CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC

egunter@illinois.edu

http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

February 6, 2013

expression e

Note:

• $fv(x) = \{x\}$

variables

• $fv(f(t_1,\ldots,t_n)) = \bigcup_{i=1,\ldots,n} fv(t_i)$

• No free variables in constants • Example: $fv(add(1, abs(x))) = \{x\}$

Free Variables: Terms

Informally: free variables of a expression are variables that have an

Free variables of terms defined by structural induction over terms; written

• Free variables of term just variables occurring in term; no bound

occurrence in an expression that is not bound. Written $f_V(e)$ for

Free Variables: Formulae

First-Order Formulae

logical connectives, quantifiers:

 $r(t_1,\ldots,t_n)$

 $form \land form$

 $form \Rightarrow form$

(form)

 $\forall v. form$

form ::= true

Given signature (V, F, af, R, ar), terms defined by

t ::= v

 $v \in V$

 $r \in R$, t_i terms, n = ar(r)

 $| f(t_1,\ldots,t_n) | f \in F \text{ and } n = af(f)$

Formulae defined by First-order formulae built from terms using relations,

 $\neg form$

 $\exists v. form$

form ∨ form

form ⇔ form

Defined by structural induction on formulae; uses fv on terms

- $fv(true) = fv(false) = \{ \}$
- $fv(r(t_1,...,t_n)) = \bigcup_{i=1,...,n} fv(t_i)$
- $fv(\psi_1 \wedge \psi_2) = fv(\psi_1 \vee \psi_2) = fv(\psi_1 \Rightarrow \psi_2) = fv(\psi_1 \Leftrightarrow \psi_2) = fv(\psi_2 \Leftrightarrow \psi_2) = fv(\psi_1 \Leftrightarrow \psi_2) = fv(\psi_2 \Leftrightarrow \psi_2) = fv(\psi_2 \Leftrightarrow \psi_2) = fv(\psi_1 \Leftrightarrow \psi_2) = fv(\psi_2 \Leftrightarrow \psi_2 \Leftrightarrow \psi$ $(\mathit{fv}(\psi_1) \cup \mathit{fv}(\psi_2))$
- $fv(\forall v. \psi) = fv(\exists v. \psi) = (fv(\psi) \setminus \{v\})$

Variable occurrence at quantifier binding occurrence; occurrence not free, not binding is bound occurrence

Free Variables, Assignments and Interpretation

Theorem

Assume given structure $S = (G, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, term t over G, and a and b assignments. If for every $x \in fv(t)$ we have a(x) = b(x) then $T_a(t) = cT_b(a)$.

Theorem

Assume given structure $S = (G, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, formula ψ over G, and a and b assignments. If for every $x \in fv(\psi)$ we have a(x) = b(x) then $\mathcal{M}_{a}(\psi) = \mathcal{M}_{b}(\psi).$

Syntactic Substitution versus Assignment Update

- When interpreting universal quantification $(\forall x. \psi)$, wanted to check interpretation of every instance of ψ where v was replaced by element of semantic domain \mathcal{D}
- ullet How: semantically interpret ψ with assignment updated by $v\mapsto d$ for every $d \in \mathcal{D}$
- Syntactically?
- Answer: substitution

Substitution in Terms

- Substitution of term t for variable x in term s (written s[t/x]) gotten by replacing every instance of x in s by t
 - x called redex; t called residue
- Yields instance of s

Formally defined by structural induction on terms:

- $\bullet x[t/x] = t$
- y[t/x] = y for variable y where $y \neq x$
- $f(t_1,...,t_n)[t/x] = f(t_1[t/x],...,t_n[t/x])$

Example: (add(1, abs(x)))[add(x, y)/x] = add(1, abs(add(x, y)))

 $\mathcal{T}_a(s[t/x]) = \mathcal{T}_b(s).$

Assume given structure $S = (G, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, variable x, terms s and t

over \mathcal{G} , and a assignment. Let $b = a[x \mapsto \mathcal{T}_a(t)]$. Then

Substitution in Formulae: Problems

- Want to define by structural induction, similar to terms
- Quantifiers must be handled with care
 - Substitution only replaces free occurrences of variable Example:

$$\begin{array}{l} (x>3 \land (\exists y.\ (\forall z.\ z \geq (y-x)) \lor (z \geq y)))[x+2/z] = \\ (x>3 \land (\exists y.\ (\forall z.\ z \geq (y-x)) \lor (x+2 \geq y))) \end{array}$$

