CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunterQ@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

February 6, 2013

Elsa L Gunter () CS477 Formal Software Development Method / 16


mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

First-Order Formulae

Given signature (V, F,af | R, ar), terms defined by

ti=v veV
] f(ti,....ty) f € F and n= af(f)

Formulae defined by First-order formulae built from terms using relations,
logical connectives, quantifiers:

form ::= true | False
| r(ty,...,tn) re R, tj terms, n= ar(r)
| (form) | —form
| form A form | form\V form
| form = form | form < form
| Vv.form | Jv.form

Elsa L Gunter () CS477 Formal Software Development Method / 16



Free Variables: Terms

Informally: free variables of a expression are variables that have an
occurrence in an expression that is not bound. Written fv(e) for
expression e

Free variables of terms defined by structural induction over terms; written
e fv(x) = {x}
o fu(f(tr,....tn)) =U=1 ,fv(ti)

Note:

@ Free variables of term just variables occurring in term; no bound
variables

@ No free variables in constants
e Example: fv(add(1, abs(x))) = {x}

Elsa L Gunter () CS477 Formal Software Development Method / 16



Free Variables: Formulae

Defined by structural induction on formulae; uses fv on terms
o fv(true) = fv(false) = { }
o fv(r(ty,...,ty)) = Ui:l,...,n fv(t;)

o fv(y1 AN2) = fv(h1 Vo) = fv(h1 = 1) = vt & ) =
(fv(v1) U fv(2))

o fv(Vv.y) = fv(Iv.¢) = (fv(v) \ {v})
Variable occurrence at quantifier binding occurrence; occurrence not free,
not binding is bound occurrence

Example: VX > 3N G- (V2. 22 (¥ =x) V(2 2))) = {x. 2}

T T

Elsa L Gunter () CS477 Formal Software Development Method / 16



Free Variables, Assignments and Interpretation

Theorem

Assume given structure S = (G, D, F, ¢, R, p), term t over G, and a and b
assignments. If for every x € fv(t) we have a(x) = b(x) then

7;(1‘) = ch(a).

Theorem

| \

Assume given structure S = (G, D, F, ¢, R, p), formula 1) over G, and a
and b assignments. If for every x € fv(v)) we have a(x) = b(x) then

M (¥) = Mp(1h).

\

Elsa L Gunter () CS477 Formal Software Development Method / 16



Syntactic Substitution versus Assignment Update

@ When interpreting universal quantification (Vx. 1)), wanted to check

interpretation of every instance of 1) where v was replaced by element
of semantic domain D

@ How: semantically - interpret ¥ with assignment updated by v — d
for every d € D

@ Syntactically?

@ Answer: substitution

Elsa L Gunter () CS477 Formal Software Development Method

/ 16



Substitution in Terms

@ Substitution of term t for variable x in term s (written s[t/x]) gotten
by replacing every instance of x in s by t

o x called redex; t called residue

@ Yields instance of s

Formally defined by structural induction on terms:
o x[t/x] =t
@ y[t/x] =y for variable y where y # x
o f(ty,...,tn)[t/x] = f(t1[t/x], ..., ta[t/x])

Example: (add(1, abs(x)))[add(x,y)/x| = add(1, abs(add(x,y)))

Elsa L Gunter () CS477 Formal Software Development Method / 16



Substitution in Formulae: Problems

@ Want to define by structural induction, similar to terms
@ Quantifiers must be handled with care

o Substitution only replaces free occurrences of variable
Example:

(x>3ANEy.Vz.z>(y —x))V(z>y))x+2/z] =
(x>3ANE3y.(Vz.z>(y —x))V(x+2>y)))

o Need to avoid free variable capture
Example Problem:

(x>3ANEFy. (Vz.z>2 (y = x))V(z2y)x +y/z] #
(x>3A3y. (Vz.z> (y —x))V (x+y >V)))

Elsa L Gunter () CS477 Formal Software Development Method / 16



Assume given structure S = (G, D, F, ¢, R, p), variable x, terms s and t
over G, and a assignment. Let b = a[x — T,(t)]. Then
Ta(slt/x]) = Ts(s).

Elsa L Gunter () CS477 Formal Software Development Method / 16



Substitution in Formulae: Two Approaches

@ When quantifier would capture free variable of redex, can't substitute
in formula as is

@ Solution 1: Make substitution partial function — undefined in this case

@ Solution 2: Define equivalence relation based on renaming bound
variables; define substitution on equivalence classes

@ Will take Solution 1 here

@ Still need definition of equivalence up to renaming bound variables

Elsa L Gunter () CS477 Formal Software Development Method / 16



Substitution in Formulae

Defined by structural induction; uses substitution in terms

Read equations below as saying left is not defined if any expression on
right not defined

true[t/x] = true false[t/x]| = false

r(ty, ..., tn)[t/x] = r((ta[t/x], ..., ta[t/x]))

(¢ )[t/X] (Wlt/x])  (=)t/x] = ~(¢[t/x])

(Y1 @ ha)[t/x] = (¥u[t/x]) @ (¥2[t/x]) for @ € {A,V, =, <}
(Qx P)[t/x] = Qx.¢ for Q € {V,3}

