Q} z .(\psi[x \leftrightarrow y])$ for $z$ a variable with $z \neq x$, $z \neq y$, and $\mathcal{Q} \in\{\forall, \exists\}$


## Examples

$$
\begin{aligned}
& (x>3 \wedge(\exists y \cdot(\forall z \cdot z \geq(y-x)) \vee(z \geq y)))[x \leftrightarrow y] \\
& =(y>3 \wedge(\exists x \cdot(\forall z \cdot z \geq(x-y)) \vee(z \geq x))) \\
& (x>3 \wedge(\exists y .(\forall z \cdot z \geq(y-x)) \vee(z \geq y)))[y \leftrightarrow z] \\
& (x>3 \wedge(\exists y .(\forall z \cdot z \geq(y-x)) \vee(z \geq y)))[y \leftrightarrow w]
\end{aligned}
$$

Assume given structure $\mathcal{S}=(\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, variables $x$ and $y$, formula $\psi$ over $\mathcal{G}$, and a assignment. If $x \notin f v(t)$ and $y \notin f v t$ then $\psi[x \leftrightarrow y] \equiv \psi$
$\Gamma \vdash \varphi A \| I E$