• Need to avoid free variable capture **Example Problem:**

$$(x > 3 \land (\exists y. (\forall z. z \ge (y - x)) \lor (z \ge y)))[x + y/z] \ne (x > 3 \land (\exists y. (\forall z. z \ge (y - x)) \lor (x + y \ge y)))$$

Substitution in Formulae: Two Approaches

- When quantifier would capture free variable of redex, can't substitute in formula as is
- Solution 1: Make substitution partial function undefined in this case
- Solution 2: Define equivalence relation based on renaming bound variables; define substitution on equivalence classes
- Will take Solution 1 here

Substitution in Formulae

• Still need definition of equivalence up to renaming bound variables

Examples

Substitution in Formulae

- Defined by structural induction; uses substitution in terms
- Read equations below as saying left is not defined if any expression on right not defined
- true[t/x] = truefalse[t/x] = false
- $r(t_1,...,t_n)[t/x] = r((t_1[t/x],...,t_n[t/x]))$
- $\bullet \ (\psi)[t/x] = (\psi[t/x]) \qquad (\neg \psi)[t/x] = \neg(\psi[t/x])$
- $(\psi_1 \otimes \psi_2)[t/x] = (\psi_1[t/x]) \otimes (\psi_2[t/x])$ for $\otimes \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$
- $(\mathcal{Q}x.\psi)[t/x] = \mathcal{Q}x.\psi$ for $\mathcal{Q} \in \{\forall,\exists\}$
- $\bullet \ (\mathcal{Q} \, y. \, \psi)[t/x] = \mathcal{Q} \, y. \, (\psi[t/x]) \text{ if } x \neq y \text{ and } y \notin \mathit{fv}(t) \text{ for } \mathcal{Q} \in \{\forall, \exists\}$
- $(Qy, \psi)[t/x]$ not defined if $x \neq y$ and $y \in fv(t)$ for $Q \in \{\forall, \exists\}$

Assume given structure $S = (G, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, formula ψ over G, and a assignment. If $\psi[t/x]$ defined, then $a \models^{\mathcal{S}} \psi[t/x]$ if and only if $a[x \mapsto \mathcal{T}_a(t)] \models^{\mathcal{S}} \psi$

 $(x > 3 \land (\exists y. (\forall z. z \ge (y - x)) \lor (z \ge y)))[x + y/z]$ not defined

 $(x > 3 \land (\exists w. (\forall z. z \ge (w - x)) \lor (z \ge w)))[x + y/z] =$

 $(x > 3 \land (\exists w. (\forall z. z \ge (w - x)) \lor ((x + y) \ge y)))$

Renaming by Swapping: Terms

Define the swapping of two variables in a term swaptxy by structural induction on terms:

- $x[x \leftrightarrow y] = y$ and $y[x \leftrightarrow y] = x$
- $z[x \leftrightarrow y] = z$ for z a variable, $z \neq x$, $z \neq y$
- $f(t_1,...,t_n)[x \leftrightarrow y] = f(t_1[x \leftrightarrow y],...,t_n[x \leftrightarrow y])$

Examples:

```
add(1, abs(add(x, y)))[x \leftrightarrow y] = add(1, abs(add(y, x)))
add(1, abs(add(x, y)))[x \leftrightarrow z] = add(1, abs(add(z, y)))
```

Theorem

 $\mathcal{T}_a(t[x \leftrightarrow y]) = \mathcal{T}_b(t)$

Assume given structure $S = (G, D, F, \phi, R, \rho)$, variables x and y, term t

over \mathcal{G} , and a assignment. Let $b = a[x \mapsto a(y)][y \mapsto a(x)]$. Then

Renaming by Swapping: Terms

By structural induction on terms, suffices to show theorem for the case where t variable, and case $t = f(t_1, \ldots, t_n)$, assuming result for t_1, \ldots, t_n