(Qy-)[t/x] = Qy. (4[t/x]) if x #y and y ¢ fu(t) for Q € {V, 3}
(Qy ¥)[t/x] not defined if x # y and y € fv(t) for Q € {V,3}

Elsa L Gunter () CS477 Formal Software Development Method



Substitution in Formulae

Examples

(x >3A3y. (Vz.z> (y —x))V(z > y)))[x + y/z] not defined

(x>3AN@Ew. (Vz.z> (w—x))V(z>w
(x>3AN3w. (Vz.z> (w—x))V((x+y)>y))

Assume given structure S = (G, D, F, ¢, R, p), formula 1) over G, and a
assignment. If 1)[t/x] defined, then a =5 1[t/x] if and only if
a[x = Ta(t)] F° ¢

Elsa L Gunter () CS477 Formal Software Development Method / 16



Renaming by Swapping: Terms

Define the swapping of two variables in a term swaptxy by structural
induction on terms:

@ x[x <> y]l]=yand y[x < y] = x
@ z[x <> y|] = z for z a variable, z # x, z# y

o f(t,....th)[x = y]l="~(ti[x < y],.... ta[x < y])
Examples:

add(1, abs(add(x,y)))[x <+ y] = add(1, abs(add(y, x)))
add(1, abs(add(x,y)))[x <> z] = add(1, abs(add(z,y)))

Elsa L Gunter () CS477 Formal Software Development Method

/ 16



Renaming by Swapping: Terms

Assume given structure S = (G, D, F, ¢, R, p), variables x and y, term t

over G, and a assignment. Let b= a[x — a(y)][y — a(x)]. Then
Ta(tlx < y]) = To(t)

Elsa L Gunter () CS477 Formal Software Development Method / 16



Renaming by Swapping: Terms

(Proof |

By structural induction on terms, suffices to show theorem for the case
where t variable, and case t = f(t1,. .., t,), assuming result for t, ..., t,
@ Case: t variable

o Subcase: t = x. Then T,(x[x <> y]) = Ta(y) = a(y) and
To(x) = b(x) = alx = a(y)]ly = a(x)](x) = alx = TI(x) = a(y)
so To(t[x < yl) = Tu(t)
e Subcase: t =y. Then T,(y[x <> y]) = Ta(x) = a(x) and
Taly) = bly) = alx = 2Ly = a()|(x) = a(x) 50
Ta(tlx <> y]) = Ts(t)
e Subcase: t = z variable, z # x and z # y. Then
Ta(z[x < y]) = Ta(z) = a(z) and
To(2) = b(2) = alx = a(y)]ly = a(x)](z) = alx = Ta(y)(z) = a(2)
so To(t[x < y]) = Tu(t)

Elsa L Gunter () CS477 Formal Software Development Method / 16



Renaming by Swapping: Terms

o Case: t = f(t1,...,tn). Assume T,(ti[x <> y]) = Tp(t;) for
i=1,...,n. Then

Ta(tlx < y]) = Ta(f(t1, . ta)lx < y])
=Tf(t1[x < y], ..., ta[x <> ¥]))
= () (Ta(trlx < y1), ..., Ta(ta[x < y1))
= o(F)(T(t1), - -, To(tn))
since TL(ti[x <> y]) = Tp(t;) for i =1,...,n
= Tp(f(t1,...,tn))
=Tp(t) O

Elsa L Gunter () CS477 Formal Software Development Method / 16



Renaming by Swapping: Formulae

Define the swapping of two variables in a formula ¥ [x <> y| by structural
induction, using swapping on terms:

@ true[x <> y] = true false[x <> y] = false

o r(tr,....th)[x < y] =r((ti[x < y],..., ta[x <> ¥]))

°o (Px e yl=Wkeyl)  ()x e y]=kx < y])

o (Y18 Ua)lix > y] = (d1lx ¢ y]) ® (alx 45 y]) for
® € {AV,=, &}

° (@x-Y)lx eyl =Qy. (V[x < y]) for Q€ {¥,3}

o (Qy.¥)lx < y]=Qy.(Y[x < y]) for Q € {V, 3}

0 (Qz.Y)[x <> y] = Qz. (Y[x <> y]) for z a variable with z # x,
z#y,and Q € {V,3}

Elsa L Gunter () CS477 Formal Software Development Method



Examples
(x>3AEy. (Vz.22 (y = x)) V(z 2 y)))[x < ¥]
=(y>3AN(3x. (Vz.z2> (x—y)) V(z > x)))

(x>3A(Fy.(Vz. 22 (y = x)) V(z 2 y)))ly ¢ Z]
(x>3A(Fy. (V2. 2= (y —x)) V(z 2 y))ly ¢ w]

Assume given structure S = (G, D, F, ¢, R, p), variables x and y, formula
Y over G, and a assignment. If x ¢ fv(t) and y ¢ fvt then ¢[x <> y] =

J

Elsa L Gunter () CS477 Formal Software Development Method

/ 16



[ QAIIE

Elsa L Gunter ()

CS477 Formal Software Development Method

/ 16



	Free and Bound Variables
	Substitution