- Case: *t* variable
 - Subcase: t = x. Then $\mathcal{T}_a(x[x \leftrightarrow y]) = \mathcal{T}_a(y) = a(y)$ and $\mathcal{T}_b(x) = b(x) = a[x \mapsto a(y)][y \mapsto a(x)](x) = a[x \mapsto \mathcal{T}_a(y)](x) = a(y)$
 - so $\mathcal{T}_a(t[x \leftrightarrow y]) = \mathcal{T}_b(t)$ Subcase: t = y. Then $\mathcal{T}_a(y[x \leftrightarrow y]) = \mathcal{T}_a(x) = a(x)$ and $\mathcal{T}_b(y) = b(y) = a[x \mapsto a(y)][y \mapsto a(x)](x) = a(x)$ so $\mathcal{T}_a(t[x \leftrightarrow y]) = \mathcal{T}_b(t)$
 - Subcase: t=z variable, $z\neq x$ and $z\neq y$. Then $\mathcal{T}_a(z[x\leftrightarrow y])=\mathcal{T}_a(z)=a(z)$ and $\mathcal{T}_b(z)=b(z)=a[x\mapsto a(y)][y\mapsto a(x)](z)=a[x\mapsto \mathcal{T}_a(y)](z)=a(z)$ so $\mathcal{T}_a(t[x \leftrightarrow y]) = \mathcal{T}_b(t)$

Renaming by Swapping: Terms

Renaming by Swapping: Terms

Proof.

• Case: $t = f(t_1, \dots, t_n)$. Assume $\mathcal{T}_a(t_i[x \leftrightarrow y]) = \mathcal{T}_b(t_i)$ for $i = 1, \ldots, n$. Then

$$\begin{split} \mathcal{T}_{a}(t[x \leftrightarrow y]) &= \mathcal{T}_{a}(f(t_{1}, \dots, t_{n})[x \leftrightarrow y]) \\ &= \mathcal{T}_{a}(f(t_{1}[x \leftrightarrow y], \dots, t_{n}[x \leftrightarrow y])) \\ &= \phi(f)(\mathcal{T}_{a}(t_{1}[x \leftrightarrow y]), \dots, \mathcal{T}_{a}(t_{n}[x \leftrightarrow y])) \\ &= \phi(f)(\mathcal{T}_{b}(t_{1}), \dots, \mathcal{T}_{b}(t_{n})) \\ &\text{since } \mathcal{T}_{a}(t_{i}[x \leftrightarrow y]) = \mathcal{T}_{b}(t_{i}) \text{ for } i = 1, \dots, n \\ &= \mathcal{T}_{b}(f(t_{1}, \dots, t_{n})) \\ &= \mathcal{T}_{b}(t) \quad \Box \end{aligned}$$

Renaming by Swapping: Formulae

Define the swapping of two variables in a formula $\psi[x\leftrightarrow y]$ by structural induction, using swapping on terms:

- $\operatorname{true}[x \leftrightarrow y] = \operatorname{true}$ $false[x \leftrightarrow y] = false$
- $r(t_1,\ldots,t_n)[x\leftrightarrow y]=r((t_1[x\leftrightarrow y],\ldots,t_n[x\leftrightarrow y]))$
- $(\psi)[x \leftrightarrow y] = (\psi[x \leftrightarrow y])$ $(\neg \psi)[x \leftrightarrow y] = \neg(\psi[x \leftrightarrow y])$
- $(\psi_1 \otimes \psi_2)[x \leftrightarrow y] = (\psi_1[x \leftrightarrow y]) \otimes (\psi_2[x \leftrightarrow y])$ for $\otimes \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$
- $(\mathcal{Q}x.\psi)[x\leftrightarrow y] = \mathcal{Q}y.(\psi[x\leftrightarrow y])$ for $\mathcal{Q}\in\{\forall,\exists\}$
- $(Qy.\psi)[x \leftrightarrow y] = Qy.(\psi[x \leftrightarrow y])$ for $Q \in \{\forall, \exists\}$
- $(Qz.\psi)[x \leftrightarrow y] = Qz.(\psi[x \leftrightarrow y])$ for z a variable with $z \neq x$, $z \neq y$, and $Q \in \{ \forall, \exists \}$

Examples

 $(x > 3 \land (\exists y. (\forall z. z \ge (y - x)) \lor (z \ge y)))[x \leftrightarrow y]$ $= (y > 3 \land (\exists x. (\forall z. z \ge (x - y)) \lor (z \ge x)))$ $(x > 3 \land (\exists y. (\forall z. z \ge (y - x)) \lor (z \ge y)))[y \leftrightarrow z]$ $(x > 3 \land (\exists y. (\forall z. z \ge (y - x)) \lor (z \ge y)))[y \leftrightarrow w]$

Assume given structure $S = (G, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, variables x and y, formula ψ over \mathcal{G} , and a assignment. If $x \notin fv(t)$ and $y \notin fvt$ then $\psi[x \leftrightarrow y] \equiv \psi$

Elsa L Gunter () CS477 Formal Software Development Method / 16	$\Gamma \vdash \varphi AIIE$	
	Floo I Contac ()	